首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Induction of c-fos protein (FOS) after the onset of darkness was studied immunocytochemically in the rat and hamster pineal gland. The animals were kept on a 12:12 h light-dark cycle. Before the dark period no FOS staining was seen in either rat or hamster pineal cells. Five hours after the onset of darkness 342 +/- 18 pinealocytes/0.2 mm2 (mean +/- SD) displayed FOS-like immunoreactivity in the hamster pineal gland; in the rat pineal gland only 5 +/- 2 pinealocytes/0.2 mm2 showed a faint staining. Two hours later the density of FOS positive cells was decreased to 60 +/- 11/0.2 mm2 in the hamster but increased to 519 +/- 103/0.2 mm2 in the rat pineal gland. Three hours before the beginning of the light period no FOS positive cells were detected in either animal. Both the rat and hamster pineal gland showed a transient and temporally defined expression of c-fos protein in the middle of the dark period. This may be related to a more active functional state of pinealocytes, which is reflected in a peak of melatonin synthesis during the darkness.  相似文献   

2.
Hsu JC  Hamner KC 《Plant physiology》1967,42(5):725-730
An attempt was made to determine the involvement of an endogenous circadian rhythm in the flowering response of the long-day plant Hyoscyamus niger L. grown in a modified White's medium. Both variable-cycle-length and light interruption experiments were employed in this attempt. In the variable-cycle experiments, plants were subjected to light periods of 6, 12, or 18 hours followed by varying lengths of darkness. The total lengths of the cycles varied from 12 to 72 hours. In experiments utilizing a 6-hour photoperiod, a high level of flowering occurred in cycle lengths of 12, 36, and 60 hours. Flowering was suppressed in the 24-, 48-, and 72-hour cycles. When a 12-hour photoperiod was used the flowering response was low between 24 and 36 hours and flowering did not indicate a rhythmic response. When an 18-hour photoperiod was used, the flowering response was suppressed in the 36- and 60-hour cycles.

Light-break experiments were conducted to study further the flowering response in Hyoscyamus. These experiments consisted of a 6-hour main photoperiod followed by varying lengths of darkness to make cycles of 24, 48, and 72 hours. At given intervals the dark period was interrupted by 2-hour light breaks. In a 24-hour cycle, flowering was promoted when a light break was given at either the twelfth or eighteenth hour of the cycle. In a 48-hour cycle, flowering was strongly promoted by light breaks given near the beginning or at the end of the dark period. In a 72-hour cycle, light breaks given at the eighteenth, forty-second, and sixty-sixth hour of the cycle stimulated flowering as compared with light breaks given at the thirtieth and fifty-fourth hour. These results are indicative of the involvement of an endogenous rhythm in the flowering response of Hyoscyamus niger.

  相似文献   

3.
4.
Salisbury FB 《Plant physiology》1981,67(6):1230-1238
Six experiments studied the effects of low levels of red and far-red light upon the initiation of measurement of the dark period in the photoperiodic induction of flowering in Xanthium strumarium L. (cocklebur), a short-day plant, and compared effects with those of comparable light treatments applied for 2 hours during the middle of a 16-hour inductive dark period. Red light, or red plus far-red, at levels that inhibit flowering when applied during the middle of the inductive dark period, either had no effect on the initiation of dark measurement (i.e., were perceived as darkness), or they delayed the initiation of dark measurement by various times up to the full interval of exposure (2 hours). Far-red light alone had virtually no effect either at the beginning or in the middle of the dark period. These results confirm that time measurement in the photoperiodic response of short-day Xanthium plants is not simply the time required for metabolic dark conversion of phytochrome. Results also suggest that the pigment system (phytochrome?) and/or responses to it may be significantly different as they function during twilight (initiation of dark measurement), and as they function during a light break several hours later. Possible mechanisms by which cocklebur plants detect the change from light to darkness are discussed.Comparing experimental results with spectral light measurements during twilight and with measurements of light from the full moon led to two conclusions: First, light levels pass from values perceived by the plant as full light to values perceived as complete darkness in only about 5.5 to 11.5 minutes, although twilight as perceived by the human eye lasts well over 30 minutes. Second, cocklebur plants probably do not respond to light from the full moon, even when most sensitive, 7 to 9 hours after the beginning of darkness.  相似文献   

5.
Rhythmicity in ethylene production in cotton seedlings   总被引:7,自引:3,他引:4       下载免费PDF全文
Cotyledons of cotton (Gossypium hirsutum L.) seedlings grown under a photoperiod of 12 hour darkness and 12 hour light showed daily oscillations in ethylene evolution. The rate of ethylene evolution began to increase toward the end of the dark period and reached a maximum rate during the first third of the light period, then it declined and remained low until shortly before the end of the dark period. The oscillations in ethylene evolution occurred in young, mature, and old cotyledons (7 to 21 day old). These oscillations in ethylene evolution seemed to be endogenously controlled since they continued even when the photoperiod was inverted. Moreover, in continuous light the oscillations in ethylene evolution persisted, but with shorter intervals between the maximal points of ethylene evolution. In continuous darkness the oscillations in ethylene evolution disappeared. The conversion of [3,4-14C]methionine into [14C] ethylene followed the oscillations in ethylene evolution in the regular as well as the inverted photoperiod. On the other hand, the conversion of applied 1-aminocyclopropane-1-carboxylic acid into ethylene did not follow the oscillations in ethylene evolution, but was affected directly by the light conditions. Always, light decreased and darkness increased the conversion of applied 1-aminocyclopropane-1-carboxylic acid into ethylene. It is concluded that in the biosynthetic pathway of ethylene the conversion of 1-aminocyclopropane-1-carboxylic acid into ethylene is directly affected by light while an earlier step is controlled by an endogenous rhythm.  相似文献   

6.
The long-day plant Lemna gibba L., strain G3 exhibits a relatively low sensitivity to short, white-light interruptions given during the dark period of a short-day cycle. However, the plants are fairly sensitive to low-intensity red light treatments given during a 15-hour dark period on the third day of a 2LD-(9L:15D)-2LD-7SD schedule. Far-red light is almost as effective as red light, and attempts to reverse the red light response with subsequent far-red light treatments have not been successful. Blue light proved to be without effect. When plants were grown on a 48-hour cycle with 15 minutes of red light every 4 hours during the dark period, the critical daylength was reduced from about 32 hours to slightly less than 12 hours.

Continuous red light induced a fairly good flowering response. However, as little as 1 hour of white light each day gave a significant improvement in the flowering response over that of the continuous red light control. White light of 600 to 700 ft-c was more effective than white light of 60 to 70 ft-c. The white light was much more effective when divided into 2 equal exposures given 8 to 12 hours apart. These results suggest an increase in light sensitivity with regard to flower induction about 8 to 10 hours after the start of the light period.

  相似文献   

7.
8.
Alternative respiratory pathway was investigated in rice seedlings grown under total darkness, light/dark cycle, or continuous light. The capacity of the alternative pathway was relatively higher in leaves that had longer light exposure. An analysis of rice AOX1 multigene family revealed that AOX1c, but not AOX1a and AOX1b, had a light-independent expression. The alternative oxidase (AOX) inhibitor, salicylhydroxamic acid (SHAM, 1mM), inhibited nearly 68% of the capacity of the alternative pathway in leaves grown under different light conditions. The plants grown under different light periods were treated with SHAM and then were exposed to illumination for 4h. The transition from dark to 4h of light stimulated the capacity of alternative pathway in etiolated rice seedlings and in those grown under light/dark cycle, whereas the capacity of the alternative pathway was constant in seedlings grown under continuous light with additional 4h of illumination. Etiolated leaves did not show any CO(2) fixation after 4h of illumination, and the increase in chlorophyll content was delayed by the SHAM pretreatment. When seedlings grown under light/dark cycle were moved from dark and exposed to 4h of light, increases in chlorophyll content and CO(2) fixation rate were reduced by SHAM. Although these parameters were stable in plants grown under continuous light, SHAM decreased CO(2) fixation rate but not the chlorophyll content. These results indicate that the role and regulation of AOX in light are determined by the developmental stage of plant photosynthetic apparatus.  相似文献   

9.
10.
Summary Induction of c-fos protein (FOS) after the onset of darkness was studied immunocytochemically in the rat and hamster pineal gland. The animals were kept on a 12:12 h light-dark cycle. Before the dark period no FOS staining was seen in either rat or hamster pineal cells. Five hours after the onset of darkness 342±18 pinealocytes/0.2 mm2 (mean±SD) displayed FOS-like immunoreactivity in the hamster pineal gland; in the rat pineal gland only 5±2 pinealocytes/0.2 mm2 showed a faint staining. Two hours later the density of FOS positive cells was decreased to 60±11/0.2 mm2 in the hamster but increased to 519±103/0.2 mm2 in the rat pineal gland. Three hours before the beginning of the light period no FOS positive cells were detected in either animal. Both the rat and hamster pineal gland showed a transient and temporally defined expression of c-fos protein in the middle of the dark period. This may be related to a more active functional state of pinealocytes, which is reflected in a peak of melatonin synthesis during the darkness.  相似文献   

11.
Light influences numerous developmental and biochemical processes in fungi. The objectives of this research were to characterize the influence of light on growth and conidiation and associated gene expression in the plant pathogenic ascomycete, Exserohilum turcicum. We found that vegetative growth was more extensive in light/dark cycles than in constant light or darkness as measured by analysis of ergosterol content and genomic DNA. Cultures grown under continuous white light or blue light (approximately 465-480 nm) were developmentally arrested after the formation of conidiophores, whereas those grown in continuous darkness or a light/dark cycle produced mature conidia. Incubation of conidiophore-producing cultures in darkness for a minimum of 2 h was necessary and sufficient to initiate synchronous conidiation. To identify genes that are expressed during dark-induced conidiation, we constructed subtractive cDNA libraries from cultures grown under conidiation-permissive and -repressive conditions. From 816 sequenced EST clones in the conidiation-permissive and 310 in the repressive libraries, 12 putative regulatory genes were chosen for expression analysis by quantitative real-time PCR. The majority of those genes reached maximum expression by 2 h after initiation of the dark period and then declined to initial levels by 4-24 h in darkness. Expression of two dark-induced genes remained elevated after 24 h in darkness but was reset to initial levels if cultures were returned to light. This study revealed several genes whose expression increased rapidly after dark induction of conidiation, suggesting that they encode regulators of asexual development in E. turcicum.  相似文献   

12.
13.
SARKAR  K. K.; SIRCAR  S. M. 《Annals of botany》1975,39(5):1063-1070
One cultivated and two wild rice varieties have been subjectedto variation in photoperiod and light quality by daily exposureof the seedlings at the four-leaf stage to 8 h of natural daylightfollowed by white incandescent, red, green or blue light for2,4 or 8 h in a temperature and humidity-controlled growth chamber.In some cases far-red irradiation was applied after white orred for 1 and 2 h. The treatments caused marked differencesin growth and reproduction between the cultivated and wild rices.The cultivar Dudkalmi showed extensive tillering after far-redexposure. Earliest flowering was observed with a 16-h dark periodboth in the cultivated and wild rices. Failure of floweringwith and 8-h day and 8-h artificial light of different wavelengthscould be overcome by red or far-red of 1-h duration. The lightquality interacted differently with the dark period in the accelerationof flowering in the three varieties. In another experiment theeffects of interruption of the dark period by a light periodof 2 h after from 4–12 h of darkness in a 24-h cycle werestudied in the two wild rice varieties. Light of different wavelengthsinterposed in the dark period caused variation in tiller numberand stem length in comparison to an uninterrupted dark periodof 16 h. The effect at the beginning of the dark period wasearlier flowering; flowering was delayed by interruption at4 h and inhibited after 8 h but accelerated after a 10- to 12-hdark period. The results are discussed in the light of the significanceof the dark period and light quality in regulating hormone balanceand phytochrome reactions.  相似文献   

14.
The level of nitrate reductase (NR) and nitrite reductase (NiR) varied in both shoot and root tissue from nitrate-fed Zea mays L. grown under a 16-hour light/8-hour dark regime over a 10-day period postgermination, with peak activity occurring in days 5 to 6. To study the effect of different light regimes on NR and NiR enzyme activity and mRNA levels, 6-day-old plants were grown in the presence of continuous KNO3 (10 millimolar). Both shoot NRA and mRNA varied considerably, peaking 4 to 8 hours into the light period. Upon transferring plants to continuous light, the amplitude of the peaks increased, and the peaks moved closer together. In continuous darkness, no NR mRNA or NR enzyme activity could be detected by 8 hours and 12 hours, respectively. In either a light/dark or continuous light regime, root NRA and mRNA did not vary substantially. However, when plants were placed in continuous darkness, both declined steadily in the roots, although some remained after 48 hours. Although there was no obvious cycling of NiR enzyme activity in shoot tissue, changes in mRNA mimicked those seen for NR mRNA. The expression of NR and NiR genes is affected by the light regime adopted, but light does not have a direct effect on the expression of these genes.  相似文献   

15.
Effect of Photoperiod on Stomatal Opening in Vicia faba   总被引:2,自引:2,他引:0       下载免费PDF全文
Stomatal apertures in darkness and subsequent average opening rates in light were measured in Vicia faba leaf discs throughout the nyctoperiods for plants grown on three light:dark cycles (8:16, 12:12, and 16:8). The time course of opening in darkness depended on the specific light:dark cycle with the maximum aperture always occurring at the time the lights normally went on. The light-induced opening rate was also maximum at the end of the nyctoperiod.  相似文献   

16.
Electrophysiological processes were investigated in the reception organ of photoperiodism, cotyledons and first leaves, in a model short-day plantChenopodium rubrum L. (selection 374) within the dark inductive cycle for flowering. Membrane potential (Em) was measured in cotyledon and first leaf mesophyll of intact plants. The Em time-course was fairly similar during inductive dark or postinductive light period or in non-inductive continuous light and had a character of irregular oscillations. The most distinct oscillations were found during the postinductive light period. Changes in light régime at the beginning (light off) and the end of inductive dark period (light on) triggered marked transient Em changes having a character of damped oscillations. Cortical root cells in intact plants did not react to switching light and darkness. Changes in Em in reception organs during the inductive cycle could not be correlated with the formation and transport of floral stimulus or with reaching the induced state. Thus, the electrophysiological nature of floral stimulus has not been confirmed.  相似文献   

17.
In a previous study we showed that rats fed ad libitum and maintained on a 12-h light/ 12-h dark cycle demonstrated out-of-phase circadian oscillations in the rates of ornithine aminotransferase and serine dehydratase synthesis. As part of an investigation of the factors regulating both the generation of these cycles and their dissimilarity, this paper ompares the circadian fluctuations in the rates of ornithine aminotransferase and serine dehydratase synthesis measured immunochemically in rats given a single 2-h daily feeding in conjunction with exposure to constant light or a 12-h light/12-h dark cycle. When the 2-hr feeding was administered to rats under constant light, reciprocal circadian oscillations in ornithine aminotransferase and serine dehydratase synthesis were observed regardless of the temporal location of the feeding interval. Ornithine aminotransferase synthesis began to increase after the feeding interval and reached a maximum 12 h later while serine dehydratase showed the opposite response. In rats maintained on both the restricted feeding regimen and a 12-h light/12-h dark cycle, however, retention of synthesis oscillations depended on the temporal location of the restricted feeding interval within the light-dark cycle. Rats fed for 2 h at the beginning of the dark phase exhibited circadian oscillations in serine dehydratase synthesis and a high nonoscillating level of ornithine aminotransferase synthesis, whereas rats fed for 2 h at the beginning of the light phase exhibited circadian oscillations in ornithine aminotransferase synthesis and a low nonoscillating level of serine dehydratase synthesis. These responses suggest the existence of meal-responsive and light-responsive regulators of ornithine aminotransferase and serine dehydratase synthesis.  相似文献   

18.
Cotton (Gossypium hirsutum L. cv. Deltapine 50) seedlings grown under light-dark cycles of 12:12h at 35°C showed rhythmic daily changes in chilling resistance. Chilling treatment (5°C, 48h) started at the beginning or middle of the daily light period resulted in a substantial growth inhibition of the seedlings upon return to 35°C whereas when chilling was started at the beginning or middle of the dark period the subsequent growth of the seedlings was much less inhibited. This rhythm in chilling resistance persisted under continuous light for three 24-h periods, indicating that it is of an endogenous nature. Seedlings grown under continuous light from germination showed no daily changes in resistance, but a rhythm was initiated by introduction of a dark period of 6h or longer. In 24-h cycles with different light and dark periods, maximal resistance was reached just before the start of dark period. Seedlings grown at 35°C could be acclimated to chilling by exposure to low, non-damaging temperatures (25–15°C). A short-term (6h) exposure to 25°C started at the resistant phase resulted in a large increase in resistance during the following otherwise sensitive phase. The resistance induced by the low temperature matched or slightly exceeded the maximal resistance reached during the resistant phase of the daily rhythm of chilling. The low-temperature-induced resistance and the daily rhythmic increase in resistance were not additive, indicating a common mechanism for the two kinds of resistances. An adaptive advantage of a combination of a rapid temperature-induced acclimation and the daily rhythmic increase in resistance is suggested.  相似文献   

19.
Concentrations of agmatine, coumarylagmatine and the antifungal hordatines in the shoots of barley seedlings have been determined at various stages of growth. Coumarylagmatine declined with age on a fresh weight basis, both in diurnal illumination and in continuous darkness. Hordatines A and B (estimated together) declined in the light to the 30th day after germination but their concentrations were stable in the dark to the 12th day. Hordatine M declined in the light to the 30th day and in the dark to the 12th day from germination. Agmatine declined in both light and dark to the 12th day. On the 30th day from germination potassium deficiency caused an increase in hordatines A + B ( × 6), hordatine M ( × 2) and agmatine ( × 13). Infection of the 11-day-old seedlings with mildew (Erysiphe graminis) caused an increase in the content of hordatine A + B ( × 6), hordatine M ( × 2) and agmatine ( × 2) 13 days later. Hordatines occurred in seedlings of H. bulbosum, H. distichon, H. murinum and H. spontaneum, though not in seedlings of H. jubatum, maize, millet, oats, rice, rye or wheat. Arginine decarboxylase activity declined with age in barley seedlings grown in the light or dark from the 3rd to the 12th day.  相似文献   

20.
The unicellular, diazotrophic cyanobacterium Cyanothece sp. ATCC 51142 demonstrated important modifications to photosystem II (PSII) centers when grown under light/dark N2-fixing conditions. The properties of PSII were studied throughout the diurnal cycle using O2-flash-yield and pulse-amplitude-modulated fluorescence techniques. Nonphotochemical quenching (qN) of PSII increased during N2 fixation and persisted after treatments known to induce transitions to state 1. The qN was high in cells grown in the dark, and then disappeared progressively during the first 4 h of light growth. The photoactivation probability, ε, demonstrated interesting oscillations, with peaks near 3 h of darkness and 4 and 10 h of light. Experiments and calculations of the S-state distribution indicated that PSII displays a high level of heterogeneity, especially as the cells prepare for N2 fixation. We conclude that the oxidizing side of PSII is strongly affected during the period before and after the peak of nitrogenase activity; changes include a lowered capacity for O2 evolution, altered dark stability of PSII centers, and substantial changes in qN.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号