首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The 3'-->5' exonucleases catalyze the excision of nucleoside monophosphates from the 3' termini of DNA. We have identified the cDNA sequences encoding two 3'-->5' exonucleases (TREX1 and TREX2) from mammalian cells. The TREX1 and TREX2 proteins are 304 and 236 amino acids in length, respectively. Analysis of the TREX1 and TREX2 sequences identifies three conserved motifs that likely generate the exonuclease active site in these enzymes. The specific amino acids in these three conserved motifs suggest that these mammalian exonucleases are most closely related to the proofreading exonucleases of the bacterial replicative DNA polymerases and the RNase T enzymes. Expression of TREX1 and TREX2 in Escherichia coli demonstrates that these recombinant proteins are active 3'-->5' exonucleases. The recombinant TREX1 protein was purified, and exonuclease activity was measured using single-stranded, partial duplex, and mispaired oligonucleotide DNA substrates. The greatest activity of the TREX1 protein was detected using a partial duplex DNA containing five mispaired nucleotides at the 3' terminus. No activity was detected using single-stranded RNA or an RNA-DNA partial duplex. Identification of the TREX1 and TREX2 cDNA sequences provides the genetic tools to investigate the physiological roles of these exonucleases in mammalian DNA replication, repair, and recombination pathways.  相似文献   

2.
The synthesis and properties of a bridged nucleic acid analogue containing a N3'-->P5' phosphoramidate linkage, 3'-amino-2',4'-BNA, is described. A heterodimer containing a 3'-amino-2',4'-BNA thymine monomer, and thymine and methylcytosine monomers of 3'-amino-2',4'-BNA and their 5'-phosphoramidites, were synthesized efficiently. The dimer and monomers were incorporated into oligonucleotides by conventional 3'-->5' assembly, and 5'-->3' reverse assembly phosphoramidite protocols, respectively. Compared to a natural DNA oligonucleotide, modified oligonucleotides containing the 3'-amino-2',4'-BNA residue formed highly stable duplexes and triplexes with single-stranded DNA (ssDNA), single-stranded RNA (ssRNA), and double-stranded DNA (dsDNA) targets, with the average increase in melting temperature (T(m)) against ssDNA, ssRNA and dsDNA being +2.7 to +4.0 degrees C, +5.0 to +7.0 degrees C, and +5.0 to +11.0 degrees C, respectively. These increases are comparable to those observed for 2',4'-BNA-modified oligonucleotides. In addition, an oligonucleotide modified with a single 3'-amino-2',4'-BNA thymine residue showed extraordinarily high resistance to nuclease degradation, much higher than that of 2',4'-BNA and substantially higher even than that of 3'-amino-DNA and phosphorothioate oligonucleotides. The above properties indicate that 3'-amino-2',4'-BNA has significant potential for antisense and antigene applications.  相似文献   

3.
A mispair-specific 3'-->5' exonuclease copurifies quantitatively with the near-homogeneous Drosophila gamma polymerase (Kaguni, L.S., and Olson, M.W. (1989) Proc. Natl. Acad. Sci. U.S.A. 86, 6469-6473). The exonuclease and polymerase exhibit similar reaction requirements and optima, suggesting functional coordination of their activities. Under nonpolymerization conditions, the 3'-->5' exonuclease hydrolyzes 3'-terminal mispairs approximately 15-fold more efficiently than 3'-terminal base pairs on primed single-stranded DNA substrates, whereas it does not discriminate between any of three specific mispairs (dAMP:dAMP;dGMP:dGMP; dGMP:dAMP). Under polymerization conditions, gamma polymerase does not extend a 3'-terminal mispair from the "stationary" state, even in the presence of a large excess of the next correct nucleotide. Instead, 3'-terminal mispairs are hydrolyzed quantitatively by the 3'-->5' exonuclease over the reaction time course. During DNA synthesis by gamma polymerase in the "polymerization" mode, limited misincorporation and subsequent mispair extension do occur. Here, it appears that misincorporation and not mispair extension is rate-limiting. Template-primer challenge experiments suggest that the mechanism of template-primer transfer from the 3'-->5' exonuclease active site to the DNA polymerase active site is intermolecular; transfer from the exonuclease to polymerase mode appears to require dissociation and reassociation of mitochondrial DNA polymerase.  相似文献   

4.
An oligonucleotide P3'-->N5' phosphoramidate (5'-amino-DNA) attracts much attention because of its potential for application to DNA sequencing; however, its ability to hybridize with complementary strands is low. To overcome this drawback of the 5-amino-DNA, we have designed and successfully synthesized a novel nucleic acid analogue having a P3'-->N5' phosphoramidate linkage and a constrained sugar moiety, 5'-amino-3'-C,5'-N-methylene bridged nucleic acid (5'-amino-3',5'-BNA). The binding affinity of the 5'-amino-3',5'-BNA towards complementary DNA and RNA strands was investigated by UV melting experiments. The melting temperature (Tm) of the duplex comprising the 5'-amino-3',5'-BNA and its complementary strand was much higher than that of the duplex containing the corresponding 5-amino-DNA.  相似文献   

5.
Replication fidelity is controlled by DNA polymerase proofreading and postreplication mismatch repair. We have genetically characterized the roles of the 5'-->3' Exo1 and the 3'-->5' DNA polymerase exonucleases in mismatch repair in the yeast Saccharomyces cerevisiae by using various genetic backgrounds and highly sensitive mutation detection systems that are based on long and short homonucleotide runs. Genetic interactions were examined among DNA polymerase epsilon (pol2-4) and delta (pol3-01) mutants defective in 3'-->5' proofreading exonuclease, mutants defective in the 5'-->3' exonuclease Exo1, and mismatch repair mutants (msh2, msh3, or msh6). These three exonucleases play an important role in mutation avoidance. Surprisingly, the mutation rate in an exo1 pol3-01 mutant was comparable to that in an msh2 pol3-01 mutant, suggesting that they participate directly in postreplication mismatch repair as well as in other DNA metabolic processes.  相似文献   

6.
Mammalian nuclear DNA polymerases alpha and beta are lack of the proofreading 3'-->5' exonucleolytic activity. 40 and 50 kDa 3'-->5' exonucleases were isolated from rat liver. The exonucleases were shown to excise mismatched nucleotides from poly[d(A--T)] template 10 and 2 fold faster than matched ones. The addition of either exonuclease to DNA polymerase alpha from rat liver or calf thymus 5-10 times increased the accuracy of reproduction of primed DNA from bacteriophage phi X174 amber 3, values of exonuclease and DNA polymerase activities being approximately equal. The exonuclease activity surpasses the DNA polymerase one by an order of magnitude in chromatin and nuclear membrane. These data, taken together, are indicative of potent proofreading into hepatocytes.  相似文献   

7.
The excision of nucleotides from DNA 3' termini is an important step in DNA replication, repair, and recombination pathways to generate correctly base paired termini for subsequent processing. The mammalian TREX1 and TREX2 proteins contain potent 3'-->5' exonucleases capable of functioning in this capacity. To study the activities of these exonucleases we have developed strategies to express and purify the recombinant mouse Trex1 and human TREX2 proteins in Escherichia coli in quantities sufficient for biochemical characterization. The Trex1 and TREX2 proteins are homodimers that exhibit robust 3' excision activities with very similar preferred reaction conditions and preferences for specific DNA substrates. In a steady-state kinetic analysis, oligonucleotide substrates were used to measure 3' nucleotide excision by Trex1 and TREX2. The Michaelis constants derived from these data indicate similar apparent kcat values of 22 s(-1) for Trex1 and 16 s(-1) for TREX2 using single-stranded oligonucleotides. The apparent KM values of 19 nm for Trex1 and 190 nm for TREX2 suggest relatively high affinities for DNA for both Trex1 and TREX2. An exonuclease competition assay was designed using heparin as a nonsubstrate inhibitor with a series of partial duplex DNAs to delineate the substrate structure preferences for 3' nucleotide excision by Trex1 and TREX2. The catalytic properties of the TREX proteins suggest roles for these enzymes in the 3' end-trimming processes necessary for producing correctly base paired 3' termini.  相似文献   

8.
Alkaline nuclease (AN) of the Autographa californica multiple-capsid nucleopolyhedrovirus (AcMNPV) (open reading frame 133) was expressed in recombinant baculovirus as a His(6)-tagged fusion and purified by sequential chromatography on Ni-NTA-agarose, DEAE-Toyopearl, and heparin-Sepharose. At all stages of purification, AcMNPV AN was found to copurify with a 44-kDa polypeptide which was identified as the baculovirus single-stranded DNA (ssDNA)-binding (SSB) protein, LEF-3. Sedimentation analysis in glycerol gradients of highly purified samples suggested that AN and LEF-3 are associated in a complex (designated *AN/L3), predominantly as heterodimers, although oligomeric forms containing both proteins were evident. In reactions with single- or double-stranded 62-mer oligonucleotides that were labeled with (32)P at the 5' or 3' ends, *AN/L3 carried out exonucleolytic hydrolysis of both substrates exclusively in a 5'-->3' direction. Saturation of ssDNA with an excess of LEF-3 prior to the addition of *AN/L3 resulted in a marked decrease in the rate of ssDNA hydrolysis. This suggests that excess LEF-3 may protect ssDNA from digestion by a AN-LEF-3 complex, thus regulating its activity in infected cells. The association of baculovirus AN with the viral SSB LEF-3 and the 5'-->3' exonuclease activity of this complex suggests that AN and LEF-3 may participate in homologous recombination of the baculovirus genome in a manner similar to that of exonuclease (Redalpha) and DNA-binding protein (Redbeta) of the Red-mediated homologous recombination system of bacteriophage lambda.  相似文献   

9.
The synthesis and properties of oligonucleotides (ONs) containing 9-(2,3,4-trihydroxybutyl)adenine, A(C2) and A(C3), are described. The ON containing A(C2) involves the 3'-->4' and 3-->5' phosphodiester linkages in the strand, whereas that containing A(C3) possesses the 3'-->4' and 2'-->5' phosphodiester linkages. It was found that incorporation of the analogs, A(C2) or A(C3), into ONs significantly reduces the thermal and thermodynamic stabilities of the ON/DNA duplexes, but does not largely decrease the thermal and thermodynamic stabilities of the ON/RNA duplexes as compared with the case of the ON/DNA duplexes. It was revealed that the base recognition ability of A(C2) is greater than that of A(C3) in the ON/RNA duplexes.  相似文献   

10.
Oligonucleotides consisting of the isonucleoside repeating unit 2',5'-anhydro-3'-deoxy-3'-(thymin-1-yl)-D-mannitol (4) were synthesized with the monomeric unit 4 incorporated into oligonucleotides as 1'-->4' linkage 4a (oligomer I) or 6'-->4' linkage 4b (oligomer II). The hybrid properties of the two oligonucleotides I and II with their complementary strands were investigated by thermal denaturation and CD spectra. Oligonucleotide I (4a) formed a stable duplex with d(A)(14) with a slightly reduced T(m) value of 36.6 degrees C, relative to 38.2 degrees C for the control duplex d(T)(14)/d(A)(14), but oligomer II (4b) failed to hybridize with a DNA complementary single strand. The spectrum of the duplex oligomer I/d(A)(14) showed a positive CD band at 217 nm and a negative CD band at 248 nm attributable to a B-like conformation. Molecular modeling showed that in the case of oligomer I: the C6' hydroxy group of each unit could be located in the groove area when hybridized to the DNA single strand, which might contribute additional hydrogen bonding to the stability of duplex formation.  相似文献   

11.
Autonomous 3'-->5'exonucleases are not bound covalently to DNA polymerases but are often involved in replicative complexes. Such exonucleases from rat liver, calf thymus and Escherichia coli (molecular masses of 28+/-2 kDa) are shown to increase more than 10-fold the accuracy of DNA polymerase beta (the most inaccurate mammalian polymerase) from rat liver in the course of reduplication of the primed DNA of bacteriophage phiX174 amber 3 in vitro. The extent of correction increases together with the rise in 3'-->5' exonuclease concentration. Extrapolation of the in vitro DNA replication fidelity to the cellular levels of rat exonuclease and beta-polymerase suggests that exonucleolytic proofreading could augment the accuracy of DNA synthesis by two orders of magnitude. These results are not explained by exonucleolytic degradation of the primers ("no synthesis-no errors"), since similar data are obtained with the use of the primers 15 or 150 nucleotides long in the course of a fidelity assay of DNA polymerases, both alpha and beta, in the presence of various concentrations of 3'-->5' exonuclease.  相似文献   

12.
Khare V  Eckert KA 《Mutation research》2002,510(1-2):45-54
The 3'-->5' exonuclease activity intrinsic to several DNA polymerases plays a primary role in genetic stability; it acts as a first line of defense in correcting DNA polymerase errors. A mismatched basepair at the primer terminus is the preferred substrate for the exonuclease activity over a correct basepair. The efficiency of the exonuclease as a proofreading activity for mispairs containing a DNA lesion varies, however, being dependent upon both the DNA polymerase/exonuclease and the type of DNA lesion. The exonuclease activities intrinsic to the T4 polymerase (family B) and DNA polymerase gamma (family A) proofread DNA mispairs opposite endogenous DNA lesions, including alkylation, oxidation, and abasic adducts. However, the exonuclease of the Klenow polymerase cannot discriminate between correct and incorrect bases opposite alkylation and oxidative lesions. DNA damage alters the dynamics of the intramolecular partitioning of DNA substrates between the 3'-->5' exonuclease and polymerase activities. Enzymatic idling at lesions occurs when an exonuclease activity efficiently removes the same base that is preferentially incorporated by the DNA polymerase activity. Thus, the exonuclease activity can also act as a kinetic barrier to translesion synthesis (TLS) by preventing the stable incorporation of bases opposite DNA lesions. Understanding the downstream consequences of exonuclease activity at DNA lesions is necessary for elucidating the mechanisms of translesion synthesis and damage-induced cytotoxicity.  相似文献   

13.
TREX1, originally designated DNase III, was isolated as a major nuclear DNA-specific 3'-->5' exonuclease that is widely distributed in both proliferating and nonproliferating mammalian tissues. The cognate cDNA shows homology to the editing subunit of the Escherichia coli replicative DNA polymerase III holoenzyme and encodes an exonuclease which was able to serve a DNA-editing function in vitro, promoting rejoining of a 3' mismatched residue in a reconstituted DNA base excision repair system. Here we report the generation of gene-targeted Trex1(-/-) mice. The null mice are viable and do not show the increase in spontaneous mutation frequency or cancer incidence that would be predicted if Trex1 served an obligatory role of editing mismatched 3' termini generated during DNA repair or DNA replication in vivo. Unexpectedly, Trex1(-/-) mice exhibit a dramatically reduced survival and develop inflammatory myocarditis leading to progressive, often dilated, cardiomyopathy and circulatory failure.  相似文献   

14.
A novel ATP-dependent nuclear DNA unwinding enzyme from pea has been purified to apparent homogeneity and characterized. This enzyme is present at extremely low abundance and has the highest specific activity among plant helicases. It is a heterodimer of 54 and 66 kDa polypeptides as determined by SDS/PAGE. On gel filtration chromatography and glycerol gradient centrifugation it gives a native molecular mass of 120 kDa and is named as pea DNA helicase 120 (PDH120). The enzyme can unwind 17-bp partial duplex substrates with equal efficiency whether or not they contain a fork. It translocates unidirectionally along the bound strand in the 3'-->5' direction. The enzyme also exhibits intrinsic single-stranded DNA- and Mg2+-dependent ATPase activity. ATP is the most favoured cofactor but other NTPs and dNTPs can also support the helicase activity with lower efficiency (ATP > GTP = dCTP > UTP > dTTP > CTP > dATP > dGTP) for which divalent cation (Mg2+ > Mn2+) is required. The DNA intercalating agents actinomycin C1, ethidium bromide, daunorubicin and nogalamycin inhibit the DNA unwinding activity of PDH120 with Ki values of 5.6, 5.2, 4.0 and 0.71 micro Ms, respectively. This inhibition might be due to the intercalation of the inhibitors into duplex DNA, which results in the formation of DNA-inhibitor complexes that impede the translocation of PDH120. Isolation of this new DNA helicase should make an important contribution to our better understanding of DNA transaction in plants.  相似文献   

15.
16.
Until recently, the only biological function attributed to the 3'-->5' exonuclease activity of DNA polymerases was proofreading of replication errors. Based on genetic and biochemical analysis of the 3'-->5' exonuclease of yeast DNA polymerase delta (Pol delta) we have discerned additional biological roles for this exonuclease in Okazaki fragment maturation and mismatch repair. We asked whether Pol delta exonuclease performs all these biological functions in association with the replicative complex or as an exonuclease separate from the replicating holoenzyme. We have identified yeast Pol delta mutants at Leu523 that are defective in processive DNA synthesis when the rate of misincorporation is high because of a deoxynucleoside triphosphate (dNTP) imbalance. Yet the mutants retain robust 3'-->5' exonuclease activity. Based on biochemical studies, the mutant enzymes appear to be impaired in switching of the nascent 3' end between the polymerase and the exonuclease sites, resulting in severely impaired biological functions. Mutation rates and spectra and synergistic interactions of the pol3-L523X mutations with msh2, exo1, and rad27/fen1 defects were indistinguishable from those observed with previously studied exonuclease-defective mutants of the Pol delta. We conclude that the three biological functions of the 3'-->5' exonuclease addressed in this study are performed intramolecularly within the replicating holoenzyme.  相似文献   

17.
A study was made of the correcting role of autonomous 3'-->5' exonucleases (AE) contained in multienzyme DNA polymerase complexes of rat hepatocytes or calf thymocytes. DNA was synthesized on phage psi X174 amber3 or M13mp2 primer-templates, and used to transfect Escherichia coli spheroplasts. Frequencies were estimated for direct and reverse mutations resulting from mistakes made in the course of in vitro DNA synthesis. The mistake rate of the hepatocytic complex was estimated at 3 x 10(-6) with equimolar dNTP, and increased tenfold when proteins accounting for 70% of the total 3'-->5' exonuclease activity of the complex were removed. The fidelity of DNA synthesis was completely restored in the presence of exogenous AE (epsilon subunit of E. coli DNA polymerase III). Nuclear (Pol delta n) and cytosolic (Pol delta c) forms of DNA polymerase delta were isolated from calf thymocytes. The former was shown to contain an AE (TREX2) absent from the latter. As compared with Pol delta c, Pol delta n had a 20-fold higher exo/pol ratio and allowed 4-5 times higher fidelity of DNA synthesis. The mistake rate of DNA polymerase complexes changed when dNTP were used in nonequimolar amounts.  相似文献   

18.
Positively charged DNG oligonucleotide mixed sequences containing A/T bases were prepared by solid-phase synthesis. Synthesis proceeds in 3'-->5' direction and involves coupling of 3'-Fmoc protected thiourea in the presence of HgCl(2)/TEA with the corresponding 5'-amine of the growing oligo chain. DNG binding characteristics with complementary DNA and with itself have been evaluated.  相似文献   

19.
The NMR structure of 2',5' d(GGGGCCCC) was determined to gain insights into the structural differences between 2',5'- and 3',5'-linked DNA duplexes that may be relevant in elucidating nature's choice of sugar-phosphate links to encode genetic information. The oligomer assumes a duplex with extended nucleotide repeats formed out of mostly N-type sugar puckers. With the exception of the 5'-terminal guanine that assumes the syn glycosyl conformation, all other bases prefer the anti glycosyl conformation. Base pairs in the duplex exhibit slide (-1.96 A) and intermediate values for X-displacement (-3.23 A), as in ADNA, while their inclination to the helical axis is not prominent. Major and minor grooves display features intermediate to A and BDNA. The duplex structure of iso d(GGGGCCCC) may therefore be best characterized as a hybrid of A and BDNA. Importantly, the results confirm that even 3' deoxy 2',5' DNA supports duplex formation only in the presence of distinct slide (>or=-1.6 A) and X-displacement (>or=-2.5 A) for base pairs, and hence does not favor an ideal BDNA topology characterized by their near-zero values. Such restrictions on base pair movements in 2',5' DNA, which are clearly absent in 3',5' DNA, are expected to impose constraints on its ability for deformability of the kind observed in DNA during its compaction and interaction with proteins. It is therefore conceivable that selection pressure relating to the optimization of topological features might have been a factor in the rejection of 2',5' links in preference to 3',5' links.  相似文献   

20.
Pyrococcus furiosus DNA polymerase I (Pol BI) belongs to the family B (alpha-like) DNA polymerases and has a strong 3'-->5' exonucleolytic activity, in addition to its DNA polymerizing activity. To understand the relationship between the structure and function of this DNA polymerase, three deletion mutants, Delta1 (DeltaLeu746-Ser775), Delta2 (DeltaLeu717-Ser775) and Delta3 (DeltaHis672-Ser775), and two substituted mutants of Asp405, D405A and D405E, were constructed. These substitutions affected both the DNA polymerizing and the 3'-->5' exonucleolytic activities. The Delta1 mutant protein had DNA polymerizing activity with higher specific activity than that of the wild-type Pol BI, but retained only 10% of the exonucleolytic activity of the wild-type. The other two deletion mutants lost most of both activities. These results suggest that the DNA polymerizing and exonucleolytic activities are closely related to each other in the folded structure of this DNA polymerase, as proposed in the family B DNA polymerases.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号