首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
The effect of cycloheximide on virus specific RNA synthesis in Vero cells infected with either wild-strain (Edmonston) or subacute sclerosing panencephalitis strain measles virus was investigated. At 3 days postinfection, cells treated with cycloheximide (2.6 x 10(-4) M) and then exposed to [(3)H]uridine showed a marked increase in labeled virus-specific RNA. A major portion of this incremental labeled RNA was putative viral mRNA which sedimented at 16, 22, and 30S. Five distinct classes of polyribosomes, which were not evident in untreated cells, were found in cycloheximide-treated cells and each contained similar species of virus-specific RNA. Viral nucleocapsid RNA, 50 and 18S, was synthesized and encapsidated in the presence of cycloheximide. The latter observation is in apparent contrast to reports that cycloheximide inhibits replication of RNA of classical paramyxoviruses, and may indicate that mechanisms for replicating RNA of measles virus are different from those for replicating RNA of paramyxoviruses.  相似文献   

3.
SARS-CoV-2 infection presents clinical manifestations ranging from asymptomatic to fatal respiratory failure. Despite the induction of functional SARS-CoV-2-specific CD8+ T-cell responses in convalescent individuals, the role of virus-specific CD8+ T-cell responses in the control of SARS-CoV-2 replication remains unknown. In the present study, we show that subacute SARS-CoV-2 replication can be controlled in the absence of CD8+ T cells in cynomolgus macaques. Eight macaques were intranasally inoculated with 105 or 106 TCID50 of SARS-CoV-2, and three of the eight macaques were treated with a monoclonal anti-CD8 antibody on days 5 and 7 post-infection. In these three macaques, CD8+ T cells were undetectable on day 7 and thereafter, while virus-specific CD8+ T-cell responses were induced in the remaining five untreated animals. Viral RNA was detected in nasopharyngeal swabs for 10–17 days post-infection in all macaques, and the kinetics of viral RNA levels in pharyngeal swabs and plasma neutralizing antibody titers were comparable between the anti-CD8 antibody treated and untreated animals. SARS-CoV-2 RNA was detected in the pharyngeal mucosa and/or retropharyngeal lymph node obtained at necropsy on day 21 in two of the untreated group but undetectable in all macaques treated with anti-CD8 antibody. CD8+ T-cell responses may contribute to viral control in SARS-CoV-2 infection, but our results indicate possible containment of subacute viral replication in the absence of CD8+ T cells, implying that CD8+ T-cell dysfunction may not solely lead to viral control failure.  相似文献   

4.
Type C virus-specific RNA sequences of BALB/c endogenous virus were detected in JLS-V9 cells (an uninfected BALB/c derived line) by annealing cell RNA with 3-H-labeled virus-specific DNA. Endogenous viruses used in preparing the 3-H-labeled DNA (mostly xenotropic) was prepared from JLS-V9 cells induced to produce virus with iododeoxyuridine. In whole-cell extracts, two virus-specific RNA species, 38S and 27S, were detected. No 60 to 70S virus-specific RNA was found. The same two species of virus-specific RNA were observed in isolated cytoplasmic RNA and in cytoplasmic RNA selected for polyadenylic acid-containing species by binding and elution from oligo(dT) cellulose. Very little, if any, of the virus-specific RNA was active as messenger RNA on polyribosomes. No virus-specific RNA transcribed from genes coding for the BALB/c endogenous N-tropic virus was detected, since 3-H-labeled DNA prepared from endogenous N-tropic virus did not hybridize measurably with JLS-V9 RNA.  相似文献   

5.
Virus-specific RNA sequences were detected in mouse cells infected with murine leukemia virus by hybridization with radioactively labeled DNA complementary to Moloney murine leukemia virus RNA. The DNA was synthesized in vitro using the endogenous virion RNA-dependent DNA polymerase and the DNA product was characterized by size and its ability to protect radioactive viral RNA. Virus-specific RNA sequences were found in two lines of leukemia virus-infected cells (JLS-V11 and SCRF 60A) and also in an uninfected line (JLS-V9). Approximately 0.3% of the cytoplasmic RNA in JLS-VII cells was virus-specific and 0.9% of SCRF 60A cell RNA was virus-specific. JLS-V9 cells contained approximately tenfold less virus-specific RNA than infected JLS-VII cells. Moloney leukemia virus DNA completely annealed to JLS-VII or SCRF 60A RNA but only partial annealing was observed with JLS-V9 RNA. This difference is ascribed to non-homologies between the RNA sequences of Moloney virus and the endogenous virus of JLS-V9 cells.Virus-specific RNA was found to exist in infected cells in three major size classes: 60–70 S RNA, 35 S RNA and 20–30 S RNA. The 60–70 S RNA was apparently primarily at the cell surface, since agents which remove material from the cell surface were effective in removing a majority of the 60–70 S RNA. The 35 S and 20–30 S RNA is relatively unaffected by these procedures. Sub-fractionation of the cytoplasm indicated that approximately 35% of the cytoplasmic virus-specific RNA in infected cells is contained in the membrane-bound material. The membrane-bound virus-specific RNA consists of some residual 60–70 S RNA and 35 S RNA, but very little 20–30 S RNA. Virus-specific messenger RNA was identified in polyribosome gradients of infected cell cytoplasm. Messenger RNA was differentiated from other virus-specific RNAs by the criterion that virus-specific messenger RNA must change in sedimentation rate following polyribosome disaggregation. Two procedures for polyribosome disaggregation were used: treatment with EDTA and in vitro incubation of polyribosomes with puromycin in conditions of high ionic strength. As identified by this criterion, the virus-specific messenger RNA appeared to be mostly 35 S RNA. No function for the 20–30 S was determined.  相似文献   

6.
The virus-specific RNA in two independently derived clones of polyoma virus-transformed hamster cells was studied by hybridizing labeled RNA, with excess purified polyoma DNA, immoblized on filters. In one clone (PyBHK1), less than 25% of the total labeled virus-specific RNA was found in the cytoplasm, irrespective of the labeling time. In the other clone (PyBHK2), it was estimated that 39% of the total virus-specific RNA was present inthe cytoplasm after labeling for 3 h. Both the proportion of radioactive label incorporated into virus-specific RNA and the sedimentation pattern of total virus-specific RNA differed markedly between PyBHK and PyBHK2. Most of the virus-specific RNA of PyBHK1 sedimented in the range 25S-35S, whereas a prominent 18S component was present in PyBHK2. Most of the cytoplasmic virus-specific RNA in both clones sedimented at 18S-19S. The sedimentation patterns of virus-specific RNA from whole cells and from washed nuclei of PyBHK1 were closely similar: it was estimated from sedimentation analysis in dimethyl sulfoxide that the molecular weight of 50% of this RNA was within the range 1.1 X10(6) to 2.9 X 10(6). These results, demonstrating the accumulation of virus-specific RNA within the nucleus in at least one virus-transformed cell line, indicate that the large virus-specific RNA previously described in the nuclei of transformed cells may not have represented precursors of virus-specific mRNA.  相似文献   

7.
mRNA containing type C endogenous virus-specific sequences was indentified in JLS-V9 cells (an uninfected BALB/c-derived cell line) by annealing extracted RNA with 3H-labeled virus-specific DNA. The criterion for virus-specific RNA being mRNA was that it co-sedimented with polyribosomes in a sucrose gradient and that it changed to lower sedimentation value if polyribosomes were disagregated prior to centrifugation. It was not possible to identify virus-specific mRNA in unfractionated cytoplasm from JLS-V9 cells since large amounts of virus-specific ribonucleoprotein which was not mRNA had sedimentation values similar to polyribosomes and obscured the analysis. Virus-specific mRNA could be readily identified in polyribosomes which had been purified through a step gradient of 1 and 2 M sucrose, and consisted of two species with sedimentation values of 38S and 27S. The amount of virus-specific RNA in different JLS-V9 cell fractions was quantitated in comparison to cell fractions obtained from M-MuLV clone no. 1 cells (a line of NIH 3T3 cells producing Moloney murine leukemia virus). Approximately 40% of the total virus-specific mRNA was recovered in the purified polyribosomes in M-MuLV no. 1 cells. The amount of virus-specific RNA on polyribosomes appeared to be quite similar for JLS-V9 cells and M-MuLV clone no.1 cells .In contrast, the level of virus-specific protein in JLS-V9 cells (as monitored by radioimmunoassay of the internal structural protein p30) was less than 2% the level in the M-MuLV clone no. 1 cells.  相似文献   

8.
The size and quantity of virus-specific RNA in five non-virus-producing mouse cells transformed by the Moloney isolate of murine sarcoma virus (MSV) was determined. Hybridization of RNA from transformed cells with the [(3)H]DNA product of the RNA-directed DNA polymerase of the murine sarcoma-leukemia virus was used to detect and quantitate virus-specific RNA. The amount of virus-specific RNA in non-virus-producing cells was less than one-sixth of that found in virus-producing cells. A striking correlation was found between the amount of intracellular virus-specific RNA and the degree of agglutination by conconavalin A previously reported for the four non-virus-producing NIH/3T3 cell lines (Salzberg and Green, 1974). A major RNA subunit sedimenting at 26 to 28S was detected in all five MSV-transformed non-virus-producing cells. This could represent the RNA genome of defective MSV.  相似文献   

9.
10.
When p-fluorophenylalanine (FPA) was added to influenza virus RI/5+-infected cells 4 hr after infection, virus-specific proteins were synthesized but infectious progeny virus was not produced. In these cells, synthesis of viral RNA was strongly inhibited and nucleoprotein (NP) antigen was found predominantly in the nucleus in contrast to untreated cells in which NP antigen was distributed throughout the whole cell. The intracellular location and migration of NP were examined by isotope labeling followed by fractionation of infected cells. In untreated cells, a large portion of the NP was present in the cytoplasm and most of it was detected in the form of ribonucleoprotein (RNP). In contrast, in FPA-treated cells little viral RNP was detectable and NP was present predominantly in the nucleus in a nonassembled, soluble form. When FPA was removed from the culture, synthesis of viral RNA was soon restored and a large amount of viral RNP appeared in the cytoplasm; this was followed by the production of infectious virus. The results of the experiments suggest that the NP synthesized in the presence of FPA is not assembled into viral RNP because of the lack of available RNA, and such NP migrates readily into the nucleus and accumulates there.  相似文献   

11.
RNA molecules from nuclear and cytoplasmic polyribosomes of adenovirus-infected HeLa cells were compared by hybridization to analyse the sequence content. Nuclear polyribosomes were released by exposure of intact detergent-washed nuclei to poly(U) and purified. Cytoplasmic polyribosomes were also purified from the same cells. To show that nuclear polyribosomes contain ribosomes linked by mRNA, polyribosomes were labelled with methionine and uridine in the presence of actinomycin D in adenovirus-infected cells. Purified nuclear polyribosomes were treated with EDTA under conditions which dissociate polyribosomes into ribosomes and subunits with a simultaneous release of mRNA, and sedimented. The treatment dissociated these polyribosomes, releasing the mRNA from them. Radiolabelled total RNA from each polyribosome population was fractionated in sucrose gradients into several pools or hybridized to intact adenovirus DNA to select virus-specific RNA. Sucrose-gradient-fractionated pool-3 RNA (about 28S) and virus-specific RNA were then hybridized to fragments of adenovirus DNA cleaved by restriction endonucleases SmaI, HindIII and EcoRI by the Southern-blot technique and by filter hybridization. The results showed that nuclear RNA contained sequences, from about 0 to 18 map units, which were essentially absent from cytoplasmic RNA. Furthermore, the amount of virus-specific RNA for a particular sequence was also different in the two populations.  相似文献   

12.
13.
14.
GDVII virus growth in BHK-21 cells, a permissive host for the virus, resembled productive infections with other picornaviruses. Virus yields ranged from 100 to 600 plaque-forming units (PFU)/cell. Virus replication in HeLa cells, a nonpermissive host for GDVII virus, was characterized by virus yields of only 0.1 to 5 PFU/cell. Similar low yields of virus have been obtained from HeLa cells at all multiplicities of input up to 6,000 per cell. The progeny particles from HeLa cells were, like the infecting particles, restricted in the HeLa cell host. Despite the great difference in final yields of virus from BHK-21 and HeLa cells, the times when maximal yields were reached were similar. GDVII virus stock grown in BHK-21 cells was designated HeLa(-). A variant of GDVII virus which is capable of extensive growth in HeLa cells was obtained. This variant, designated HeLa(+) GDVII virus, was passaged serially in HeLa cells. Virus yields of 50 to 150 infective virus particles per cell were obtained from infection of HeLa cells with HeLa(+) GDVII virus. The major species of HeLa(+) virus-specific ribonucleic acid (RNA) produced was single stranded and sedimented with an S value of 35S. The rate of accumulation of HeLa(+) virus-specific RNA in HeLa cell cultures was about four times that of HeLa(-) RNA. The amount of virus-specific HeLa(+) RNA formed in HeLa cells was several-fold greater than that of HeLa(-) RNA. With HeLa(-) parent GDVII virus undergoing productive replication in BHK-21 cells or abortive replication in HeLa cells, the major species of virus-specific RNA produced was single stranded and sedimented with an approximate S value of 35S. The amount of HeLa(-) virus-specific RNA extracted from BHK-21 cells was several-fold greater than the amount obtained from HeLa cells.  相似文献   

15.
RNA interference (RNAi) is a promising strategy to combat shrimp viral pathogens at lab-scale experiments. Development of effective orally delivered agents for double-stranded (ds)RNA is necessary for RNAi application at farm level. Since continuous shrimp cell lines have not been established, we are developing a dsRNA-delivery system in Spodoptera frugiperda (Sf9) cells for studying in vitro RNAi-mediated gene silencing of shrimp virus. Sf9 cells challenged with yellow head virus (YHV) were used for validating nanoparticles as effective dsRNA carriers. Inexpensive and biodegradable polymers, chitosan and its quarternized derivative (QCH4), were formulated with long dsRNA (>100 bp) targeting YHV. Their morphology and physicochemical properties were examined. When treated with chitosan- and QCH4-dsRNA complexes, at least 50% reduction in YHV infection in Sf9 cells relative to the untreated control was evident at 24h post infection with low cytoxicity. Inhibitory effects of chitosan- and QCH4-dsRNA complexes were comparable to that of dsRNA formulated with Cellfectin(?), a commercial lipid-based transfection reagent. The natural and quaternized chitosan prepared in this study can be used for shrimp virus-specific dsRNA delivery in insect cultures, and have potential for future development of dsRNA carriers in shrimp feed.  相似文献   

16.
The rate of avian leukosis virus (ALV)-specific RNA synthesis has been examined in bot- uninfected and ALV-infected synchronized chicken embryo fibroblasts. RNA from cells labeled for 2h with [3H]uridine was hybridized with avian myeloblastosis virus poly(dC)-DNA, and the hybridized RNA was analyzed with poly(I)-spephadex chromatography. Approximately 0.5% of the RNA synthesized in ALV-infected cells was detected as virus specific, and no more than a twofold variation in the rate of synthesis was detected at different times in the cell cycle. In synchronized uninfected chicken embryo fibroblasts, approximately 0.03% of the RNA synthesized was detected as virus specific, and no significant variation in the rate of synthesis was observed during the cell cycle. Treatment of ALV-infected chicken embryo fibroblasts with cytosine arabinoside or colchicine was used to block cells at different stages in the cell cycle. The rates of virus-specific RNA synthesis in cells so treated did not differ significantly from the rates in either stationary or unsynchronized virus-infected chicken embryo fibroblasts. These findings support the conclusion that after the initial division of an ALV-infected chicken embryo fibroblast and the initiation of virus RNA synthesis, the rate of virus-specific RNA synthesis is independent of the cell cycle.  相似文献   

17.
18.
Avian sarcoma virus (ASV)-specific RNA was purified from ASV-infected cells by using hybridization techniques which employ polydeoxycytidylic acid-elongated DNA complementary to ASV RNA as well as chromatography on polyinosinic acid-Sephadex columns. The purity and nucleotide sequence composition of purified, virus-specific RNA were established by rehybridization experiments and analysis of labeled RNase T1-resistant oligonucleotides by two-dimensional polyacrylamide gel electrophoresis. Polyadenylic acid-containing RNA purified from ASV-infected cells contained approximately 1 to 4% virus-specific RNA, compared with 0.06 to 0.15% observed in uninfected cells. Sucrose gradient analysis of virus-specific RNA isolated from ASV-infected cells revealed two major classes of polyadenylated viral RNA with sedimentation values of 36S and 26-28S. Cells infected with transformation-defective ASV (virus containing a deletion of the sarcoma gene) contained 34S and 20-22S viral RNA species. Double-label experiments employing infected cells labeled initially for 48 h with [3H]uridine and then for either 30, 60, or 240 min with [32P]phosphate showed that the intracellular accumulation of genome-length RNA (36S) was significantly faster than that of the 26-28S viral RNA species.  相似文献   

19.
M Jacquet  D Caput  E Falcoff  R Falcoff  F Gros 《Biochimie》1977,59(2):189-195
Complementary DNA (cDNA) from Mengo virus RNA has been synthesized and used as a probe to measure the synthesis and accumulation of viral RNA in Mengo infected L cell cultures, treated or untreated with interferon. Under experimental conditions used (200 units interferon/ml and 50 virus plaque-forming units/cell) results show that there is some synthesis of Mengo virus RNA in cells treated with interferon. One hour after infection, treated cells contain three times less viral RNA than untreated cells; five hours after infection, this difference has increased to ten fold. As in the control, no fragmented Mengo virus RNA molecules were found in interferon treated cells. The smaller recovery of infectious particles from interferon treated cells as compared to RNA accumulation suggests that not only RNA accumulation is inhibited but also a step posterior in viral maturation.  相似文献   

20.
The techniques of deoxyribonucleic acid-ribonucleic acid (DNA-RNA) hybridization and immunological precipitation were used to compare the synthesis of adenovirus-specific macromolecules in African green monkey kidney (AGMK) cells infected with adenovirus, an abortive infection, and coinfected with both adenovirus and simian virus 40 (SV40), which renders the cells permissive for adenovirus replication. When viral protein synthesis was proceeding at its maximum rate, the incorporation of (14)C-amino acids into adenovirus structural proteins was about 90 times greater in the doubly infected cells than in cells infected only with adenovirus. However, the rates of synthesis of virus-specific ribonucleic acid appeared to be comparable in the two infections at all times measured. A time-dependent increase in the rate of RNA synthesis observed late in the abortive infection was dependent upon the prior replication of viral DNA. Moreover, all virus-specific RNA species that are normally made late in a productive adenovirus infection (i.e., the true late and class II early RNA species) were also detected in the abortive infection. Adenovirus-specific RNA was detected by molecular hybridization in both the cytoplasm and nuclei of abortively infected cells. Comparable amounts of viral RNA were found in the cytoplasmic fractions of AGMK cells infected either with adenovirus or with both adenovirus and SV40. The results of hybridization-inhibition experiments clearly showed that there was a class of virus-specific RNA molecules, representing about 30% of the total, in the nucleus that was not transported to the cytoplasm. This class of RNA was also identified in similar amounts in productively infected human KB cells. The difference in the abilities of cytoplasmic and nuclear RNA to inhibit the hybridization of virus-specific RNA from whole cells was shown not to be due to a difference in the molecular size of the RNA species from the two cell fractions or to the specific loss of a cytoplasmic species during RNA extraction procedures.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号