首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
When mouse 3T3-F442A preadipocyte fibroblasts reach confluence in the appropriate culture medium, their growth is arrested, and the cells undergo terminal differentiation to adipocytes. Two proteins that may be involved in this process are interferon and the interferon-induced double-stranded RNA (dsRNA)-dependent protein kinase (DAI). In 3T3-F442A cells, interferon and DAI are transiently expressed with a maximum level of active kinase appearing at confluence. Interestingly, the level of active DAI was found to be low when cells were maintained under conditions nonpermissive for differentiation. This reduction in DAI was at least partly because of the presence of elevated levels of a specific inhibitor of DAI, termed dRF, which appeared to be a reversible inhibitor of the autophosphorylation (activation) of DAI. In the present study, the mechanism of action of dRF was investigated. Photocross-linking experiments indicated that dRF prevented the binding of ATP to DAI. Since the binding of ATP to DAI is dsRNA-dependent, we examined the effect of dRF on the binding of dsRNA to the kinase using RNA mobility shift assays. dRF was found to prevent the formation of DAI-dsRNA complexes without a direct effect on the dsRNA. This suggests that dRF exerts its effect through an interaction with DAI.  相似文献   

2.
The interferon induced double-stranded-RNA-dependent eIF-2 alpha kinase has an established role in mediating part of interferons anti-viral effects. Several studies have suggested that it may have additional functions in cells not infected with virus. The mechanism of activation of the kinase and the consequences of its activity in uninfected cells remain to be determined. Our previous results have indicated that the activation (phosphorylation) of this kinase may be an important regulatory signal to the arrest of growth of mouse 3T3-F442A fibroblasts and their subsequent differentiation to adipocytes. We have found that the phosphorylation of the kinase occurred in vivo in the absence of viral infection and in vitro without the addition of dsRNA. We demonstrate here that total cytoplasmic RNA from 3T3-F442A cells contains a regulatory RNA(s) capable of activating dsRNA-dependent eIF-2 alpha kinase. Fractionation of the cytoplasmic RNA by oligo(dT)-cellulose indicated that the regulatory RNA eluted with the poly(A)-rich RNA fraction. It bound tightly to the dsRNA-dependent eIF-2 alpha kinase and was immune-precipitated with its antibodies as a complex of regulatory RNA and dsRNA-dependent eIF-2 alpha kinase. The regulatory RNA activity was further purified by phenol extraction of immune precipitates containing this complex. These findings indicated that the regulatory RNA forms a specific complex with the dsRNA-dependent eIF-2 alpha kinase. The activity of the regulatory RNA was sensitive to the dsRNA-specific RNase VI but not to proteinase K, DNase I or ssRNA-specific RNase T1. The activation of the dsRNA-dependent eIF-2 alpha kinase by regulatory RNA was prevented by addition of a high concentration of poly(I).poly(C). The regulatory RNA was also shown to activate partially purified dsRNA-dependent eIF-2 alpha kinase prepared from rabbit reticulocyte lysates and to inhibit protein synthesis in reticulocyte lysates. Our findings, that cellular RNAs can specifically activate the dsRNA-dependent eIF-2 alpha kinase, are consistent with a physiological role for the dsRNA-dependent eIF-2 alpha kinase and interferon during cell growth and differentiation. The relationship of the regulatory RNA activity to growth and differentiation of 3T3-F442A cells is discussed.  相似文献   

3.
Cultured mouse 3T3-F442A and 3T3-C2 fibroblasts exhibit a transient double-stranded RNA (dsRNA)-dependent phosphorylation of a 67,000-dalton protein (67K) without prior treatment with interferon (IFN). This phosphoprotein is similar but not identical to the dsRNA-dependent eukaryotic initiation factor-2 (eIF-2) alpha protein kinase (dsI), which regulates protein synthesis in rabbit reticulocytes. We have studied the relationship between cell growth and phosphorylation of the 67K protein (designated 3T3-dsRNA-dependent eIF-2 alpha kinase). A low level of dsRNA-dependent phosphorylation of 3T3-dsI was detectable in extracts prepared from cells not treated with IFN and grown at a low cell density. The phosphorylation of dsI and the phosphorylation of a 38K protein identified as the alpha-subunit (38K) of 3T3-eIF-2 (eIF-2 alpha) occurred concomitantly; the levels of these phosphorylations confluent and thereafter decreased markedly. Treatment of cells with IFN at all stages of growth resulted in an increase in phosphorylation of dsI. 3T3-F442A and 3T3-C2 fibroblasts were found to produce and secrete IFN at levels sufficient to induce an elevated dsI activity.  相似文献   

4.
5.
Murine embryonic 3T3-F442A fibroblasts contain elevated levels of a factor (dRF) inhibitory to the phosphorylation of PKR, when cultured under differentiation restrictive (10% cat serum) as compared to permissive conditions (10% fetal bovine serum). Experiments were conducted with the objective of understanding the effect of altered PKR activity on the growth characteristics of 3T3-F442A fibroblasts. Analysis of the phosphoprotein pattern confirmed that the phosphorylation of PKR was reduced in cells cultured in cat serum during specific stages of growth. In a similar manner, evaluation of eIF-2 phosphorylation by vertical slab gel iso-electric focusing indicated that inactivation of PKR correlated with reduction of eIF-2 phosphorylation. The expression of PKR was confirmed by western blotting ruling out the possibility of diminished protein as the cause of loss of activity. In addition, the expression of dRF coincided with the inactivation of PKR as shown by immunoblotting and phosphorylation studies. The reduction in PKR activity and subsequent deregulation of eIF-2 phosphorylation was related to appearance of tumor-like cellular morphology and increased cell density as shown by cell counts and [3H]-thymidine uptake. Taken together, these results support a hypothesis that PKR functions to regulate the growth of 3T3-F442A cells. Furthermore, our findings raise the possibility that deregulation of PKR by endogenous inhibitory molecules, such as dRF, may alter normal growth and differentiation. Such a deregulation of PKR may also contribute to the proliferation of tumor cells.  相似文献   

6.
B Feve  J Pairault 《FEBS letters》1987,219(1):56-64
When 3T3-F442A preadipocytes were grown in culture media supplemented with corticosteroid poor fetal calf serum and insulin they differentiated into adipocytes. Glycerophosphate dehydrogenase, a marker of terminal differentiation, developed a 600-fold increase of activity whereas the adenylate cyclase system remained unresponsive to the synthetic ACTH(1-24) analog. In contrast, 3T3-F442A adipocytes, differentiated in the presence of dexamethasone, exhibited an adenylate cyclase activity which was stimulated 4-fold by ACTH(1-24). The stimulation of the adenylate cyclase activity by GTP gamma S remained unchanged (about 20-25-fold) suggesting that the G regulatory coupling protein was not functionally modified by dexamethasone. Binding studies with 125I-ACTH revealed that specific cellular binding could be evidenced in dexamethasone-treated cells while control adipocytes did not exhibit any specific binding of 125I-ACTH. These findings lend support to the hypothesis that the setting off of this ACTH responsiveness in 3T3-F442A cells is regulated by dexamethasone after cells are committed to adipose differentiation.  相似文献   

7.
The 3T3-F442A mouse fibroblast cell line, triggered by factors present in fetal calf serum (FCS), converts either spontaneously or, in the simultaneous presence of FCS and insulin, at an accelerated rate into cells exhibiting the adipocyte phenotype. The effects of the neurohypophysial hormones in differentiated cells on glucose metabolism (glucose oxidation and lipogenesis) were compared with the stimulatory actions of insulin, which had its most pronounced effects in cells differentiated spontaneously with FCS in the absence of insulin. The differentiated 3T3-F442A cells were sensitive to physiological levels of insulin and exhibited manyfold increases in glucose metabolism in response to it. This result demonstrated that these cultured cells respond to insulin, in a manner analogous to freshly isolated adipocytes. In contrast to its insulin-like effects in isolated epididymal adipocytes, oxytocin was not reproducibly able to stimulate glucose metabolism in differentiated 3T3-F442A cells. Vasopressin was similarly inactive. In contrast, both oxytocin and vasopressin blocked adipocyte conversion triggered by FCS, either in the presence or absence of insulin; vasopressin was more potent than oxytocin, indicating that a vasopressin receptor was responsible for the observed inhibition of differentiation. Our work suggests that vasopressin could potentially play a role in the regulation of the adipocyte differentiation process.  相似文献   

8.
The growth hormone receptor (GHR), a cytokine receptor superfamily member, requires the JAK2 tyrosine kinase for signaling. We now examine functional interactions between growth hormone (GH) and epidermal growth factor (EGF) in 3T3-F442A fibroblasts. Although EGF enhanced ErbB-2 tyrosine phosphorylation, GH, while causing retardation of its migration on SDS-polyacrylamide gel electrophoresis, decreased ErbB-2's tyrosine phosphorylation. GH-induced retardation was reversed by treatment of anti-ErbB-2 precipitates with both alkaline phosphatase and protein phosphatase 2A, suggesting that GH induced serine/threonine phosphorylation of ErbB-2. Both GH-induced shift in ErbB-2 migration and GH-induced MAP kinase activation were unaffected by a protein kinase C inhibitor but were blocked by the mitogen-activated protein kinase/extracellular signal-regulated kinase kinase 1 (MEK1) inhibitor, PD98059. Notably, leukemia inhibitory factor, but not interferon-gamma, also promoted ErbB-2 shift and mitogen-activated protein kinase activation. Cotreatment with EGF and GH versus EGF alone resulted in a 35% decline in acute ErbB-2 tyrosine 1248 autophosphorylation, a marked decline (approximately 50%) in DNA synthesis, and substantially decreased cyclin D1 expression. We conclude that in 3T3-F442A cells, 1) the GH-induced decrease in ErbB-2 tyrosine phosphorylation correlates with MEK1/mitogen-activated protein kinase activity and 2) GH antagonizes EGF-induced DNA synthesis and cyclin D1 expression in a pattern consistent with its alteration in ErbB-2 phosphorylation status.  相似文献   

9.
We have previously demonstrated that growth hormone (GH) promotes an increase in tyrosine kinase activity associated with the GH receptor. To gain insight into the role of GH-dependent tyrosine kinase activity in signaling by GH, we investigated the possibility that GH might stimulate MAP kinase, a serine/threonine/tyrosine kinase thought to be a common element in tyrosine kinase-initiated response cascades. Treatment of 3T3-F442A fibroblasts with 100 ng/ml GH results in a 3-6-fold increase in the ability of cell-free extracts to phosphorylate MAP-2 and myelin basic protein. GH-stimulated kinase activity is unaffected by heparin, H7, or cAMP-dependent protein kinase inhibitor peptide, partially reduced by staurosporin and inhibited by fluoride and calcium ions, indicating that the kinase is not protein kinase C or A, casein kinase, or a calcium/calmodulin-dependent protein kinase. Based on gel permeation chromatography, the molecular mass of the GH-stimulated MAP kinase is approximately kDa. Furthermore, anti-phosphotyrosine antibodies revealed the GH-dependent appearance of two phosphotyrosine-containing proteins in cell-free lysates of GH-treated cells that co-migrate with proteins recognized by anti-MAP kinase antibodies. The GH-dependent increase in MAP kinase activity displays a biphasic time course and is dependent on the concentration of GH applied to the cells. GH-dependent MAP kinase activity, partially purified by Mono-Q chromatography, is inactivated by treatment with alkaline phosphatase. Addition of H7 to the cells prior to the addition of GH has no effect, whereas addition of H8 increases MAP kinase activity in control cells with no effect in GH-treated cells, indicating that protein kinase C is unlikely to be an intermediary in the GH-dependent stimulation of MAP kinase activity. These findings indicate that signaling by GH in 3T3-F443A cells may, at least in part, utilize a kinase cascade similar to those that have been proposed for other membrane receptors with associated tyrosine kinase activity.  相似文献   

10.
The preadipocyte cell lines 3T3-L1 and 3T3-F442A are widely used to study the cellular mechanisms of preadipocyte differentiation and mature adipocyte functions. However, transfection with naked DNA is inefficient in these cell lines. Adenoviral gene transfer is a powerful technique to induce high levels of transgene expression. After failing to obtain 3T3-F442A stable transfectants, we studied different techniques designed to enhance the efficiency of adenoviral transduction in fat cells. First, we compared the effects of two agents known to significantly enhance adenoviral transgene transduction, namely the cationic lipid lipofectamine and the cationic polymer polylysine. We show here that lipofectamine-assisted adenoviral transduction was more efficient in 3T3-F442A than in 3T3-L1 preadipocytes at all tested multiplicity of infection. Lipofectamine, and more efficiently polylysine, yielded high and sustained levels of adenoviral transgene expression in 3T3-F442A preadipocytes. Adenoviral transgene expression was maintained throughout the differentiation process. Furthermore, the two agents also efficiently enhanced adenoviral transduction in mature 3T3-F442A adipocytes. Interestingly, neither protocol affected the differentiation process, morphological features or protein expression of mature adipocytes. These approaches could be of interest to study fat cell differentiation and the functions of mature adipocytes.  相似文献   

11.
The influence of extracellular matrix (Matrigel), collagen, and polylysine substrates on cell attachment and differentiation in 3T3-F442A preadipocytes was investigated. In comparison to an uncoated-polystyrene substrate, a concentrated Matrigel substrate (100 microg/cm2) markedly increased intracellular lipid level by about 30%, whereas a lower density Matrigel (10 microg/cm2) accelerated the differentiation rate but did not increase the amount of lipid 21 days after addition of adipogenic factors. Preadipocytes on the collagen surface differentiated less extensively than cells on the polystyrene. Polylysine did not effectively support attachment for either differentiated or undifferentiated cells. These results suggest that Matrigel provides the most suitable environment for both cell adhesion and differentiation for 3T3-F442A cells. This is in contrast to a previous report that extracellular matrix (from corneal endothelial cells) was detrimental to differentiation of 3T3-F442A cells.  相似文献   

12.
13.
Triiodothyronine added at 0.1 nM to 3T3-F442A cells cultured in adipogenic medium having endogenous hormone concentrations similar to those of hypothyroid serum stimulated adipose conversion; activities of both lipogenic enzymes, glycerophosphate dehydrogenase and malic enzyme, increased with hormone treatment. The number of adipocytes was also augmented by L-T3 addition but the number of fat cell clusters remained the same as compared to non-treated cultures, suggesting that thyroid hormone increased the number of adipocytes probably through stimulating selective multiplication of precursor adipose cells. Hormone addition to cells cultured with non-adipogenic medium did not promote conversion showing that L-T3 is not an adipogenic factor by itself. Triiodothyronine added at concentrations similar to those found in hyperthyroidism, from 10 nM up to 10 µM, also increased the proportion of adipocytes without changing the number of fat cell clusters, but they decreased the activity of both lipogenic enzymes and lipid accumulation in mature adipocytes. It can be concluded that during 3T3-F442A differentiation into adipocytes L-T3 increases the number of differentiated adipocytes and, at low concentrations, also enhances lipogenic enzyme activities, whereas at the hyperthyroid hormone levels these enzyme activities are significantly reduced, remaining at levels similar to those of cells cultured with hypothyroid medium. This cloned cell line seems to be a useful model to study thyroid hormone action at both molecular and cellular level.  相似文献   

14.
15.
Studies of lipoprotein lipase during the adipose conversion of 3T3 cells.   总被引:19,自引:0,他引:19  
L S Wise  H Green 《Cell》1978,13(2):233-242
Lipoprotein lipase activity is negligible in exponentially growing 3T3-L1 cells and 3T3-F442A cells, but develops in both lines when they reach a confluent state and undergo adipose conversion. 3T3-C2 cells, which undergo adipose conversion with extremely low frequency, do not develop the enzyme. The lipase activity of 3T3-L1 and 3T3-F442A is greatly enhanced by insulin and increases 80–180 fold during the adipose conversion. The lipase has the following characteristics in common with lipoprotein lipase from adipose and other tissues: it is dependent upon serum, is inhibited by 0.5–1.0 M sodium chloride, is recovered from acetone powders, has an alkaline pH optimum and is released from the cells by heparin. Like the lipoprotein lipase of tissue adipose cells, the enzyme of 3T3-L1 decays in the presence of cycloheximide with a half-time of about 25 min at 37°C.The ability of 3T3-F442A and 3T3-L1 to take up triglyceride from the medium depends almost completely upon lipoprotein lipase. They incorporate the fatty acids of a large fraction of a triglyceride emulsion added to the medium, and this utilization is stimulated by heparin. Very little of the glycerol portion of the triglyceride is incorporated. 3T3-C2, which lacks lipoprotein lipase, utilizes very little of either the fatty acid or the glycerol portion of triglyceride.The relevance of external lipid or lipoprotein to both the adipose conversion and the appearance of lipoprotein lipase was tested using confluent cultures in medium depleted of these components. In the presence of serum whose lipoproteins have been removed by flotation, lines 3T3-F442A and 3T3-L1 undergo adipose conversion as completely as in the presence of untreated serum, and lipoprotein lipase activity appears at essentially the same rate. In medium whose serum supplement has been extracted with acetone:ethanol, 3T3-F442A cells undergo adipose conversion to nearly the same extent as in untreated serum, and develop nearly the same increase in lipoprotein lipase activity.Unless even very low concentrations of lipids or lipoprotein are saturating it can be concluded that the adipose conversion does not depend upon external lipids or lipoproteins for its induction; rather the differentiation program is built into the cell type and comes into operation when growth is arrested even in their absence. The source of fatty acids utilized for triglyceride synthesis, however, may be affected by the amount of lipid provided to the cells.  相似文献   

16.
Mesenchymal cells can differentiate into osteoblasts, adipocytes, myoblasts, or chondroblasts. Whether mesenchymal cells that have initiated differentiation along one lineage can transdifferentiate into another is largely unknown. Using 3T3-F442A preadipocytes, we explored whether extracellular signals could redirect their differentiation from adipocyte into osteoblast. 3T3-F442A cells expressed receptors and Smads required for bone morphogenetic protein (BMP) signaling. BMP-2 increased proliferation and induced the early osteoblast differentiation marker alkaline phosphatase, yet only mildly affected adipogenic differentiation. Retinoic acid inhibited adipose conversion and cooperated with BMP-2 to enhance proliferation, inhibit adipogenesis, and promote early osteoblastic differentiation. Expression of BMP-RII together with BMP-RIA or BMP-RIB suppressed adipogenesis of 3T3-F442A cells and promoted full osteoblastic differentiation in response to retinoic acid. Osteoblastic differentiation was characterized by induction of cbfa1, osteocalcin, and collagen I expression, and extracellular matrix calcification. These results indicate that 3T3-F442A preadipocytes can be converted into fully differentiated osteoblasts in response to extracellular signaling cues. Furthermore, BMP and retinoic acid signaling cooperate to stimulate cell proliferation, repress adipogenesis, and promote osteoblast differentiation. Finally, BMP-RIA and BMP-RIB induced osteoblast differentiation and repressed adipocytic differentiation to a similar extent.  相似文献   

17.
Heparan sulfate proteoglycans are found on the surface of most cells. Syndecan-4 is a widely expressed transmembrane heparan sulfate proteoglycan. Using quantitative RNase protection assays and immunoblotting, syndecan-4 expression was characterized in 3T3-F442A mouse adipoblasts. These cells exhibit dramatic changes in their biological and morphological characteristics during differentiation to adipocytes. During this process, the levels of syndecan-4 protein and mRNA expression changed dramatically. They peaked at the time when quiescent cells reentered the cell cycle before differentiation. Serum depletion-repletion also replicated the syndecan-4 mRNA induction when the cells were released back into proliferation, and a cycloheximide treatment abolished the peak of induction. In addition, inhibiting syndecan-4 induction with antisense oligonucleotides inhibited the proliferation of 3T3-F442A cells. In the terminally differentiated adipocytes characterized by the loss of proliferation capability, the serum inducibility of syndecan-4 is repressed, emphasizing the link between syndecan-4 induction in 3T3-F442A cells and cell proliferation.  相似文献   

18.
19.
Promiscuous coupling between G protein-coupled receptors and multiple species of heterotrimeric G proteins provides a potential mechanism for expanding the diversity of G protein-coupled receptor signaling. We have examined the mechanism and functional consequences of dual Gs/Gi protein coupling of the beta3-adrenergic receptor (beta3AR) in 3T3-F442A adipocytes. The beta3AR selective agonist disodium (R, R)-5-[2[[2-(3-chlorophenyl)-2-hydroxyethyl]-amino]propyl]-1, 3-benzodioxole-2,2-dicarboxylate (CL316,243) stimulated a dose-dependent increase in cAMP production in adipocyte plasma membrane preparations, and pretreatment of cells with pertussis toxin resulted in a further 2-fold increase in cAMP production by CL316,243. CL316,243 (5 microM) stimulated the incorporation of 8-azido-[32P]GTP into Galphas (1.57 +/- 0.12; n = 3) and Galphai (1. 68 +/- 0.13; n = 4) in adipocyte plasma membranes, directly demonstrating that beta3AR stimulation results in Gi-GTP exchange. The beta3AR-stimulated increase in 8-azido-[32P]GTP labeling of Galphai was equivalent to that obtained with the A1-adenosine receptor agonist N6-cyclopentyladenosine (1.56 +/- 0.07; n = 4), whereas inclusion of unlabeled GTP (100 microM) eliminated all binding. Stimulation of the beta3AR in 3T3-F442A adipocytes led to a 2-3-fold activation of mitogen-activated protein (MAP) kinase, as measured by extracellular signal-regulated kinase-1 and -2 (ERK1/2) phosphorylation. Pretreatment of cells with pertussis toxin (PTX) eliminated MAP kinase activation by beta3AR, demonstrating that this response required receptor coupling to Gi. Expression of the human beta3AR in HEK-293 cells reconstituted the PTX-sensitive stimulation of MAP kinase, demonstrating that this phenomenon is not exclusive to adipocytes or to the rodent beta3AR. ERK1/2 activation by the beta3AR was insensitive to the cAMP-dependent protein kinase inhibitor H-89 but was abolished by genistein and AG1478. These data indicate that constitutive beta3AR coupling to Gi proteins serves both to restrain Gs-mediated activation of adenylyl cyclase and to initiate additional signal transduction pathways, including the ERK1/2 MAP kinase cascade.  相似文献   

20.
Fatty acids have been postulated to regulate adaptation of adipose mass to nutritional changes by controlling expression of genes implicated in lipid metabolism via activation of nuclear receptors. Ectopic expression of the nuclear receptors PPARgamma or PPARdelta promotes adipogenesis in fibroblastic cells exposed to thiazolidinediones or long-chain fatty acids. To investigate the role of PPARdelta in fatty acid regulation of gene expression and adipogenesis in a preadipose cellular context, we studied the effects of overexpressing the native receptor or the dominant-negative PPARdelta mutant in Ob1771 and 3T3-F442A cells. Overexpression of PPARdelta enhanced fatty acid induction of the adipose-related genes for fatty acid translocase, adipocyte lipid binding protein, and PPARgamma and fatty acid effects on terminal differentiation. A transactivation-deficient form of PPARdelta mutated in the AF2 domain severely reduced these effects. Findings are similar in Ob1771 or 3T3-F442A preadipose cells. These data demonstrate that PPARdelta plays a central role in fatty acid-controlled differentiation of preadipose cells. Furthermore, they suggest that modulation of PPARdelta expression or activity could affect adaptive responses of white adipose tissue to nutritional changes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号