首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 453 毫秒
1.
Three groups (14 rats each) were fed one of the following diets for 8 wks: a control purified basal diet containing 12 ppm zinc, 5 ppm copper, and 35 ppm iron; the basal diet with less than 2 ppm zinc; or the basal diet supplemented with 1000 ppm zinc. Rats fed the zinc-deficient diet had decreased weight gain, moderate polydipsia, and intermittent mild diarrhea. The zinc-supplemented rats had a cyclical pattern of food intake and weight loss from weeks 5 to 8. Tissue concentrations suggest that zinc and copper were not mutually antagonistic with chronic dietary imbalances. If tissue element concentrations reflected intestinal uptake, then competition and/or inhibition of intestinal uptake occurred between zinc and iron. The fluctuations in tissue element concentrations that occurred with increased duration of the study were at variance with previous studies of shorter time periods. The dietary proportions of zinc, copper, and iron appear to influence zinc, copper, and iron metabolism at the intestinal and cellular transport levels over a given period of time.  相似文献   

2.
Copper absorption was measured at two levels of dietary zinc in six healthy young men who were confined to a metabolic unit for a 75 d study of zinc utilization. A diet of conventional foods was fed, providing either 16.5 or 5.5 mg zinc and 1.3 mg copper daily. Copper absorption was determined by feeding65Cu, a stable isotope of copper, once during the 16.5 mg Zn diet and near the beginning and end of the 5.5 mg Zn diet. Apparent copper absorption averaged 48.1% when the 16.5 mg Zn diet was fed. This was significantly higher than the averages of 37.2 and 38.5% when the 5.5 mg Zn diet was fed. Absorption also differed significantly among subjects. Fecal copper did not differ between diets or among subjects. All subjects were in positive copper balance at both levels of dietary zinc. These results suggest that a dietary zinc intake slightly above the Recommended Dietary Allowance of 15 mg/d does not increase fecal copper loss and does not interfere with copper absorption.  相似文献   

3.
Two experiments were conducted with steers fed diets containing 270 ppm copper either with or without 2050 ppm zinc. Liver biopsies were taken from steers biweekly for 10 wk for analysis. The steers were then killed; tissues were removed, homogenized, and centrifuged, and the pellets were extracted with mercaptoethanol (BME), and selected cytosols and extracts were subjected to gel filtration (Sephadex G-75). Copper and zinc were determined on the BME extracts, pellets after extraction, cytosols, and gel-filtration fractions. Copper accumulated at about the same rate in BME extract and in the extracted pellet, with the smallest amount in the cytosol. In contrast, over 70% of the zinc was present in the hepatic cytosols. Gel filtration of BME extracts revealed the greatest amount of copper in a low-molwt (MW) peak in addition to three minor peaks of copper. Within the hepatic cytosols, the greatest amount of copper accumulated in proteins of MW>75,000, the next greatest amount in 30,000-MW proteins, and the least amount with metallothionein (MT) of steers fed the diet with only copper added. In contrast, the greatest amount of copper was present with MT in hepatic cytosols of the steer fed a diet that included copper plus zinc. Hence the zinc status of steers influences the deposition of copper in the cytosolic proteins (as demonstrated by liver, kidney, and pancreas), but not in the intracellular fractions.  相似文献   

4.
Two groups of 16 rats each were fed the same diet with 12.9 ppm Zn. Nine days after each animal was injected with65Zn for assessing fecal zinc of endogenous origin, zinc intake and excretion were determined for a six-day period at the age of about five (group I) and nine (II) weeks. At mean growth rates of 5.1 and 5.2 g/day, food consumption per gram of gain was 2.01 g in group I vs 2.86 g in II. Overall, zinc retention amounted to 21 vs 25 μg Zn/g of gain. Apparent absorption averaged 92 vs 74% of Zn intake (132 vs 189 μg/day), while true absorption averaged 98 vs 92%. It was concluded that endogenous fecal zinc excretion was limited to the indispensable loss (F em) in group I (7 μg/day), while it exceeded this minimum loss in group II (33 μg/day). True retention, which reflected total zinc utilization (true absorption times metabolic efficiency), was derived from apparent absorption plusF em (11 μg/day for group II according to the greater metabolic body size of the rats). It averaged 98% of Zn intake in group I vs 80% in group II. The mean metabolic efficiency was 100% vs 87%. The conclusion was that these marked differences between age groups in utilizing the dietary zinc reflected the efficient homeostatic adjustments in absorption and endogenous excretion of zinc to the respective zinc supply status.  相似文献   

5.
Dental amalgam mercury exposure in rats   总被引:2,自引:0,他引:2  
The aim of this study was to measure the distribution of mercury, in tissues of rats exposed to amalgam over a two months period. Possible interaction of mercury with copper and zinc in organs was also evaluated. Rats were either exposed to mercury from 4 dental amalgams, or fed the diet containing powdered amalgam during two months. Mercury was measured in the kidney, liver and brain, copper in kidney and brain and zinc in kidney. The results showed significantly higher concentrations of mercury in the kidneys and the brains of rats in both exposed groups compared to control. Even after two months of exposure to mercury brain mercury concentration in rats with amalgam fillings was 8 times higher than in the control and 2 times higher than in rats exposed to amalgam supplemented diet. The highest mercury concentration in the latter group was found in the kidneys and it was 5 times higher than in the control group. We found no significant differences between mercury levels in exposed and control rat's liver. Exposure to mercury from dental amalgams did not alter the concentrations of copper and zinc in the tissues. Histopathological analyses of rats tissues did not show any pathological changes. These results support previously proposed nose-brain transport of mercury released from dental amalgam fillings.  相似文献   

6.
The effect of low copper and high zinc intakes on Cu,Zn-superoxide dismutase (Cu,Zn-SOD) activity and mammary tumorigenesis induced by 9,10-dimethyl-1,2-benzanthracene (DMBA) was investigated. Groups of 40 weanling female Sprague-Dawley rats were fed a modified AIN-76 diet containing the following (/kg diet): 1 mg Cu (0.016 mmol) and 30 mg Zn (0.459 mmol); 6 mg Cu (0.094 mmol) and 30 mg Zn (0.459 mmol) (control); or 6 mg Cu (0.094 mmol) and 150 mg Zn (2.295 mmol) for 21 wk. At 5 wk, 30 rats/group were given 4 mg (15.6 mumol) DMBA in corn oil intragastrically, and controls (10/group) received corn oil alone. Erythrocyte Cu,Zn-SOD activity was measured at 3, 5 (just before DMBA), 9, 13, 17, and 21 wk. The group fed the high-Zn diet had a slightly lower weight gain and food consumption. DMBA treatment had no effect on these parameters. Plasma and liver Cu concentration decreased in the low-Cu group. Femur zinc was significantly elevated in the high-Zn group. Erythrocyte Cu,Zn-SOD activity was decreased in the low-Cu group from 3 to 21 wk and was significantly elevated in the high-Zn group at 3 and 5 wk. In the low-Cu group, there were 5 nonmalignant adenomas and 3 malignant adenocarcinomas; in the control group, there were 4 adenomas and 3 adenocarcinomas; in the high-Zn group, there were 5 adenomas and 3 adenocarcinomas. No relationship between Cu,Zn-SOD activity and the presence of tumors could be found.  相似文献   

7.
The major purpose of this study was to determine whether acute or chronic Pb exposure would increase urinary excretion of zinc in the rat. Four groups of unanesthetized rats were given 0, 0.03, 0.3, or 3 mg Pb (as acetate) kg intravenously, and urinary excretion of zinc, sodium, and potassium was monitored for 6 h. Only at the highest dose was urinary Zn excretion significantly elevated; there were no significant changes in sodium and potassium excretion at any dose. Two other groups of rats were studied for 9 weeks in metabolism cages before and during administration of either 500 ppm Pb (as acetate) or equimolar Na acetate in the drinking water. Two days after Pb treatment and continuing through day 35, Zn excretion was elevated in the Pb-exposed animals; beyond this day, zinc excretion became similar in the two groups. The difference in Zn excretion was not the result of lower water intake by the Pb-treated animals. At sacrifice (70 days after starting Pb exposure), Pb-exposed animals had lower Zn content of the plasma and testis, but there was no difference in kidney Zn. Plasma renin activity was significantly higher in Pb-exposed animals. We conclude that chronic Pb exposure in rats can result in some degree of decreased tissue zinc, which is, at least in part, secondary to increased urinary losses of zinc.  相似文献   

8.
The effect of dietary zinc (Zn) supplementation on copper (Cu)-induced liver damage was investigated in Long-Evans Cinnamon rats (LEC), a model for Wilson's disease (WD). Four-week-old LEC (N=64) and control Long-Evans (LE) (N=32) female rats were divided into two groups; one group was fed with a Zn-supplemented diet (group I) and the other was given a normal rodent diet (group II). LEC rats were killed at 6, 8, 10, 12, 18, and 20 wk of age; the LE control rats were killed at 6, 12, 18, and 20 wk of age. Cu concentration in the liver was reduced in LEC rats fed the Zn-supplemented diet compared with LEC rats on the normal diet between 6 and 18 wk of age. Metallothionein (MT) concentration in the livers of LEC rats in group I increased between 12 and 20 wk of age, whereas hepatic MT concentration in LEC rats from group II decreased after 12 wk. Hepatocyte apoptosis, as determined by TUNEL, was reduced in Zn-supplemented LEC rats at all ages. Cholangiocellular carcinoma was observed only in LEC rats in group II at wk 20. These results suggest that Zn supplementation can reduce hepatic Cu concentration and delay the onset of clinical and pathological changes of Cu toxicity in LEC rats. Although the actual mechanism of protection is unknown, it could be explained by sequestration of dietary Cu by intestinal MT, induced by high dietary Zn content.  相似文献   

9.
One hundred and sixty pigs were used to evaluate dietary copper (Cu) and zinc (Zn) supplementation on performance, fecal mineral levels, body mineral status and carcass and meat quality. Diets differed in mineral form (MF) (Cu and Zn in the form of proteinate amino acid chelate (organic) or sulfate (inorganic)) and inclusion level (IL) (27 mg/kg of total Cu and 65 mg/kg of total Zn ('low') or 156 mg/kg of total Cu and 170 mg/kg of total Zn ('high')) according to a 2 × 2 factorial arrangement of treatments. Pigs were used from 25 to 107 kg body weight (BW) and fed their respective diets ad libitum. Blood and fecal samples were collected on days 14 and 77 of the experiment. Blood was analyzed for concentration of Cu and Zn, hemoglobin (Hb), Cu content of red blood cells (RBC Cu) and alkaline phosphatase (ALP) and feces for Cu and Zn concentration. Hot carcass weight (HCW) and backfat depth were measured at slaughter and indices of meat quality were assessed on a section of longissimus thoracis. Liver, kidney and bone samples were collected immediately after slaughter and liver and kidney were tested for Cu and Zn content, while bone was only tested for Zn. Over the entire experimental period (25 to 107 kg BW) no significant treatment differences in average daily gain (ADG) or average daily feed intake (ADFI) occurred; however, feed conversion ratio (FCR) was improved by the inclusion of proteinate amino acid chelate (P = 0.012). Copper and Zn concentrations in feces were in direct proportion to the IL in the diet. Blood mineral levels were within normal physiological ranges in all treatments and tissue Cu and Zn concentrations increased with dietary IL (P < 0.05). Results indicate that Cu and Zn fecal concentrations were reduced by approximately 6-fold for Cu and by 2.5-fold for Zn by feeding 27 mg/kg Cu and 65 mg/kg Zn, in either the proteinate amino acid chelate or the sulfate form, compared with a diet containing 156 mg/kg Cu and 170 mg/kg Zn. This decrease in total dietary Cu and Zn did not reduce performance or mineral status of pigs.  相似文献   

10.
Weanling male rats were fed a copper-deficient diet devoid of cholesterol. The effects of varying the source of carbohydrate and supplements of copper and zinc on cardiovascular pathology and some biochemical and physiological parameters were investigated. It was found that cardiomyopathy developed in copper-deficient groups. Sucrose, in contrast to starch or starch:lactose (1:1), caused significant exacerbation of this situation. Increasing dietary Cu to 8 ppm prevented or minimized the development of cardiomyopathy. Angiopathy occurred only when dietary zinc was at the lower level (20 ppm). Dietary copper supplements to 8.0 ppm did not alter this situation, but 120 ppm Zn in the drinking water did reduce the angiopathy almost to the control level, except in the groups in which sucrose was fed. Serum cholesterol was only elevated significantly over the control value when dietary copper was deficient and sucrose was the carbohydrate source. The data point to independent action of dietary copper or zinc on the myocardium or vessels, respectively, with sucrose interacting to make copper and zinc supplements less active than when starch or starch/lactose was fed.  相似文献   

11.
Comparative study of copper and zinc metabolism in cattle and camel   总被引:3,自引:0,他引:3  
At an experimental farm, five camels and five cows were fed a similar basal diet for 6 mo. They received oral trace element supplementation for 3 mo (day 22–112). This supplementation included zinc, copper, selenium, managanese, iodine, and cobalt, and corresponded to twice the requirements generally recommended for cows. Plasma copper and zinc concentrations were significantly lower in the camels (61 μg/100 mL for copper and 38 μg/100 mL for zinc) than in the cows (111 and 83, respectively). The supplementation had no effect on plasma zinc concentration in the camels in spite of the low observed values in this species. Liver copper concentration at the beginning of the trial was lower in the camels (9 ppm) than in the cows (35 ppm), and stayed at lower levels during the entire supplementation period. There was no clear difference in fecal excretion of copper and zinc between the camels and the cows. The results suggested that trace element requirements are lower in camels than in cows and that camels regulate their plasma zinc concentration at a very low level (<40 μg/100 mL).  相似文献   

12.
To examine whether zinc deficiency would increase the toxicity of dietary aluminum, weanling, male Sprague-Dawley rats were fed purified diets containing either 2 or 30 mg Zn/kg diet, with or without 500 mg Al/kg diet for 28 d. Individually pair-fed rats were fed the 30 mg Zn/kg diet with or without added aluminum to control for inanition secondary to zinc deficiency. Rats fed the 2 μg Zn/kg diet showed evidence of zinc deficiency, including anorexia, growth retardation, and depressed concentrations of zinc in tibias and livers. Zinc deficiency did not significantly increase the concentrations of aluminum in the tibias, livers, kidneys, or regions of the brain examined (cerebrum, cerebellum, midbrain, and hippocampus). Inclusion of aluminum in the diet did not alter aluminum concentrations in the various tissues. Under the conditions of this study, zinc deficiency did not result in greater sensitivity to dietary aluminum exposure.  相似文献   

13.
The level and/or form of dietary iron, dietary nickel, and the interaction between them affected the trace element content of rat liver. Livers were from the offspring of dams fed diets containing 10–16 ng, or 20 μg, of nickel/g. Dietary iron was supplied as ferric chloride (30 μg/g) or ferric sulfate (30 μg, or 60 μg). In nickel-deprived rats fed 60 μg of iron/g of diet as ferric sulfate, at age 35 days, levels of iron and zinc were depressed in liver and the level of copper was elevated. At age 55 days, iron was still depressed, copper was still elevated, but zinc also was elevated. In rats fed 30 μg of iron/g of diet as ferric chloride, liver iron content was higher in nickel-deprived than in nickel-supplemented rats at 30, but not at 50, days of age. Also manganese and zinc were lower in nickel-deprived than in nickel-supplemented rats at age 35 days if their dams had been on experiment for an extended period of time (i.e., since age 21 days). Thus, the levels of copper, iron, manganese, and zinc in liver were affected by nickel deprivation, but the direction and extent of the affects depended upon the iron status of the rat.  相似文献   

14.
The effects of zinc deficiency and supplementation on plasma leptin levels were studied in Sprague-Dawley rats. After 6 wk on a zinc-deficient diet containing 0.65 ppm Zn/g, the mean body weight was significantly lower than that of normal or zinc-supplemented rats, which showed no difference among them. The plasma leptin and zinc levels were lowest in zinc-deficient animals and highest in those that received a normal diet and daily intraperitioneal injections of 3 mg Zn/kg. These results indicate that zinc deficiency leads to a significant inhibition in plasma leptin levels, whereas zinc supplementation significantly increases plasma leptin.  相似文献   

15.
The effect of moderately high dietary zinc (Zn) on the activities of plasma (PL) ceruloplasmin (CP), and PL and erythrocyte (RBC) copper (Cu), Zn superoxide dismutase (SOD) was determined in weanling rats fed Cu-deficient (DEF; <1 mg Cu/kg), marginal (MAR; 2 mg Cu/kg), or control (CON; 5 mg Cu/kg) copper diets containing normal or high Zn (HZn; 60 mg/kg) for 4 wk and supplemented with oral Cu (CuS; 5 mg/L) in drinking water for 0, 1, 3, or 7 d. PL Cu decreased (67% compared to CON;p≤0.05) in the DEF and increased to control level after 3 d of CuS; increased in the MAR group after 1 d of CuS. HZn reduced overall PL Cu by 27% in all groups, but did not alter the linear increase in PL Cu between 0 and 3 d of Cu S. PL CP activity altered concomitantly with PL Cu levels: The time course of increase in CP activity after 0–3 d of CuS was not influenced by HZn in the diet and CP declined in the DEF group by 92%. There was no correlation between dietary Cu level and PL CP. PL SOD activity decreased by 46% (p≤.05) in the DEF group, increased to control activity after 1 d of CuS and declined slighty after 7 d; MAR diet did not alter PL SOD. HZn diet increased PL SOD activity in all groups by 150%, reduced activity in the DEF and MAR groups by 65 and 37% and delayed the recovery of PL SOD after CuS. RBC SOD declined in the DEF and MAR groups by 56 and 33% (p≤0.05) and did not respond to CuS; HZn diet did not influence RBC SOD activity. These data indicate that moderately high Zn in the diet reduces PL Cu, but not PL CP activity or the recovery of PL Cu or CP activity after oral CuS of Cu-deficient rats, modifies the response of PL SOD to dietary Cu, but does not influence RBC SOD activity.  相似文献   

16.
The present report demonstrates, for the first time, that feeding rats 50 ppm cadmium for just 7 wk results in detectable levels of cadmium in the eye of rats. Furthermore, these ocular cadmium concentrations affect significant alterations in the levels of the essential trace elements selenium, calcium iron, and copper in the eye. Rats were fed a low-selenium (<0.02 ppm selenium), high-copper basal diet (50 ppm copper) supplemented with 0, 0.1, and 0.5 ppm selenium. The animals were either untreated or treated with 50 ppm cadmium admixed with their feed. Cadmium treatment resulted in significant reductions (up to 50%) in ocular selenium. Furthermore, rats fed the basal diet and given 100 ppm cadmium via their feed for 6 wk exhibited a 69% reduction in the activity of the selenoenzyme, glutathione peroxidase, in the eye. Cadmium treatment also resulted in reductions of up to 50% in ocular calcium, irrespective of dietary selenium supplementation. Iron levels were increased by 30% in rats fed the low-selenium diet and decreased by as much as 40% in rats fed the selenium-supplemented diets, compared to animals fed identical levels of selenium without cadmium. Ocular copper levels were significantly increased only in rats fed the low-selenium diet and treated with cadmium. Ocular zinc levels were not significantly affected by dietary cadmium or selenium.  相似文献   

17.
The accumulation of copper, zinc and cadmium inA. yokoscense collected from Ashio (copper-contaminated area), Bandai (zinc- and cadmium-contaminated area) and Tama (non-contaminated area), has been investigated. Copper and zinc were accumulated most highly in the root, whilst cadmium was accumulated more in the leaf. The root ofA. yokoscense growing in areas contaminated with metals contained maximum amounts of Cu (5, 989 mg. kg−1 dry weight) and Zn (6,384 mg.kg−1 dry weight), while in the leaf from the Bandai area 164.8 mg Cd.kg−1 dry weight was accumulated. These amounts are far greater than those found inA yokoscense growing on the non-metalliferous habitat (Tama). Twenty five times more zinc and three times more cadmium were found in the dead leaf than in the living leaf. InA. yokoscense growing on soils containing more than 1,000 mg Cu or Zn.kg−1 dry weight, the uptake of copper by the root increased considerably with increasing copper content in the soils, while the uptake of zinc increased only slightly compared with the increase of zinc in the soils.  相似文献   

18.
Fortification of a Petit Suisse cheese with zinc sulfate and zinc gluconate stabilized with glycine was used as a tool to overcome zinc-deficiency effects on total-body growth and skeletal growth. Animals were divided in 4 groups of 10 rats: basal (B), control (C), depletion-repletion 1 (DR1), and depletion-repletion 2 (DR2). These four groups were fed with four diets: basal (2 ppm Zn), control (30 ppm Zn), DR1, and DR2; they received a basal diet for 14 d and a control diet for the other 14 d of the experiment, using zinc sulfate for DR1 and zinc gluconate stabilized with glycine for DR2. After 28 d of the experiment, total-body weight and weight gain of the control and DR1 and DR2 animals were not statistically different (p<0.05), Femur weight and femur zinc content of DR1 and DR2 did not achieve the values of control animals (p<0.05), but they were higher than that of basal animals. Our results show that restoration of dietary zinc levels by means of food fortification normalized weight gain, as an indicator of total-body growth, and presented a trend to normalize bone weight, as a marker of skeletal growth, in young rats and independently of the zinc source used.  相似文献   

19.
High mortality and a high incidence of exudative diathesis and muscular dystrophy were observed in chicks fed a diet supplemented with either 800 or 1600 ppm copper. Adding 0.5 ppm selenium to a basal diet containing 0.2 ppm prevented mortality and selenium deficiency signs. Dietary zinc levels of 2100 to 4100 ppm also resulted in high mortality, exudative diathesis, and muscular dystrophy. A selenium supplement of 0.5 ppm completely prevented the deficiency signs and markedly reduced mortality. The results demonstrate that both copper and zinc can induce a selenium deficiency in chicks when a diet relatively low in this element is fed.  相似文献   

20.
Gilthead were fed three diets. Diet A was the control diet, whereas diets B and C were supplemented with 300 and 900 mg Zn/kg, respectively. Fish fed with diet C, at the end of the experiment, showed the lowest weight. Zinc concentrations presented the higher values in gills, liver, and kidney. Muscle and brain had the lower mean values and showed a tight control of zinc levels. These results reinforce the hypothesis that zinc in the CNS should be strictly controlled in order to maintain the functional role of the metal. Significant differences in tissue zinc concentrations were obtained between fish fed different amounts of zinc, the metal concentrations being higher in tissues of fish fed diet C. The tissue decrease of zinc, found at the end of the experiment, may depend on a lower feed consumption or on different zinc requirements during the cold season. These changes, even if not univocal among the three diets, may be associated with the life cycle of fish. Furthermore, copper concentrations were little affected by the different concentrations of zinc in the three diets; liver and kidney presented the highest concentrations; liver showed a significant decrease in copper content at the end of the experiment. We conclude that: zinc concentrations of the diet may affect the gilthead weights and the tissual metal content; and zinc concentrations in the diets, depending on the growth rate, may be varied depending on the season.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号