首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Biological systems have evolved complex regulatory mechanisms, even in situations where much simpler designs seem to be sufficient for generating nominal functionality. Using module-based analysis coupled with rigorous mathematical comparisons, we propose that in analogy to control engineering architectures, the complexity of cellular systems and the presence of hierarchical modular structures can be attributed to the necessity of achieving robustness. We employ the Escherichia coli heat shock response system, a strongly conserved cellular mechanism, as an example to explore the design principles of such modular architectures. In the heat shock response system, the sigma-factor σ32 is a central regulator that integrates multiple feedforward and feedback modules. Each of these modules provides a different type of robustness with its inherent tradeoffs in terms of transient response and efficiency. We demonstrate how the overall architecture of the system balances such tradeoffs. An extensive mathematical exploration nevertheless points to the existence of an array of alternative strategies for the existing heat shock response that could exhibit similar behavior. We therefore deduce that the evolutionary constraints facing the system might have steered its architecture toward one of many robustly functional solutions.  相似文献   

3.
4.
5.
In the myxomycete Physarum polycephalum, tubulin synthesis is subject to mitotic cycle control. Virtually all tubulin synthesis is limited to a 2-h period immediately preceding mitosis, and the peak of tubulin protein synthesis is accompanied by a parallel increase in the level of tubulin mRNA. The mechanism by which the accumulation of tubulin mRNA is turned on and off is not clear. To probe the relationship between tubulin regulation and cell cycle controls, we have used heat shocks to delay mitosis and have followed the pattern of tubulin synthesis during these delays. Two peaks of tubulin synthesis are observed after a heat shock. One occurs at a time when synthesis would have occurred without a heat shock, and a second peak immediately precedes the eventual delayed mitosis. These results are clearly due to altered cell cycle regulation. No mitotic activity is detected in delayed plasmodia at the time of the control mitosis, and tubulin behavior is shown to be clearly distinct from that of heat shock proteins. We believe that the tubulin family of proteins is subject to regulation by a thermolabile mitotic control mechanism but that once the cell has been committed to a round of tubulin synthesis the "tubulin clock" runs independently of the heat sensitive system. In delayed plasmodia, the second peak of synthesis may be turned on by a repeat of the commitment event.  相似文献   

6.
Environmental stresses are important factors causing male infertility which attracts broad attention. Protein acetylation is a pivotal post-translational modification and modulates diverse physiological processes including spermatogenesis. In this study, we employed quantitative proteomic techniques and bioinformatics tools to analyze the alterations of acetylome profile of mouse testis after heat shock and X-irradiation. Overall, we identified 1139 lysine acetylation sites in 587 proteins in which 1020 lysine acetylation sites were quantified. The Gene Ontology analysis showed that the major acetylated protein groups were involved in generation of precursor metabolites and metabolic processes, and were localized predominantly in cytosolic and mitochondrial. Compared to the control group, 36 sites of 28 acetylated proteins have changed after heat shock, and 49 sites of 43 acetylated proteins for X-ray exposure. Some of the differentially acetylated proteins have been reported to be associated with the progression of spermatogenesis and male fertility. We observed the up-regulated acetylation level change on testis specific histone 2B and heat shock protein upon heat treatment and a sharp decline of acetylation level on histone H2AX under X-ray treatment, suggesting their roles in male germ cells. Notably, the acetylation level on K279 of histone acetyltransferase (Kat7) was down-regulated in both heat and X-ray treatments, indicating that K279 may be a key acetylated site and affect its functions in spermatogenesis. Our results reveal that protein acetylation might add another layer of complexity to the regulation for spermatogenesis, and further functional studies of these proteins will help us elucidate the mechanisms of abnormal spermatogenesis.  相似文献   

7.
Heat shock and thermotolerance in plant and animal embryogenesis.   总被引:2,自引:0,他引:2  
Although the strategies of early embryogenesis differ greatly among multicellular eukaryotes, there are certain parallels in structure, form, and function that cross even kingdom lines: the extreme heat sensitivity of zygotes and very early embryos, followed by the acquisition of thermotolerance during subsequent development, is one such parallel. The heat sensitivity may be so extreme that even moderate increases in temperature result in lethality (generally associated with the earliest phases of embryogenesis), or the effects may be less severe, resulting in defects in development but not in lethality. Mechanistically, and molecularly, these two forms of thermosensitivity appear to have different origins. On the one hand, outright lethality appears to result from an inability to induce heat shock genes and proteins; on the other hand, heat-induced developmental defects appear to result from an alteration in expression of non-heat shock genes and from a delay in the overall developmental program that generally accompanies the cell's response to heat shock. This review is focused on the developmental regulation of the heat shock response during early embryogenesis and on the impact of this regulation on the development of both animal and plant embryos. The two basic issues that we address here are (i) the expression of heat shock genes in the absence of heat shock during embryogenesis and (ii) the expression (or lack of expression) of heat shock genes after deliberate exposure of the embryos to heat shock and the consequences of this expression on its subsequent survival and development.  相似文献   

8.
9.
10.
11.
12.
13.
Regulation of the members of the mammalian heat shock factor family   总被引:1,自引:0,他引:1  
Björk JK  Sistonen L 《The FEBS journal》2010,277(20):4126-4139
  相似文献   

14.
15.
Heat shock protein genes and their functional significance in fish   总被引:29,自引:0,他引:29  
  相似文献   

16.
17.
Summary: The heat shock response (HSR) is a homeostatic response that maintains the proper protein-folding environment in the cell. This response is universal, and many of its components are well conserved from bacteria to humans. In this review, we focus on the regulation of one of the most well-characterized HSRs, that of Escherichia coli. We show that even for this simple model organism, we still do not fully understand the central component of heat shock regulation, a chaperone-mediated negative feedback loop. In addition, we review other components that contribute to the regulation of the HSR in E. coli and discuss how these additional components contribute to regulation. Finally, we discuss recent genomic experiments that reveal additional functional aspects of the HSR.  相似文献   

18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号