首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A great challenge for gene therapy is to develop a high efficient gene delivery system with low toxicity. Nonviral vectors are still attractive although the current agents displayed some disadvantages (i.e., low transfection efficiency, high toxicity). To overcome the high toxicity of poly(ethylene imine) (PEI) and low transfection efficiency of PEGylated PEI (PEG-PEI), we linked a cell specific target molecule folate (FA) on poly(ethylene glycol) (PEG) and then grafted the FA-PEG onto hyperbranched PEI 25 kDa. The FA-PEG- grafted-hyperbranched-PEI (FA-PEG-PEI) effectively condensed plasmid DNA (pDNA) into nanoparticles with positive surface charge under a suitable N/P ratio. Tested in deferent cell lines (i.e., HEK 293T, glioma C6 and hepatoma HepG2 cells), no significant cytotoxicity of FA-PEG-PEI was added to PEG-PEI. More importantly, significant transfection efficiency was exhibited in FA-targeted cells. Reporter assay showed that FA-PEG-PEI/pDNA complexes had significantly higher transgene activity than that of PEI/pDNA in folate-receptor (FR) positive (HEK 293T and C6) cells but not FR-negative (HepG2) cells. These results indicated that FA-PEG-PEI might be a promising candidate for gene delivery with the characteristics of good biocompatibility, potential biodegradability, and relatively high gene transfection efficiency.  相似文献   

2.
Polyethylenimine (PEI) is a potential gene transfer agent, but is limited by its poor transfection efficiency in vivo due to poor solubility and stability, pronounced toxicity and non-specific interaction with target cells. To improve its pulmonary gene transfection property, galactose (whose binding lectins are abundantly expressed in the lung) was selected as a ligand to improve the binding and uptake of the modified PEI/pDNA (plasmid DNA) polyplexes into lung cells. A novel protocol was developed to synthesize galactose-polyethylenglycol (PEG)-PEI copolymers. The resulting galactose-PEG-PEI/pDNA polyplexes showed improved solubility, stability, and reduced toxicity. Compared with that obtained by PEI/pDNA at a N/P ratio of 6, the transfection efficiency of 1% galactose-PEG-PEI/pDNA polyplexes at the N/P ratio of 36 was 4.5- and 11.6-fold in the A549 cell line and in mice lung, respectively. These data taken suggest that galactose-PEG-PEI may be a promising pulmonary gene delivery system.  相似文献   

3.
Spherical, well-defined core-shell nanoparticles that consist of poly(methyl methacrylate) (PMMA) cores and branched poly(ethylenimine) shells (PEI) were synthesized via a graft copolymerization of methyl methacrylate from branched PEI induced by a small amount of tert-butyl hydroperoxide. The PMMA-PEI core-shell nanoparticles were between 130 to170 nm in diameter and displayed zeta-potentials near +40 mV at pH 7 in 1 mM aqueous NaCl. Plasmid DNA (pDNA) was mixed with nanoparticles and formed complexes of approximately 120 nm in diameter and was highly monodispersed. The complexes were characterized with respect to their particle size, zeta-potential, surface morphology, and DNA integrity. The complexing ability of the nanoparticles was strongly dependent on the molecular weight of the PEI and the thickness of the PEI shells. The stability of the complexes was influenced by the loading ratio of the pDNA and the nanoparticles. The condensed pDNA in the complexes was significantly protected from enzymatic degradation by DNase I. Cytotoxity studies using MTT colorimetric assays suggested that the PMMA-PEI (25 kDa) core-shell nanoparticles were three times less toxic than the branched PEI (25 kDa). Their transfection efficiencies were also significantly higher. Thus, the PEI-based core-shell nanoparticles show considerable potential as carriers for gene delivery.  相似文献   

4.
Ruthenium(II) tris(bipyridine)-centered poly(ethylenimine) (Ru PEI) was synthesized via acid hydrolysis of Ru tris(bipyridine)-centered poly(2-ethyl-2-oxazoline) (Ru PEOX), and the luminescence, DNA entrapment, and transfection efficiencies were evaluated. Emission maxima for Ru PEI samples are red-shifted compared to Ru PEOX precursors, and the luminescence lifetimes are shorter in both methanol and aqueous solutions. Slower oxygen quenching of Ru PEOX and Ru PEI luminescence versus [Ru(bpy)3]Cl2 (bpy = bipyridine) is attributed to polymer shielding effects. Ru PEI luminescence is similar in the presence and absence of DNA. Ru PEI (7900 Da) and linear PEI (L-PEI; 22,000 Da) fully entrapped DNA (5.4 kb; pcDNA) at an N/P ratio of 2. LNCaP prostate cancer cells were transfected with a plasmid encoding for green fluorescent protein using Ru PEI and L-PEI vectors for comparison. For N/P = 48, the transfection efficiency for Ru PEI was approximately 50% relative to that of L-PEI.  相似文献   

5.
We report herein the molecular engineering of an efficient two-photon absorbing (TPA) chromophore based on a donor-donor bis-stilbenyl entity to allow conjugation with biologically relevant molecules. The dye has been functionalized using an isothiocyanate moiety to conjugate it with the amine functions of poly(ethylenimine) (PEI), which is a cationic polymer commonly used for nonviral gene delivery. Upon conjugation, the basic architecture and photophysical properties of the active TPA chromophore remain unchanged. At the usual N/P ratio (ratio of the PEI positive charges to the DNA negative charges) of 10 used for transfection, the transfection efficiency and cytotoxicity of the labeled PEI/DNA complexes were found to be comparable to those of the unlabeled PEI/DNA complexes. Moreover, when used in combination with unlabeled PEI (at a ratio of 1 labeled PEI to 3 unlabeled PEI), the labeled PEI does not affect the size of the complexes with DNA. The labeled PEI was successfully used in two-photon fluorescence correlation spectroscopy measurements, showing that at N/P = 10 most PEI molecules are free and the diffusion coefficient of the complexes is consistent with the 360 nm size measured by quasielastic light scattering. Finally, two-photon images of the labeled PEI/DNA complexes confirmed that the complexes enter into the cytoplasm of HeLa cells by endocytosis and hardly escape from the endosomes. As a consequence, the functionalized TPA chromophore appears to be an adequate tool to label the numerous polyamines used in nonviral gene delivery and characterize their complexes with DNA in two-photon applications.  相似文献   

6.
7.
A novel water-soluble lipopolymer was synthesized by linking cholesteryl chloroformate to the secondary amino groups of branched poly(ethylenimine) (PEI) of 1,800 and 10,000 Da. Conjugation through PEI secondary amines gives this newly synthesized lipopolymer (abbreviated as PEI-Chol) special advantage over our previously synthesized lipopolymers, which utilized the primary amino groups for conjugation, as the primary amino groups have a significant role in DNA condensation. Also, significantly, only one cholesterol molecule was grafted onto each PEI molecule (confirmed by (1)H NMR and MALDI-TOF mass spectrometry), leaving enough space for the steric interactions of the PEI's primary amines with the DNA. The PEI-Chol lipopolymer was characterized for the critical micellar concentration (cmc), buffer capacity, DNA condensation (by band retardation and circular dichroism), in vitro transfection efficiency, and cell viability. The cmcs of PEI-Chol 1,800 and PEI-Chol 10,000 were 496.6 and 1,330.5 microg/mL, respectively. The acid-base titration indicated high buffering capacity of the polymers around the pH range of 5-7, which indicated their potential for buffering in the acidic pH environment of the endosomes. The band retardation studies indicated that efficient condensation of the plasmid DNA could be achieved using these lipopolymers. The circular dichroism spectra indicated a change in DNA conformation and adoption of lower energy state upon condensation with these lipopolymers when an N/P ratio of 2.5/1 or above was formulated. The mean particle size of these complexes was in the range 110-205 nm, except for the complexes prepared using PEI of 1,800 Da, which had a mean particle size of 384 +/- 300 nm. The zeta potential of DNA complexes prepared using PEI-Chol 1,800, PEI-Chol 10,000 and PEI of 1,800, 10,000, and 25,000 Da at an N/P ratio of 15/1 was in the range 23-30 mV and was dependent on the N/P ratios. The in vitro transfection of PEI-Chol/pCMS-EGFP complexes in Jurkat cells showed high levels of expressed Green Fluorescent Protein (GFP) with little toxicity as determined by flow cytometry. These novel water-soluble lipopolymers provided good transfection efficiency with other desirable characteristics such as water solubility, free primary amino groups for efficient DNA condensation and high buffer capacity that indicated the possibility of efficient endosomal release.  相似文献   

8.
An acetal-poly(ethylene glycol)-poly(2-(dimethylamino)ethyl methacrylate) (acetal-PEG-PAMA) block copolymer spontaneously associated with plasmid DNA (pDNA) to form water-soluble complexes (polyion complex micelle: PIC micelle) in aqueous solution. Physicochemical characteristics and transfection efficiency of the PIC micelles thus prepared were studied here, focusing on the residual molar mixing ratio (N/P ratio) of AMA units in acetal-PEG-PAMA to the phosphate units in pDNA. With the N/P ratio increasing to unity, acetal-PEG-PAMA cooperatively formed complex micelles with pDNA through electrostatic interaction, allowing pDNA to condense effectively. Dynamic light scattering measurements revealed that the PIC micelle at N/P > or = 3 had a constant size of approximately 90-100 nm. Eventually, acetal-PEG-PAMA/pDNA micelles underwent no precipitation even after long-term storage for more than 1 month at all N/P ratios. The PIC micelles were stable even in the presence of excess polyanions, poly(vinyl sulfate), in contrast to polyplexes based on the PAMA homopolymer, yet this stabilization effect was highly dependent on the N/P ratio to reach a plateau at N/P = 3-4. This character may be attributed to the increased hydrophobicity in the vicinity of the complexed pDNA. Furthermore, the pDNA in the micelle was adequately protected from DNase I attack. The transfection ability of the PIC micelles toward 293 cells was remarkably enhanced with an increasing N/P ratio as high as 25. The zeta-potential of the micelles with a high N/P ratio was an appreciably large positive value, suggesting a noncooperative micelle formation. This deviated micellar composition with an excess cationic nature as well as the presence of free acetal-PEG-PAMA may play a substantial role in the enhanced transfection efficiency of the PIC micelle system in the high N/P ratio (approximately 25) region.  相似文献   

9.
End-functionalized poly(N-isopropylacrylamide) (PNIPA) was synthesized by living free radical polymerization and conventional free radical polymerization and was used to prepare graft copolymers with poly(ethylenimine) (PEI). The copolymers exhibited lower critical solution temperature (LCST) behavior between 30 and 32 degrees C and formed complexes with plasmid DNA. The LCST of the copolymers in the DNA complexes increased slightly to approximately 34-35 degrees C. Cytotoxicity of the copolymers was evaluated by measuring lactate dehydrogenase (LDH) release from cells. The copolymers exhibited temperature-dependent toxicity, with higher levels of LDH release observed at temperatures above the LCST. Cellular uptake and transfection activity of the DNA complexes with the PEI-g-PNIPA copolymers were lower than those of the control PEI/DNA complexes at temperature below the LCST but increased to the PEI/DNA levels at temperatures above the LCST.  相似文献   

10.
Poly(ethylene oxide) grafted with 1.8 kDa branched polyethylenimine (PEO-g-PEI) copolymers with varying compositions, that is, PEO(13k)-g-10PEI, PEO(24k)-g-10PEI, and PEO(13k)-g-22PEI, were prepared and investigated for in vitro nonviral gene transfer. Gel electrophoresis assays showed that PEO(13k)-g-10PEI, PEO(24k)-g-10PEI, and PEO(13k)-g-22PEI could completely inhibit DNA migration at an N/P ratio of 4/1, 4/1, and 3/1, respectively. Dynamic light scattering (DLS) and zeta potential measurements revealed that all three graft copolymers were able to effectively condense DNA into small-sized (80-245 nm) particles with moderate positive surface charges (+7.2 ~ +24.1 mV) at N/P ratios ranging from 5/1 to 40/1. The polyplex sizes and zeta-potentials intimately depended on PEO molecular weights and PEI graft densities. Notably, unlike 25 kDa PEI control, PEO-g-PEI polyplexes were stable against aggregation under physiological salt as well as 20% serum conditions due to the shielding effect of PEO. MTT assays in 293T cells demonstrated that PEO-g-PEI polyplexes had decreased cytotoxicity with increasing PEO molecular weights and decreasing PEI graft densities, wherein low cytotoxicities (cell viability >80%) were observed for polyplexes of PEO(13k)-g-22PEI, PEO(13k)-g-10PEI, and PEO(24k)-g-10PEI up to an N/P ratio of 20/1, 30/1, and 40/1, respectively. Interestingly, in vitro transfection results showed that PEO(13k)-g-10PEI polyplexes have the best transfection activity. For example, PEO(13k)-g-10PEI polyplexes formed at an N/P ratio of 20/1, which were essentially nontoxic (100% cell viability), displayed over 3- and 4-fold higher transfection efficiencies in 293T cells than 25 kDa PEI standard under serum-free and 10% serum conditions, respectively. Confocal laser scanning microscopy (CLSM) studies using Cy5-labeled DNA confirmed that these PEO-g-PEI copolymers could efficiently deliver DNA into the perinuclei region as well as into nuclei of 293T cells at an N/P ratio of 20/1 following 4 h transfection under 10% serum conditions. PEO-g-PEI polyplexes with superior colloidal stability, low cytotoxicity, and efficient transfection under serum conditions are highly promising for safe and efficient in vitro as well as in vivo gene transfection applications.  相似文献   

11.
Novel ABA triblock copolymers consisting of low molecular weight linear polyethylenimine (PEI) as the A block and poly(ethylene glycol) (PEG) as the B block were prepared and evaluated as polymeric transfectant. The cationic polymerization of 2-methyl-2-oxazoline (MeOZO) using PEG-bis(tosylate) as a macroinitiator followed by acid hydrolysis afforded linear PEI-PEG-PEI triblock copolymers with controlled compositions. Two copolymers, PEI-PEG-PEI 2100-3400-2100 and 4000-3400-4000, were synthesized. Both copolymers were shown to interact with and condense plasmid DNA effectively to give polymer/DNA complexes (polyplexes) of small sizes (<100 nm) and moderate zeta-potentials (approximately +10 mV) at polymer/plasmid weight ratios > or =1.5/1. These polyplexes were able to efficiently transfect COS-7 cells and primary bovine endothelial cells (BAECs) in vitro. For example, PEI-PEG-PEI 4000-3400-4000 based polyplexes showed a transfection efficiency comparable to polyplexes of branched PEI 25000. The transfection activity of polyplexes of PEI-PEG-PEI 4000-3400-4000 in BAECs using luciferase as a reporter gene was 3-fold higher than that for linear PEI 25000/DNA formulations. Importantly, the presence of serum in the transfection medium had no inhibitive effect on the transfection activity of the PEI-PEG-PEI polyplexes. These PEI-PEG-PEI triblock copolymers displayed also an improved safety profile in comparison with high molecular weight PEIs, since the cytotoxicity of the polyplex formulations was very low under conditions where high transgene expression was found. Therefore, linear PEI-PEG-PEI triblock copolymers are an attractive novel class of nonviral gene delivery systems.  相似文献   

12.
In order to establish a simple and scaleable transfection system we have used the cationic polymer polyethylenimine (PEI) to study transient transfection in HEK293 and 293(EBNA) cells grown in serum-free suspension culture. The transfection complexes were made directly within the cell culture by consecutively adding plasmid and PEI (direct method). Alternatively, the DNA-PEI transfection complexes were prepared in fresh medium (1/10 culture volume) and then added to the cells (indirect method). The results of this study clearly show that the ratio of PEI nitrogen to DNA phosphate is very important for high expression levels. The precise ratio is dependent on the DNA concentration. For example, using 1 μg/ml DNA by the indirect method, the ratio of optimal PEI:DNA was about 10–13:1. However, the ratio increases to 33:1 for 0.1–0.2 μg/ml DNA. By testing several different molecular weights of the polycationic polymer we could show that the highest transfection efficiency was obtained with the PEI 25 kDa. Using PEI 25 kDa the indirect method is superior to the direct addition because significantly lower DNA concentrations are needed. The expression levels of the soluble human TNF receptor p55 are even higher at low DNA compared to 1 μg/ml plasmid. The EBV-based pREP vectors gave better transient gene expression when used in 293(EBNA) cells compared to HEK293 cells in suspension culture. No differences in expression levels in the two cell lines were observed when the pC1 (CMV)-TNFR was used. In conclusion, PEI is a low-toxic transfection agent which provides high levels of transient gene expression in 293(EBNA) cells grown in serum-free suspension culture. This system allows highly reproducible, cost-effective production of milligram amounts of recombinant proteins in 2–5 l spinner culture scale within 3–5 days. Fermentor scale experiments, however, are less efficient because the PEI-mediated transient tranfection is inhibited by conditioned medium. This revised version was published online in July 2006 with corrections to the Cover Date.  相似文献   

13.
对新型阳离子聚合物PEI(10kD)-PBLG进行研究,重点考察其基因转染效率与细胞毒性,探讨其作为基因载体的可能性。通过粒径分析及扫描电镜(SEM)观察PEI(10kD)-PBLG与质粒pEGFP自组装形成的颗粒形态及粒径,预测其进入细胞的可能性。使用MTT比色法分析PEI(10kD)-PBLG、PEI(25kD)-PBLG、PEI(10kD)和PEI(25kD)的细胞毒性差异。选用表达增强型绿色荧光蛋白的质粒pEGFP作为报告基因模型,将其与PEI(10kD)-PBLG自组装后,分别转染真核细胞株Hela、COS-7、Vero-E6和ECV304,应用流式细胞术检测细胞转染效率,并比较了血清、缓冲液、细胞谱等多种因素对基因转染效率的影响。PEI(10kD)-PBLG可包裹质粒形成粒径100~120nm的纳米复合物,适合介导质粒进入细胞。该纳米粒复合物对转染缓冲液的敏感度较低,并能够在10%血清存在的条件下,转染全部实验用细胞株,尤其对Hela的转染效率最高,其次是COS-7、Vero-E6和ECV304;其中PEI-PBLG(10kD)/pEGFP复合物转染Hela细胞的比率为45.02%,高于PEI(10kD)/pEGFP的29.16%;PEI(10kD)-PBLG的细胞毒性作用显著低于PEI(25kD)、PEI(10kD)和PEI(25kD)-PBLG。新型阳离子多聚物PEI(10kD)-PBLG在提高PEI介导的基因转染效率的同时降低了其细胞毒性,提高了生物相容性,有望成为基因转移的有效载体。  相似文献   

14.
Poly(amido ethylenimine) polymers, a new type of peptidomimetic polymer, containing multiple disulfide bonds (SS-PAEIs) designed to degrade after delivery of plasmid DNA (pDNA) into the cell were synthesized and investigated as new carriers for triggered intracellular gene delivery. More specifically, three SS-PAEIs were synthesized from Michael addition reactions between cystamine bisacrylamide (CBA) and three different ethylene amine monomers, i.e., ethylenediamine (EDA), diethylenetriamine (DETA), or triethylenetetramine (TETA). Complete addition reactions were confirmed by (1)H NMR. The molecular weight, buffer capacity, and relative degree of branching for each SS-PAEI was determined by gel permeation chromatography (GPC), acid-base titration, and liquid chromatography-mass spectroscopy (LC-MS), respectively. Physicochemical characteristics of polymer/pDNA complexes (polyplexes) were analyzed by gel electrophoresis, particle size, and zeta-potential measurements. All three SS-PAEIs effectively complex pDNA to form nanoparticles with diameters less than 200 nm and positive surface charges of approximately 32 mV. The in vitro gene transfer properties of SS-PAEIs were evaluated using mouse embryonic fibroblast cell (NIH3T3), primary bovine aortic endothelial cell (BAEC), and rat aortic smooth muscle cell (A7R5) lines. Interestingly, polyplexes based on all three SS-PAEIs exhibited remarkably high levels of reporter gene expression with nearly 20x higher transfection efficiency than polyethylenimine 25k. The high transfection efficiency was maintained in the presence of 10% serum in the transfection medium. Furthermore, confocal microscopy experiments using labeled pDNA indicated that polyplexes of SS-PAEI displayed greater intracellular distribution of pDNA as compared to PEI, most likely due to environmentally triggered release. Therefore, SS-PAEIs are a new class of transfection agents that facilitate high gene expression while maintaining a low level of toxicity.  相似文献   

15.
To improve transfection efficiency, we prepared N-maleyl chitosan-graft-polyamidoamine (NMCTS-graft-PAMAM) copolymer. Self-assembled NMCTS-graft-PAMAM/pDNA complexes were prepared by complex coacervation method at different N/P (nitrogen to phosphate ratio) ratios. The copolymer effectively formed complexes with pDNA at lower N/P ratio (N/P ratio 1.0) than that of unmodified chitosan (N/P ratio 2.0) and the complexes were spherical with particle size of 100–150 nm. The copolymer showed significant protection of DNA from nuclease attack with lower toxicity against HeLa cell. The copolymer also showed no noticeable hemolytic effects up to 10 mg/mL indicating no detectable disturbance of the red blood cell membranes. The transfection efficiency of the copolymer was increased significantly compared to that of chitosan and reached up to 36 ± 2% at N/P ratio 7.0 which was higher than that of PEI (30 ± 3% at N/P ratio 10). Therefore, the copolymer may be a strong alternative candidate as effective nonviral vector.  相似文献   

16.
In this study the physicochemical and transfection properties of cationic hydroxyethylcellulose/plasmid DNA (pDNA) nanoparticles were investigated and compared with the properties of DNA nanoparticles based on polyethylene imine (PEI), which is widely investigated as a gene carrier. The two types of cationic hydroxyethylcelluloses studied, polyquaternium-4 (PQ-4) and polyquaternium-10 (PQ-10), are already commonly used in cosmetic and topical drug delivery devices. Both PQ-4 and PQ-10 spontaneously interact with pDNA with the formation of nanoparticles approximately 200 nm in size. Gel electrophoresis and fluorescence dequenching experiments indicated that the interactions between pDNA and the cationic celluloses were stronger than those between pDNA and PEI. The cationic cellulose/pDNA nanoparticles transfected cells to a much lesser extent than the PEI-based pDNA nanoparticles. The low transfection property of the PQ-4/pDNA nanoparticles was attributed to their neutrally charged surface, which does not allow an optimal binding of PQ-4/pDNA nanoparticles to cellular membranes. Although the PQ-10/pDNA nanoparticles were positively charged and thus expected to be taken up by cells, they were also much less efficient in transfecting cells than were PEI/pDNA nanoparticles. Agents known to enhance the endosomal escape were not able to improve the transfection properties of PQ-10/pDNA nanoparticles, indicating that a poor endosomal escape is, most likely, not the major reason for the low transfection activity of PQ-10/pDNA nanoparticles. We hypothesized that the strong binding of pDNA to PQ-10 prohibits the release of pDNA from PQ-10 once the PQ-10/pDNA nanoparticles arrive in the cytosol of the cells. Tailoring the nature and extent of the cationic side chains on this type of cationic hydroxyethylcellulose may be promising to further enhance their DNA delivery properties.  相似文献   

17.
The development of efficient transfection protocols for livestock cells is crucial for implementation of cell-based transgenic methods to produce genetically modified animals. We synthetized fully deacylated linear 22, 87 and 217 kDa polyethylenimine (PEI) nanoparticles and compared their transfection efficiency and cytotoxicity to commercial branched 25 kDa PEI and linear 58 kDa poly(allylamine) hydrochloride. We studied the effect of PEI size and presence of serum on transfection efficiency on primary cultures of bovine fetal fibroblasts and established cells lines (HEK 293 and Hep G2). We found that transfection efficiency was affected mainly by polymer/pDNA ratio and DNA concentration and in less extent by PEI MW. In bovine fibroblast, preincubation of PEI nanoparticles with fetal bovine serum (FBS) greatly increased percentage of cells expressing the transgene (up to 82%) while significantly decreased the polymer cytotoxic effect. 87 and 217 kDa PEI rendered the highest transfection rates in HEK 293 and Hep G2 cell lines (>50% transfected cells) with minimal cell toxicity. In conclusion, our results indicate that fully deacylated PEI of 87 and 217 kDa are useful DNA vehicles for non-viral transfection of primary cultures of bovine fetal fibroblast and HEK 293 and Hep G2 cell lines.  相似文献   

18.
New lipopolymers were synthesized by conjugating cholic acid (ChA) to polyethylenimines (PEI; 2 and 25 kDa) and a polyallylamine (PAA; 15 kDa) via N‐acylation to develop effective gene delivery systems. The extent of ChA substitution linearly varied with the feed ratio during synthesis, indicating good control over grafting ratio. While ChA did not affect binding to plasmid DNA (pDNA) for higher molecular weight (MW) polymers, ChA substitution to 2 kDa PEI significantly affected the pDNA binding. Toxicity of the 2 kDa PEI was unaffected by ChA substitution, but it was improved for the higher MW polymers. Using immortal 293T cells and primary cord blood‐derived mesenchymal stem cells, low MW (2 kDa) PEI was shown to display much better transfection efficiency as a result of ChA substitution, unlike the higher MW polymers. We conclude that ChA could be a suitable substituent for non‐toxic (low MW) PEIs in order to improve their transfection efficiency. © 2013 American Institute of Chemical Engineers Biotechnol. Prog., 29:1337–1341, 2013  相似文献   

19.
Biodegradable cross-linked poly(beta-amino ester) (CLPAE) was synthesized by Michael addition of pentaerythritol triacrylate and N,N-dimethylethylenediamine and modified with aminohexanoic acid and lysine to CLPAE-Ahx and CLPAE-Lys, respectively, for a gene delivery system. They could self-assemble with plasmid DNA, forming nanosized polyplexes, and CLPAE-Ahx polyplex released plasmid DNA slowly during a week through stepwise degradation. The polymers showed minimal cytotoxicity on 293 cells due to their biodegradability and biocompatibility. Transfection efficiencies of CLPAE-Ahx and CLPAE-Lys were comparable to that of PEI in 293 cells and C2C12 cells. Additionally, high transfection of CLPAE-Ahx on primary rat aorta vascular smooth muscle cells (SMC) and primary mouse embryonic fibroblast cells (MEF) shows a potential for a gene delivery system on primary cells, restenosis treatment of human SMC, and MEF cell function research. In conclusion, CLPAE-Ahx could be used as a nontoxic and highly efficient gene delivery system.  相似文献   

20.
We have developed a novel vector constructed with pDNA, polyethylenimine (PEI), and mucin 1 (MUC1) aptamer for tumor-targeted gene delivery. The MUC1 aptamer and non-specific aptamer were employed to coat the pDNA/PEI complexes electrostatically and stable nanoparticles were formed. The addition of a non-specific aptamer to the pDNA/PEI complex decreased gene expression in the human lung cancer cell line, A549 cells expressing MUC1 regularly. At the same time, the pDNA/PEI/MUC1 aptamer complex showed higher gene expression than pDNA/PEI/non-specific aptamer complex. Furthermore, the pDNA/PEI/MUC1 aptamer complex showed markedly high gene expression in tumor-bearing mice; thus, pDNA/PEI/MUC1 aptamer complexes are useful as a tumor-targeted gene delivery system with high transfection efficiency.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号