首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Molecular genetics and evolutionary relationship of PCB-degrading bacteria   总被引:20,自引:0,他引:20  
Biphenyl-utilizing soil bacteria are ubiquitously distributed in the natural environment. They cometabolize a variety of polychlorinated biphenyl (PCB) congeners to chlorobenzoic acids through a 2,3-dioxygenase pathway, or alternatively through a 3,4-dioxygenase system. Thebph genes coding for the metabolism of biphenyl have been cloned from several pseudomonads. The biochemistry and molecular genetics of PCB degradation are reviewed and discussed from the viewpoint of an evolutionary relationship.Abbreviations BP biphenyl - bph BP/PCB-degradative gene - 23DHBP 2,3-dihydroxybiphenyl - HPDA 2-hydroxy-6-oxo-6-phenylhexa 2,4-dienoic acid - KF707 P. pseudoalcaligenes strain KF707 - LB400 Pseudomonas sp. strain LB400 - PCB polychlorinated biphenyls - Q1 P. paucimobilis strain Q1tod; toluene catabolic gene  相似文献   

2.
Cell–cell separation of a polychlorinated biphenyl (PCB)-degrading bacterium Comamonas testosteroni TK102 was monitored by flow cytometry. When monohydroxy metabolites of biphenyl (BP) (2-hydroxybiphenyl and 3-hydroxybiphenyl) were added to the culture, cell–cell separation of strain TK102 was inhibited at stationary phase. This inhibition was reproduced on non-PCB degrading bacteria such as Pseudomonas putida PpY101 and Escherichia coli MV1184, but was not observed on Pseudomonas aeruginosa PAO1. An opportunistic pathogen, P. aeruginosa PAO1, produces exopolysaccharide, which is known to scavenge damaging chemicals such as reactive oxygen species (ROS). The higher level of ROS and lipid peroxidants were detected in the cells treated by monohydroxybiphenyls. Fat-soluble vitamin E, which is a lipid radical scavenger, maintained bacterial cell separation during monohydroxybiphenyls treatment. Our results demonstrated that intracellular oxidative stress played an important role in the inhibition of bacterial cell separation during BP metabolism. This study shows that metabolites of environmental pollutants, such as monohydroxylated BP, inhibit bacterial cell separation by oxidative stress.  相似文献   

3.
The oxidation of biphenyl by Cyanobacterium, Oscillatoria sp., strain JCM was studied. The organism grown photoautotrophically in the presence of biphenyl oxidized biphenyl to form 4-hydroxybiphenyl. The structure of the metabolite was elucidated by ultraviolet and mass spectra and shown to be identical to authentic 4-hydroxybiphenyl. In addition this metabolite had properties indentical to 4-hydroxybiphenyl when analyzed by thin-layer and high-pressure liquid chromatography. Experiments with [14C]-biphenyl showed that over a 24 h period the organism oxidized 2.9% of the added biphenyl to ethyl acetate-soluble products.Abbreviations tlc thin-layer chromatography - hplc high pressure liquid chromatography  相似文献   

4.
The decarboxylation of phthalic acids was studied with Bacillus sp. strain FO, a marine mixed culture ON-7, and Pseudomonas testosteroni. The mixed culture ON-7, when grown anaerobically on phthalate but incubated aerobically with chloramphenicol, quantitatively converted phthalic acid to benzoic acid. Substituted phthalic acids were also decarboxylated: 4,5-dihydroxyphthalic acid to protocatechuic acid; 4-hydroxyphthalic and 4-chlorophthalic acids to 3-hydroxybenzoic and 3-chlorobenzoic acids, respectively; and 3-fluorophthalic acid to 2-and 3-fluorobenzoic acids. Bacillus sp. strain FO gave similar results except that 4,5-dihydroxyphthalic acid was not metabolized, and both 3- and 4-hydroxybenzoic acids were produced from 4-hydroxyphthalic acid. P. testosteroni decarboxylated 4-hydroxyphthalate (to 3-hydroxybenzoate) and 4,5-dihydroxyphthalate but not phthalic acid and halogenated phthalates. Thus, P. testosteroni and the mixed culture ON-7 possessed 4,5-dihydroxyphthalic acid decarboxylase, previously described in P. testosteroni, that metabolized 4,5-dihydroxyphthalic acid and specifically decarboxylated 4-hydroxyphthalic acid to 3-hydroxybenzoic acid. The mixed culture ON-7 and Bacillus sp. strain FO also possessed a novel decarboxylase that metabolized phthalic acid and halogenated phthalates, but not 4,5-dihydroxyphthalate, and randomly decarboxylated 4-hydroxyphthalic acid. The decarboxylation of phthalic acid is suggested to involve an initial reduction to 1,2-dihydrophthalic acid followed by oxidative decarboxylation to benzoic acid.  相似文献   

5.
Bacterial conversion of biphenyl (BP) and chlorobiphenyls (CBPs) to benzoates and chlorobenzoates (CBAs) proceeds by introduction of molecular oxygen at the 2,3 position, followed by a 1,2-meta cleavage of the molecule. Complete mineralization of CBPs requires the presence of two sets of genes, one for the transformation fo CBPs into CBAs and a second for the degradation of CBAs. It has been shown previously that removal of the CBAs produced from the degradation of CBPs is essential for efficient degradation of CBPs. In this study we confirmed that CBAs inhibit BP and CBP transformation in Pseudomonas testosteroni B-356. Among the three monochlorobenzoates tested, 3-chlorobenzoate was the most effective inhibitor. Furthermore, we found that in strain B-356, CBA transformation is controlled by BP-induced oxygenases that are not present in benzoate-grown cells. We found that this BP-linked CBA transformation pathway transformed CBAs produced from CBPs into several metabolites, including chlorocatechols and corresponding muconic semialdehydes. These metabolites inhibited the 2,3-dihydroxybiphenyl 1,2-dioxygenase, while CBAs by themselves had no effect on this enzyme. Therefore, on the basis of this and other observations, it appears that when CBAs produced from CBPs accumulate in the growth medium, they are converted into unproductive metabolites that reduce the flux of the BP and CBP degradation pathway. The practical implications of these interactions on the microbial degradation of polychlorinated BPs are also discussed.  相似文献   

6.
Bacterial conversion of biphenyl (BP) and chlorobiphenyls (CBPs) to benzoates and chlorobenzoates (CBAs) proceeds by introduction of molecular oxygen at the 2,3 position, followed by a 1,2-meta cleavage of the molecule. Complete mineralization of CBPs requires the presence of two sets of genes, one for the transformation fo CBPs into CBAs and a second for the degradation of CBAs. It has been shown previously that removal of the CBAs produced from the degradation of CBPs is essential for efficient degradation of CBPs. In this study we confirmed that CBAs inhibit BP and CBP transformation in Pseudomonas testosteroni B-356. Among the three monochlorobenzoates tested, 3-chlorobenzoate was the most effective inhibitor. Furthermore, we found that in strain B-356, CBA transformation is controlled by BP-induced oxygenases that are not present in benzoate-grown cells. We found that this BP-linked CBA transformation pathway transformed CBAs produced from CBPs into several metabolites, including chlorocatechols and corresponding muconic semialdehydes. These metabolites inhibited the 2,3-dihydroxybiphenyl 1,2-dioxygenase, while CBAs by themselves had no effect on this enzyme. Therefore, on the basis of this and other observations, it appears that when CBAs produced from CBPs accumulate in the growth medium, they are converted into unproductive metabolites that reduce the flux of the BP and CBP degradation pathway. The practical implications of these interactions on the microbial degradation of polychlorinated BPs are also discussed.  相似文献   

7.
A strain of Pseudomonas putida capable of utilizing both stereoisomers of phenylglycine as the sole carbon and energy source was isolated from soil. No phenylglycine racemase was detected in cells grown on either stereoisomer. In an initial reaction each steroisomer of phenylglycine was transaminated yielding phenylglyoxylate which was further metabolized via benzaldehyde to benzoate. Subsequently, benzoate was further degraded via an ortho-cleavage of catechol.Abbreviation HPLC high-performance liquid chromatography  相似文献   

8.
In this work, we have compared the ability of Pandoraea pnomenusa B356 and of Burkholderia xenovorans LB400 to metabolize diphenylmethane and benzophenone, two biphenyl analogs in which the phenyl rings are bonded to a single carbon. Both chemicals are of environmental concern. P. pnomenusa B356 grew well on diphenylmethane. On the basis of growth kinetics analyses, diphenylmethane and biphenyl were shown to induce the same catabolic pathway. The profile of metabolites produced during growth of strain B356 on diphenylmethane was the same as the one produced by isolated enzymes of the biphenyl catabolic pathway acting individually or in coupled reactions. The biphenyl dioxygenase oxidizes diphenylmethane to 3-benzylcyclohexa-3,5-diene-1,2-diol very efficiently, and ultimately this metabolite is transformed to phenylacetic acid, which is further metabolized by a lower pathway. Strain B356 was also able to cometabolize benzophenone through its biphenyl pathway, although in this case, this substrate was unable to induce the biphenyl catabolic pathway and the degradation was incomplete, with accumulation of 2-hydroxy-6,7-dioxo-7-phenylheptanoic acid. Unlike strain B356, B. xenovorans LB400 did not grow on diphenylmethane. Its biphenyl pathway enzymes metabolized diphenylmethane, but they poorly metabolize benzophenone. The fact that the biphenyl catabolic pathway of strain B356 metabolized diphenylmethane and benzophenone more efficiently than that of strain LB400 brings us to postulate that in strain B356, this pathway evolved divergently to serve other functions not related to biphenyl degradation.  相似文献   

9.
The purpose of this investigation was to examine the capacity of the biphenyl catabolic enzymes of Comamonas testosteroni B-356 to metabolize dihydroxybiphenyls symmetrically substituted on both rings. Data show that 3,3′-dihydroxybiphenyl is by far the preferred substrate for strain B-356. However, the dihydrodiol metabolite is very unstable and readily tautomerizes to a dead-end metabolite or is dehydroxylated by elimination of water. The tautomerization route is the most prominent. Thus, a very small fraction of the substrate is converted to other hydroxylated and acidic metabolites. Although 2,2′-dihydroxybiphenyl is a poor substrate for strain B-356 biphenyl dioxygenase, metabolites were produced by the biphenyl catabolic enzymes, leading to production of 2-hydroxybenzoic acid. Data show that the major route of metabolism involves, as a first step, a direct dehydroxylation of one of the ortho-substituted carbons to yield 2,3,2′-trihydroxybiphenyl. However, other metabolites resulting from hydroxylation of carbons 5 and 6 of 2,2′-dihydroxybiphenyl were also produced, leading to dead-end metabolites.  相似文献   

10.
Pseudomonas sp. strain HBP1 Prp, a mutant of strain HBP1 that was originally isolated on 2-hydroxybiphenyl, was able to grow on 2-sec-butylphenol as the sole carbon and energy source. During growth on 2-sec-butylphenol, 2-methylbutyric acid transiently accumulated in the culture medium. Its concentration reached a maximum after 20 hours and was below detection limit at the end of the growth experiment. The first three enzymes of the degradation pathway — a NADH-dependent monooxygenase, a metapyrocatechase, and ameta-fission product hydrolase — were partially purified. The product of the the monooxygenase reaction was identified as 3-sec-butylcatechol by mass spectrometry. This compound was a substrate for the metapyrocatechase and was converted to 2-hydroxy-6-oxo-7-methylnona-2,4-dienoic acid which was identified by gas chromatography-mass spectrometry of its trimethylsilyl-derivative. The cofactor independentmeta-cleavage product hydrolase used 2-hydroxy-6-oxo-7-methylnona-2,4-dienoic acid as a substrate. All three enzymes showed highest activities for 2-hydroxybiphenyl and its metabolites, respectively, indicating that 2-sec-butylphenol is metabolized via the same pathway as 2-hydroxybiphenyl.  相似文献   

11.
Thirteen bacteria were isolated on D-4-hydroxyphenylglycine as sole carbon and energy source. Seven strains transaminated only the D-enantiomer while the other six isolates transaminated both enantiomers of 4-hydroxyphenylglycine. One of the six strains utilizing both enantiomers was characterized as a Pseudomonas putida. This strain, MW27, employed two enantioselective transaminases, to catalyze the initial step in the metabolism of DL-4-hydroxyphenylglycine. The product of the transamination, 4-hydroxyphenylglyoxylate, was further metabolized via 4-hydroxybenzaldehyde and 4-hydroxybenzoate to protocatechuate. Preliminary results indicate that both transaminases are co-ordinately synthesized together with the 4-hydroxyphenylglyoxylate decarboxylase and the NADP+-dependent 4-hydroxybenzaldehyde dehydrogenase.  相似文献   

12.
A strain of Pseudomonas putida was isolated by selective enrichment with morphine that was capable of utilising morphine as a primary source of carbon and energy for growth. Experiments with whole cells showed that both morphine and codeine, but not thebaine, could be utilised. A novel NADP-dependent dehydrogenase, morphine dehydrogenase, was purified from crude cell extracts and was shown to be capable of oxidising morphine and codeine to morphinone and codeinone, respectively. This NADP-dependent morphine dehydrogenase was not observed in any other species of pseudomonads examined and was quite distinct from the -hydroxysteroid dehydrogenase found in Pseudomonas testosteroni, which had previously been shown to have activity against morphine.  相似文献   

13.
Screening soil samples collected from a diverse range of slightly alkaline soil types, we have isolated 22 competent phosphate solubilizing bacteria (PSB). Three isolates identified as Pantoea agglomerans strain P5, Microbacterium laevaniformans strain P7 and Pseudomonas putida strain P13 hydrolyzed inorganic and organic phosphate compounds effectively. Bacterial growth rates and phosphate solubilization activities were measured quantitatively under various environmental conditions. In general, a close association was evident between phosphate solubilizing ability and growth rate which is an indicator of active metabolism. All three PSB were able to withstand temperature as high as 42°C, high concentration of NaCl upto 5% and a wide range of initial pH from 5 to 11 while hydrolyzing phosphate compounds actively. Such criteria make these isolates superior candidates for biofertilizers that are capable of utilizing both organic and mineral phosphate substrates to release absorbable phosphate ion for plants.  相似文献   

14.
The filamentous fungusTalaromyces helicus , isolated from oil-contaminated sludge, oxidizes biphenyl via 4-hydroxybiphenyl to the dihydroxylated derivatives 4,4-dihydroxybiphenyl and 3,4-dihydroxybiphenyl, which, to a certain extent, are converted to glycosyl conjugates. The sugar moiety of the conjugate formed from 4,4-dihydroxybiphenyl was identified as glucose. Further metabolites: 2-hydroxybiphenyl, 2,5-dihydroxylated biphenyl, and the ring cleavage product 4-phenyl-2-pyrone-6-carboxylic acid accumulated only in traces. From these results the main pathway for biotransformation of biphenyl in T. helicus could be proposed to be the excretion of dihydroxylated derivatives (>75%) and their glucosyl conjugates (<25%).  相似文献   

15.
Integration of foliar bacterial biological control agents and plant growth promoting rhizobacteria (PGPR) was investigated to determine whether biological control of bacterial speck of tomato, caused by Pseudomonas syringae pv. tomato, and bacterial spot of tomato, caused by Xanthomonas campestris pv. vesicatoria and Xanthomonas vesicatoria, could be improved. Three foliar biological control agents and two selected PGPR strains were employed in pairwise combinations. The foliar biological control agents had previously demonstrated moderate control of bacterial speck or bacterial spot when applied as foliar sprays. The PGPR strains were selected in this study based on their capacity to induce resistance against bacterial speck when applied as seed and soil treatments in the greenhouse. Field trials were conducted in Alabama, Florida, and California for evaluation of the efficacy in control of bacterial speck and in Alabama and Florida for control of bacterial spot. The foliar biological control agent P. syringae strain Cit7 was the most effective of the three foliar biological control agents, providing significant suppression of bacterial speck in all field trials and bacterial spot in two out of three field trials. When applied as a seed treatment and soil drench, PGPR strain Pseudomonas fluorescens 89B-61 significantly reduced foliar severity of bacterial speck in the field trial in California and in three of six disease ratings in the field trials in Alabama. PGPR strains 89B-61 and Bacillus pumilus SE34 both provided significant suppression of bacterial spot in the two field trials conducted in Alabama. Combined use of foliar biological control agent Cit7 and PGPR strain 89B-61 provided significant control of bacterial speck and spot of tomato in each trial. In one field trial, control was enhanced significantly with combined biological control agents compared to single agent inoculations. These results suggest that some PGPR strains may induce plant resistance under field conditions, providing effective suppression of bacterial speck and spot of tomato, and that there may be some benefit to the integration of rhizosphere-applied PGPR and foliar-applied biological control agents.  相似文献   

16.
A bacterial strain capable of utilizing phenanthrene as sole source of carbon was isolated from soil and identified as a Bacillus sp. The organism also utilized naphthalene, biphenyl, anthracene, and other aromatic compounds as growth substrates. The organism degraded phenanthrene through the intermediate formation of 1-hydroxy-2-naphthoic acid, which was further metabolized via o-phthalate by a protocatechuate pathway, as evidenced by oxygen uptake and enzymatic studies. Received: 1 December 1999 / Accepted: 5 January 2000  相似文献   

17.
A bacterial strain, designated TMU56, was isolated from soil that had been contaminated with electrical transformer fluid (Askarel) for over 35 years. The isolate was identified as Pseudomonas aeruginosa using its 16S rDNA sequence. This strain was found to grow on monochlorobiphenyls (CBs), including 2-chlorobenzoic acid and 4-chlorobenzoic acid. It was also found to grow on 2,4-, 2,5-, 2,2′-, and 4,4′-diCB, as well as on a wide range of other xenobiotic compounds. This is the first reported representative of the genus Pseudomonas that is capable of growing on 2,4,4′-triCB, 2,2′,5,5′-tetraCB and 2,2′,4,4′,5,5′-hexaCB as sole carbon sources. Washed benzoate-grown cells were able to degrade 89% and 56% of 2,4-diCB and 2,2′,4,4′,5,5′-hexaCB, respectively. Gas chromatography analysis of individual congeners in Aroclor 1242 (200 ppm) following a 4-day incubation showed 73.3% degradation of PCBs without the need for biphenyl as an inducer. The strain exhibited no noticeable specificity for the percentage of congener transformation or degree of chlorination.  相似文献   

18.
Pseudomonas stutzeri OX1 is able to grow ono-xylene but is unable to grow onm-xylene andp-xylene, which are partially metabolized through theo-xylene degradative pathway leading to the formation of dimethylphenols toxic to OX1.P. stutzeri spontaneous mutants able to grow onm-xylene andp-xylene have been isolated. These mutants soon lose the ability to grow ono-xylene. Data from HPLC analyses and from induction studies suggest that in these mutantsm-xylene andp-xylene could be metabolized through the oxidation of a methyl substituent.P. stutzeri chromosomal DNA is shown to share homology with pWW0 catabolic genes. In the mutant strains the region homologous to pWW0 upper pathway genes has undergone a genomic rearrangement.Abbreviations BADH benzylalcohol dehydrogenase - cat catechol - C23O catechol 2,3-dioxygenase - 2,3-,3,4-,2,4-,2,6-,3,5-2,5-DMP 2,3-,3,4-,2,4-,2,6-,3,5-,2,5-dimethylphenol - 2-MBOH 2-methylbenzyl alcohol - 3-MBOH 3-methylbenzyl alcohol - 4-MBOH 4-methylbenzyl alcohol - m-,p-tol m-,p-toluate - o-,m-,p-xyl o-,m-,p-xylene  相似文献   

19.
A strain of Pseudomonas paucimobilis (strain Q1) capable of utilizing biphenyl was isolated from soil. This strain grew not only on substituted biphenyls, but also on salicylate, xylene or toluene or both (xylene/toluene), and substituted benzoates. Evidence is presented that the catabolism of biphenyl, xylene/toluene, and salicylate is regulated by a common unit in this strain. The catabolism of biphenyl, xylene/toluene, and salicylate is interrelated, since benzoate and toluate are common metabolic intermediates of biphenyl and xylene/toluene, and salicylate is produced from 2-hydroxybiphenyl (o-phenylphenol). All the oxidative enzymes of the biphenyl, xylene/toluene, and salicylate degradative pathways were induced when the cells were grown on either biphenyl, xylene/toluene or salicylate. The P. paucimobilis Q1 cells showed induction of the meta-cleavage enzymes of both 2,3-dihydroxybiphenyl and catechol. Biphenyl-negative derivatives of strain Q1 were simultaneously rendered xylene/toluene and salicylate negative, whereas reversion to the biphenyl-positive character of such derivatives invariably led to a xylene/toluene- and salicylate-positive phenotype. Growth of the P. paucimobilis Q1 cells with benzoate as a sole carbon source allowed the induction of only the ortho pathway enzymes, suggesting that biphenyl, xylene/toluene, or salicylate specifically induced the meta pathway enzymes for the oxidative degradation of these compounds.  相似文献   

20.
The genetic organization of the DNA region encoding the phenol degradation pathway ofPseudomonas putida H has been investigated. This strain can utilize phenol or some of its methylated derivatives as its sole source of carbon and energy. The first step in this process is the conversion of phenol into catechol. Catechol is then further metabolized via themeta-cleavage pathway into TCA cycle intermediates. Genes encoding these enzymes are clustered on the plasmid pPGH1. A region of contiguous DNA spanning about 16 kb contains all of the genetic information necessary for inducible phenol degradation. The analysis of mutants generated by insertion of transposons and cassettes indicates that all of the catabolic genes are contained in a single operon. This codes for a multicomponent phenol hydroxylase andmeta-cleavage pathway enzymes. Catabolic genes are subject to positive control by the gene product(s) of a second locus.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号