首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Although an axoplasmic Ca(2+) increase is associated with an exocytotic acetylcholine (ACh) release from the parasympathetic postganglionic nerve endings, the role of voltage-dependent Ca(2+) channels in ACh release in the mammalian cardiac parasympathetic nerve is not clearly understood. Using a cardiac microdialysis technique, we examined the effects of Ca(2+) channel antagonists on vagal nerve stimulation- and ischemia-induced myocardial interstitial ACh releases in anesthetized cats. The vagal stimulation-induced ACh release [22.4 nM (SD 10.6), n = 7] was significantly attenuated by local administration of an N-type Ca(2+) channel antagonist omega-conotoxin GVIA [11.7 nM (SD 5.8), n = 7, P = 0.0054], or a P/Q-type Ca(2+) channel antagonist omega-conotoxin MVIIC [3.8 nM (SD 2.3), n = 6, P = 0.0002] but not by local administration of an L-type Ca(2+) channel antagonist verapamil [23.5 nM (SD 6.0), n = 5, P = 0.758]. The ischemia-induced myocardial interstitial ACh release [15.0 nM (SD 8.3), n = 8] was not attenuated by local administration of the L-, N-, or P/Q-type Ca(2+) channel antagonists, by inhibition of Na(+)/Ca(2+) exchange, or by blockade of inositol 1,4,5-trisphosphate [Ins(1,4,5)P(3)] receptor but was significantly suppressed by local administration of gadolinium [2.8 nM (SD 2.6), n = 6, P = 0.0283]. In conclusion, stimulation-induced ACh release from the cardiac postganglionic nerves depends on the N- and P/Q-type Ca(2+) channels (with a dominance of P/Q-type) but probably not on the L-type Ca(2+) channels in cats. In contrast, ischemia-induced ACh release depends on nonselective cation channels or cation-selective stretch activated channels but not on L-, N-, or P/Q type Ca(2+) channels, Na(+)/Ca(2+) exchange, or Ins(1,4,5)P(3) receptor-mediated pathway.  相似文献   

2.
Signal transduction in esophageal and LES circular muscle contraction   总被引:2,自引:0,他引:2  
Contraction of normal esophageal circular muscle (ESO) in response to acetylcholine (ACh) is linked to M2 muscarinic receptors activating at least three intracellular phospholipases, i.e., phosphatidylcholine-specific phospholipase C (PC-PLC), phospholipase D (PLD), and the high molecular weight (85 kDa) cytosolic phospholipase A2 (cPLA2) to induce phosphatidylcholine (PC) metabolism, production of diacylglycerol (DAG) and arachidonic acid (AA), resulting in activation of a protein kinase C (PKC)-dependent pathway. In contrast, lower esophageal sphincter (LES) contraction induced by maximally effective doses of ACh is mediated by muscarinic M3 receptors, linked to pertussis toxin-insensitive GTP-binding proteins of the G(q/11) type. They activate phospholipase C, which hydrolyzes phosphatidylinositol bisphosphate (PIP2), producing inositol 1,4,5-trisphosphate (IP3) and DAG. IP3 causes release of intracellular Ca++ and formation of a Ca++-calmodulin complex, resulting in activation of myosin light chain kinase and contraction through a calmodulin-dependent pathway. Signal transduction pathways responsible for maintenance of LES tone are quite distinct from those activated during contraction in response to maximally effective doses of agonists (e.g., ACh). Resting LES tone is associated with activity of a low molecular weight (approximately 14 kDa) pancreatic-like (group 1) secreted phospholipase A2 (sPLA2) and production of arachidonic acid (AA), which is metabolized to prostaglandins and thromboxanes. These AA metabolites act on receptors linked to G-proteins to induce activation of PI- and PC-specific phospholipases, and production of second messengers. Resting LES tone is associated with submaximal PI hydrolysis resulting in submaximal levels of inositol trisphosphate (IP3-induced Ca++ release, and interaction with DAG to activate PKC. In an animal model of acute esophagitis, acid-induced inflammation alters the contractile pathway of ESO and LES. In LES circular muscle, after induction of experimental esophagitis, basal levels of PI hydrolysis are substantially reduced and intracellular Ca++ stores are functionally damaged, resulting in a reduction of resting tone. The reduction in intracellular Ca++ release causes a switch in the signal transduction pathway mediating contraction in response to ACh. In the normal LES, ACh causes release of Ca++ from intracellular stores and activation of a calmodulin-dependent pathway. After esophagitis, ACh-induced contraction depends on influx of extracellular Ca++, which is insufficient to activate calmodulin, and contraction is mediated by a PKC-dependent pathway. These changes are reproduced in normal LES cells by thapsigargin-induced depletion of Ca++ stores, suggesting that the amount of Ca++ available for release from intracellular stores defines the signal transduction pathway activated by a maximally effective dose of ACh.  相似文献   

3.
In healthy motor endplates, tetanic depression is overcome by tonic adenosine A(2A) -receptor-mediated facilitation of transmitter release. The A(2A) receptor operates a coordinated shift from fast-desensitizing Ca(v) 2.1 (P/Q) calcium influx to long-lasting Ca(V) 1 (L) channels on motor nerve terminals. This study aimed at investigating whether A(2A) receptors-operated Ca(2+) influx via Ca(V) 1 (L)-type channels contribute to sustain acetylcholine release evoked by 50 Hz-bursts in toxin-induced Myasthenia gravis (TIMG) rats. In contrast to control animals, inhibition of [(3) H]acetylcholine (ACh) release by the Ca(V) 2.1 (P/Q) channel blocker, ω-Agatoxin IVA (100 nM), in TIMG rats had a higher magnitude than that observed with the Ca(V) 1 (L) channel blocker, nifedipine (1 μM). Adenosine deaminase (0.5 U/mL) and the A(2A) receptor antagonist, ZM 241385 (50 nM), decreased [(3) H]ACh release by a similar amount in control rats, but their effects were smaller in magnitude in myasthenic animals. The adenosine precursor, AMP (100 μM), increased (~40%) ACh release in both control and TIMG animals. Blockade of A(2A) , but not of A(1) , receptors prevented AMP-induced facilitation of transmitter release; nifedipine (1 μM) mimicked the effect of the A(2A) receptor antagonist. Video-microscopy studies designed to measure real-time transmitter exocytosis using the FM4-64 fluorescent dye fully supported radiochemical data. Thus, impairment of the adaptive shift from Ca(V) 2.1 (P/Q) to Ca(V) 1 (L) channels may contribute to tetanic failure in myasthenic rats. This parallels the reduction of adenosine A(2A) receptor tonus in TIMG animals, which might be restored by exogenous application of AMP.  相似文献   

4.
Palytoxin (PTX; 10(-14)-10(-6) M) caused a dose-dependent increase in the release of [3H]acetylcholine ([3H]ACh), cytosolic free Ca2+ concentration ([Ca2+]i), and uptake of 22Na+ and decrease in membrane potential in rat cerebrocortical synaptosomes. The dose-response curves for the PTX-induced increases in [3H]ACh release and in [Ca2+]i were depressed by removing extracellular Ca2+ or by decreasing extracellular Na+ concentrations. The release of [3H]ACh induced by concentrations of PTX less than 10(-10) M was more dependent on the simultaneous presence of both Ca2+ and Na+ than the release induced by higher concentrations of PTX. The PTX-induced increase both in [3H]ACh release and in [Ca2+]i was almost completely abolished by the combination of Ca2+ deprivation and Na+ concentration reduction. All responses to PTX were highly resistant to 10(-6) M tetrodotoxin. These results suggest that low concentrations of PTX cause depolarization as a result of an increase in Na+ permeability through tetrodotoxin-insensitive channels. This, in turn, increases Ca2+ influx and leads to an increase in the release of ACh. It appears that at high concentrations PTX increases the release of [3H]ACh by directly increasing the influx of Ca2+ into synaptosomes and by releasing Ca2+ from intracellular storage sites via an Na(+)-Ca2+ exchange mechanism.  相似文献   

5.
The nerves from the walking leg of lobster released acetylcholine (ACh) even when the ends were tied off, although this release was significantly increased when the nerve endings were not tied. The resting nerves were kept in sea water containing physostigmine. In absence of physostigmine no ACh was found in the surrounding fluid. Removal of Ca from the sea water reduced the release of ACh, while increased concentrations of Ca had no significant effect. Removal of Mg++ or increased Mg++ concentrations in the presence of normal Ca++ concentrations increased the release of ACh. Increased K+ concentrations had a stimulating action on the efflux of ACh. Increased or reduced Na+ concentrations had only slight effects on the release of ACh in resting lobster nerve. During the 4 hr observation period the excised nerves were still able to synthesize ACh. The choline acetylase activity was stimulated by increased concentrations of Mg++ and K+. The effects of ions on the release of ACh are similar to those reported at the junction.  相似文献   

6.
Forskolin, 1 microM, increased acetylcholine (ACh)-stimulated 45Ca uptake by chromaffin cells. The stimulatory effects of forskolin decreased with increasing concentration of ACh. The attenuation of the effect of forskolin on 45Ca uptake as a function of ACh concentration correlated well with changes in the forskolin effect on ACh-evoked catecholamine (CA) release. Forskolin increased excess KCl- and veratrine-evoked CA release and 45Ca uptake. Forskolin by itself stimulated 45Ca efflux and enhanced ACh-, excess KCl-, and veratrine-stimulated 45Ca efflux. High doses of forskolin inhibited both ACh-evoked 45Ca uptake and CA release. The inhibitory action of forskolin was specific to receptor-mediated response because excess KCl- and veratrine-stimulated 45Ca uptake and CA release were not inhibited. Forskolin, 0.3-30 microM, dose-dependently increased caffeine-stimulated CA release and 45Ca efflux in the absence of Ca2+ in the medium, and the effects were mimicked by dibutyryl cyclic AMP. These results suggest that cyclic AMP increases stimulation-induced CA release by enhancing calcium uptake across the plasma membrane and/or altering calcium flux in an intracellular calcium store.  相似文献   

7.
The cholinergic sensitivity of rat diaphragm muscle, me-sured as the magnitude of depolarization responses to repetitive, iontophoretic pulses of acetylcholine (ACh) onto neuromuscular endplates, is increased by addition of ATP to the perfusion medium. Depolarization responses begin to increase within the first min after addition of 10 mM ATP and plateau at 60% above control levels (mean value) after 4 to 6 min. Neither the magnitude nor the time course of the potentiations corresponds to changes in resting potential or membrane resistance. Other nucleotides are equally or less effective at the same concentration: ATP=ADP greater than UTP greater than AMP=GTP (=no added nucleotide control) The duration of the individual ACh responses does not increase during continuous exposure to the active nucleotides for up to 15 min except when the muscle is pretreated with eserine. Mild enzymatic predigestion of the muscle with collagenase and then protease, increasing the availability of the postjunctional membrane to bath-applied drugs, decreases the variability and increases the magnitude of the potentiation to a given dose of ATP. The dose-response curve for ATP is then more than half-maximal at 1 mM and the ranking of the other nucleotides relative to ATP is the same as without predigestion. There is an optimum Ca++ concentration for the potentiation between zero and 2 mM: potentiation is enhanced in Ca++ -free medium, partially blocked in twice-normal Ca++ medium, and totally blocked in Ca++ -free medium 10 min after a 5 min exposure to 2.5 mM EGTA. The similar Ca++ dependence of ACh receptor activation in the absence of added nucleotide suggests that ATP directly facilitates receptor activation by ACh. This facilitory action could be one of the physiological roles for the ATP released from stimulated phrenic nerve.  相似文献   

8.
The dependence of gamma-aminobutyric acid (GABA) and acetylcholine (ACh) release on Ca2+ was comparatively studied in synaptosomes from mouse brain, by correlating the influx of 45Ca2+ with the release of the transmitters. It was observed that exposure of synaptosomes to a Na+-free medium notably increases Ca2+ entry, and this condition was used, in addition to K+ depolarization and the Ca2+ ionophore A23187, to stimulate the influx of Ca2+ and the release of labeled GABA and ACh. The effect of ruthenium red (RuR) on these parameters was also investigated. Of the three experimental conditions used, the absence of Na+ in the medium proved to be the most efficient in increasing Ca2+ entry. RuR inhibited by 60-70% the influx of Ca2+ stimulated by K+ depolarization but did not affect its basal influx or its influx stimulated by the absence of Na+ or by A23187. The release of ACh was stimulated by K+ depolarization, absence of Na+ in the medium, and A23187 in a strictly Ca2+-dependent manner, whereas the release of GABA was only partially dependent on the presence of Ca2+ in the medium. The extent of stimulation of ACh release was related to the extent of Ca2+ entry, whereas no such correlation was observed for GABA. In the presence of Na+, RuR did not affect the release of the transmitters induced by A23187. In the absence of Na+, paradoxically RuR notably enhanced the release of both ACh and GABA induced by A23187, in a Ca2+-dependent manner.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

9.
Hydrolysis, synthesis, and release of acetylcholine in the isolated heart   总被引:1,自引:0,他引:1  
The occurrence of unhydrolyzed acetylcholine (ACh) in the cardiac perfusate during vagal stimulation in the absence of cholinesterase inhibition has been demonstrated by several methods. Because some ACh was found unhydrolyzed in the extracellular space for several seconds after vagal stimulation (half-time of decay 2.5 s), it appears that the prolonged time course of the cardiac responses to bursts of vagal activity is determined by a slow rate of transmitter inactivation (diffusion plus hydrolysis) in addition to slowly operating postsynaptic mechanisms mediated by activation of the muscarinic receptor. The neuronal uptake of choline in isolated heart preparations was found to be Na+ dependent, sensitive to hemicholinium 3, and activated by vagal stimulation. Activation occurred after a delay of 1 or 2 min and slowly faded within 5 min after stimulation. Resting release of ACh was insensitive to extracellular Ca2+ and to muscarinic feedback inhibition, in contrast to the evoked transmitter release. Inasmuch as atropine increased ACh release by vagal and field stimulation to the same extent, muscarinic feedback inhibition is likely to occur at postganglionic parasympathetic neurons. Adrenergic agonists and propranolol did not significantly change the release of ACh.  相似文献   

10.
Electrical stimulation of the chick ciliary nerve leads to a frequency-dependent increase in the Na+-dependent high affinity uptake of [3H]choline (SDHACU) and its conversion to acetylcholine (ACh) in the nerve terminals innervating the iris muscle. The forces that drive this choline (Ch) uptake across the presynaptic membrane were evaluated. Depolarization with increased [K+] out or veratridine decreases Ch accumulation. In addition to the electrical driving force, energy is provided by the Na+ gradient. Inhibition of the Na,K-ATPase decreased the Ch taken up. Thus, changes in the rate of Ch transport are dependent on the electrochemical gradients for both Ch and Na+. Ch uptake and ACh synthesis were increased after a conditioning preincubation with high [K+] out or veratridine. As is the case for electrical stimulation, this acceleration of Ch uptake and ACh synthesis was strongly dependent on the presence of Ca++ in the incubation medium. Na+ influx through a TTX-sensitive channel also contributed to this acceleration. Inasmuch as membrane depolarization reduces the initial velocity of Ch uptake and ACh synthesis, their increases during electrical stimulation therefore cannot be the direct effect of the depolarization phase of the action potential. Instead they are the result of the ionic fluxes accompanying the presynaptic spike. It is concluded that stimulation of Ch uptake and ACh synthesis by nerve activity depends first, on the ACh release elicited by Ca++ influx after depolarization and second, on the activation of the Na,K-ATPase due to Na+ entry. Furthermore, it is suggested that the release of ACh after stimulation drives translocation of cytoplasmic ACh into a protected compartment (probably vesicular). This recompartmentation of intraterminal ACh stimulates ACh synthesis by mass action, allowing further accumulation of Ch.  相似文献   

11.
翟进  马如钝 《生理学报》1991,43(1):73-77
应用细胞内记录技术观察了钙通道阻滞剂硝苯吡啶(nifedlpine)对离体豚鼠腹腔神经节细胞三种钙依赖性电位的可逆性作用。硝苯吡啶(0.1—1mmol/L)可剂量依赖式地抑制动作电位后超极化、强直后膜电位的变化,在无钠高钙加 TEA 溶液中,硝苯吡啶(0.1μmol/L)能抑制钙锋电位。结果表明,大剂量的硝苯吡啶可继发性抑制钙依赖性钾电导,临床治疗剂量的硝苯吡啶还直接减少钙电导。以上作用是硝苯吡啶调节交感节后神经元的兴奋性,阻滞突触前膜 ACh 的量子性释放的基础。  相似文献   

12.
It has previously been reported that in the isolated cat superior cervical ganglion (SCG) labeled with tritiated norepinephrine (3H-NE), the stimulation of the preganglionic trunk at 10 Hz as well as the exposure to 100 microM exogenous acetylcholine (ACh), produced a Ca++-dependent release of 3H-NE. The present results show that a Ca++-dependent release of 3H-NE was produced also by exposure to either 50 microM veratridine or 60 mM KCl. Tetrodotoxin (0.5 microM) abolished the release of 3H-NE induced by preganglionic stimulation, ACh and veratridine but did not modify the release evoked by KCl. The metabolic distribution of the radioactivity released by the different depolarizing stimuli showed that the 3H-NE was collected mainly unmetabolized. In the cat SCG neither the release of 3H-NE evoked by KCl nor the endogenous content of NE was modified by pretreatment with 6-OH-dopamine (6-OH-DA). On the other hand, this chemical sympathectomy depleted the endogenous content of NE in the cat nictitating membrane, whose nerve terminals arise from the SCG. The data presented suggest that the depolarization-coupled release of NE from the cat SCG involves structures that are different to nerve terminals and that contain Na+ channels as well as Ca++ channels.  相似文献   

13.
Chemiluminescent detection was applied to measure the continuous spontaneous Ca2+-independent liberation of acetylcholine (ACh) from Torpedo electric organ synaptosomes. Differentiation between the release of ACh and choline was achieved by inhibiting cholinesterases with phospholine, and a way to quantify the continuous release was devised. The method permitted measurements during short time intervals from minute amounts of tissue and without an accumulation of ACh in the medium. Synaptosomes continuously liberated small amounts of ACh during incubations in the presence of 3 mM K+ and in the absence of Ca2+. The spontaneous liberation of ACh was similar both quantitatively and qualitatively at pH values of 8.6 and 7.8. It was unaltered by MgCl2 (10.4 mM), 2-(4-phenylpiperidino)cyclohexanol (10 microM), ouabain (104 microM), atropine (10 microM), and valinomycin (102 nM). Carbamoylcholine brought about a decrease, which could be partially reversed by atropine. The Ca2+-independent output of ACh was increased considerably when the concentration of K+ ions was raised (eightfold at 103 and 35-fold at 203 mM K+). Carbamoylcholine (104 microM) blocked the increase in ACh release produced by high K+; this effect of carbamoylcholine was not reversed by atropine (10 microM). When Ca2+ was added to synaptosomes depolarized by a high concentration of K+, the amount of ACh released during the first 1-3 min after the addition of Ca2+ was at least 20 times higher than in the absence of Ca2+, but the release returned rapidly to predepolarization values. Similarly high values of ACh release could be achieved by adding Ca2+ plus the ionophore A23187 and even higher values by adding Ca2+ plus gramicidin.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Ouabain (5 x 10(-8)-5 x 10(-4) M) was confirmed to cause a dose-dependent increase in [3H]acetylcholine ([3H]ACh) release, cytosolic free Ca2+ concentration ([Ca2+]i), and 22Na+ uptake in cerebrocortical synaptosomes of rats in the presence of extracellular Ca2+. Ouabain also caused a dose-dependent decrease in membrane potential. In a low-Na+ (10 mM) medium, ouabain failed to increase [3H]ACh release and [Ca2+]i. Tetrodotoxin (10(-6) M) had no effect on the ouabain-induced increase in both [3H]ACh release and [Ca2+]i but abolished the increase in 22Na+ uptake and partially inhibited the depolarizing effect. Verapamil (10(-6)-5 x 10(-4) M) inhibited the ouabain-induced increase in both [3H]ACh release and [Ca2+]i in a dose-dependent manner. Removal of extracellular Ca2+ abolished the effect of ouabain on [Ca2+]i but not on [3H]ACh release and 22Na+ uptake, regardless of the presence or absence of EGTA. In the absence of extracellular Ca2+, 10 mM Mg2+ blocked ouabain-induced [3H]ACh release, which was resistant to verapamil. These results suggest that ouabain can increase ACh release from synaptosomes without the preceding increases in intracellular Ca2+ and/or Na+ content. It seems likely that the removal of extracellular Ca2+ unmasks mechanisms of ouabain action different from those operating in the presence of Ca2+.  相似文献   

15.
To elucidate the types of voltage-dependent Ca(2+) channels controlling ACh and catecholamine releases in the in vivo adrenal medulla, we implanted microdialysis probes in the left adrenal medulla of anesthetized rats and investigated the effects of Ca(2+) channel antagonists on ACh, norepinephrine, and epinephrine releases induced by nerve stimulation. The dialysis probes were perfused with Ringer solution containing a cholinesterase inhibitor, neostigmine. The left splanchnic nerves were electrically stimulated at 2 and 4 Hz before and after intravenous administration of Ca(2+) channel antagonists. omega-Conotoxin GVIA (an N-type Ca(2+) channel antagonist, 10 microg/kg) inhibited ACh release at 2 and 4 Hz by approximately 40%, norepinephrine release at 4 Hz by approximately 50%, and epinephrine release at 2 and 4 Hz by approximately 45%. A fivefold higher dose of omega-conotoxin GVIA (50 microg/kg) did not further inhibit these releases. omega-Conotoxin MVIIC (a P/Q-type Ca(2+) channel antagonist, 50 microg/kg) inhibited ACh and epinephrine releases at 4 Hz by approximately 30%. Combined omega-conotoxin GVIA (50 microg/kg) and MVIIC (250 microg/kg) inhibited ACh release at 2 and 4 Hz by approximately 70% and norepinephrine and epinephrine releases at 2 and 4 Hz by approximately 80%. Nifedipine (an L-type Ca(2+) channel antagonist, 300 and 900 microg/kg) did not change ACh release at 2 and 4 Hz; however, nifedipine (300 microg/kg) inhibited epinephrine release at 4 Hz by 20%, and nifedipine (900 microg/kg) inhibited norepinephrine and epinephrine releases at 4 Hz by 30%. In conclusion, both N- and P/Q-type Ca(2+) channels control ACh release on preganglionic splanchnic nerve endings while L-type Ca(2+) channels do not. L-type Ca(2+) channels are involved in norepinephrine and epinephrine releases on chromaffin cells.  相似文献   

16.
The effect of acetylcholine (ACh) on corticoidogenesis in primary cultured bovine adrenocortical cells was examined. One hour exposure to 10(-3) M ACh resulted in a stimulative effect on corticoidogenesis in the freshly isolated cells, and the effect of ACh grew intense during primary culture and reached the maximum on day 2. ACh showed the effect at a higher concentration than 10(-6) M. Thus the primary 2-day cultured cells were used. The corticoidogenic effect of ACh was inhibited by atropine but not by hexamethonium. The effect of ACh was dose dependent, and the extracellular Ca++ was obligatory in inducing the effect. These results suggest that the corticoidogenic effect of ACh may be due to an increase in Ca++-influx via muscarinic receptor in adrenocortical cells.  相似文献   

17.
The effect of 2-(4-phenylpiperidino)cyclohexanol (AH5183 or vesamicol), a compound known to block the uptake of acetylcholine (ACh) into cholinergic synaptic vesicles, on the release of endogenous and [14C]ACh from slices of rat striatum was investigated. ACh release was evoked either by electrical stimulation or by veratridine. The effect of electrical stimulation was entirely dependent on external Ca2+. By contrast, veratridine (40 microM) also enhanced ACh release in the absence of Ca2+. Indeed, with veratridine two components were clearly distinguished: one dependent on external Ca2+ and the other not. Vesamicol inhibited [14C]ACh release evoked by both veratridine and electrical stimulation in the presence of external Ca2+, provided it was added to the tissue prior to loading with [14C]choline. With the same treatment vesamicol only slightly affected the release of endogenous ACh. Under the same conditions the Ca2(+)-independent [14C]ACh release evoked by veratridine was not prevented by vesamicol. The differential responsiveness to vesamicol suggests that ACh pools involved in Ca2+o-dependent ACh release are different from those mobilized during Ca2+o-independent ACh release.  相似文献   

18.
Single bovine adrenal medullary cells have been obtained by retrograde perfusion of adrenal medullae with a solution of 0.05% collagenase in Ca++-free Krebs Henseleit buffer. Chromaffin cells were obtained in high yield (5 X 10(6) cells/g medulla), and more than 95% of these were viable as shown by exclusion of trypan blue. The isolated cells were capable of respiring at a linear rate for a minimum of 120 min. Ultrastructural examination revealed that the cells were morphologically intact, and two distinct types of adrenal medullary cells were identified, on the basis of the morphology of their electron-dense vesicles, as (a) adrenaline-containing and (b) noradrenaline-containing cells. Biochemical analysis showed that the cells contained catecholamines and dopamine-beta-hydroxylase (DBH). The cells released catecholamines and DBH in response to acetylcholine (ACh), and this release was accompanied by changes in the vesicular and surface membranes observed at the ultrastructural level. The time-course of ACh-stimulated catecholamine and DBH release, and the dependence of this release on the concentration of ACh and extracellular Ca++ have been investigated. The isolated cells were pharmacologically sensitive to the action of the cholinergic blocking agents, atropine and hexamethonium.  相似文献   

19.
IP3-induced Ca2+ release is the primary mechanism that is responsible for acetylcholine (ACh)-induced Ca2+ oscillation. However, other mechanisms remain to explain intracellular Ca2+ elevation. We here report that ACh induces Ca2+ influx via T-type Ca2+ channel by activation of Ca2+/calmodulin-dependent protein kinase II (CaMKII), and the ACh-induced Ca2+ influx facilitates the generation of Ca2+ oscillation in the mouse ovulated oocytes (oocytes(MII)). ACh increased Ca2+ current by 50+/-21%, and produced Ca2+ oscillation. However, the currents and Ca2+ peaks were reduced in Ca2+ -free extracellular medium. ACh failed to activate Ca2+ current and to produce Ca2+ oscillation in oocytes pretreated with KN-93, a CaMKII inhibitor. KN-92, an inactive analogue of KN93, and PKC modulators could not prevent the effect of ACh. These results show that ACh increases T-type Ca2+ current by activation of CaMKII, independent of the PKC pathway, in the mouse oocytes.  相似文献   

20.
A Lückhoff 《Cell calcium》1986,7(4):233-248
Indo-1 is a new fluorescent indicator of the intracellular free calcium concentration Cai++. Indo-1 may be used in a similar manner as its predecessor quin2 but offers the principal advantage that the Ca++ saturated form of the Ca++ chelator has a emission maximum different in wavelength from that of free indo-1 (400 nm versus 483 nm). Therefore, the ratio of the fluorescence intensity F emitted at 400 nm to that of the fluorescence intensity G emitted at 483 nm (or 500 nm) should be a measure of Cai++ independent of the total amount of intracellular dye. However, when indo-1 is loaded into endothelial cells (grown in culture on quartz coverslips) by incubation with the acetoxymethylester of indo-1 (indo-1/AM), the ester in not completely hydrolysed to indo-1 intracellularly. Fluorescence emitted by uncleaved indo-1/AM at wavelengths 483-500 nm interferes with the fluorescence of indo-1. Ester fluorescence is influenced not only by ester concentration but by the fluorescence emitted at 400 nm by Ca++ bound indo-1 as well. Therefore, the ratio F/G cannot reliably evaluate increases in Cai++ in endothelial cells although F/G would indicate a basal Cai++ constant with time. By contrast, the fluorescence F is a sensitive parameter of the intracellular concentration of Ca++ bound indo-1, in particular when the excitation wavelength is set to 332 nm. F was used to measure resting Cai++ in endothelial cells (132 +/- 22 nM; n = 22) and to demonstrate dose-dependent and reversible increases in Cai++ in response to stimulation with bradykinin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号