首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
《Bioorganic chemistry》1986,14(3):242-248
Incubation of Escherichia coli glutamine synthetase with thiourea trioxide resulted in partial inactivation of the enzyme. This reagent specifically modifies lysine residues to form homoarginine. By amino acid analysis 2.3 ± 0.3 residues of homoarginine are produced per enzyme subunit after treatment with thiourea trioxide. Previously we determined that thiourea dioxide totally inactivated glutamine synthetase and modified both lysine and histidine residues (J. Colanduoni and J. J. Villafranca (1985) J. Biol. Chem. 260, 15,042–15,050). Thiourea trioxide reacted with the same lysine residues of glutamine synthetase as thiourea dioxide. The Km values for the thiourea trioxide modified enzyme were determined and are 210 ± 30 μm and 10 ± 1 mm for ATP and glutamate, respectively. Both values are about threefold higher than for native enzyme assayed under the same conditions. Fluorescence titrations of native and thiourea trioxide labeled enzyme showed that ATP binding was virtually unchanged by the modification while glutamate and methionine sulfoximine bound about twofold more weakly to the modified enzyme.  相似文献   

2.
A homogeneous preparation of glyoxylate synthetase from greening potato tubers was used to study the functional role of disulphide groups, lysine and tryptophan residues in enzyme catalysis. The formation of a thioisoindole derivative was demonstrated by spectral analysis of the reduced and o-phthalaldehyde-treated enzymes. o-Phthalaldehyde modification resulted in about a 25 % loss of tryptophan emission at 336 nm and the appearance of a 410-nm emission peak characteristic of a thioisoindole. Ferrous iron was capable of generating thiol groups and addition of substrate resulted in a faster disappearance of these thiols. The optimal time for maximum glyoxylate synthesis by glyoxylate synthetase paralleled the disappearance of these thiols. Involvement of lysine and tryptophan residues in the enzyme reaction was demonstrated by the inhibition of activity by pyridoxal 5′-phosphate and dimethyl(2-hydroxy 5-nitrobenzyl) sulphonium bromide (DMHNB), respectively. Pyridoxal phosphate strongly and reversibly inhibited glyoxylate synthetase, and substrate and metal ion provided significant protection against inhibition. The results suggest that the lysine residue may be at or near the active binding site. The lysyl residue formed a Schiff base with pyridoxal phosphate which was stabilised by NaBH4. Glyoxylate synthetase was also irreversibly inactivated by a tryptophan selective reagent, DMHNB, while substrate provided substantial protection against inactivation. Kinetic analysis and correlation of the spectral data at 410 nm indicated that complete inactivation by DMHNB resulted from the modification of 5 tryptophan residues/subunit, of which one was essential for activity. The available evidence suggests a possible concerted action of enzyme disulphides, ferrous iron, lysine and aromatic amino acid residues in the synthesis of glyoxylate by this enzyme.  相似文献   

3.
Fatty acid synthetase from goose uropygial gland was inactivated by treatment with pyridoxal 5′-phosphate. Malonyl-CoA and acetyl-CoA did not protect the enzyme whereas NADPH provided about 70% protection against this inactivation. 2′-Monophospho-ADP-ribose was nearly as effective as NADPH while 2′-AMP, 5′-AMP, ADP-ribose, and NADH were ineffective suggesting that pyridoxal 5′-phosphate modified a group that interacts with the 5′-pyrophosphoryl group of NADPH and that the 2′-phosphate is necessary for the binding of the coenzyme to the enzyme. Of the seven component activities catalyzed by fatty acid synthetase only the enoyl-CoA reductase activity was inhibited. Inactivation of both the overall activity and enoyl-CoA reductase of fatty acid synthetase by this compound was reversed by dialysis or dilution but not after reduction with NaBH4. The modified protein showed a characteristic Schiff base absorption (maximum at 425 nm) that disappeared on reduction with NaBH4 resulting in a new absorption spectrum with a maximum at 325 nm. After reduction the protein showed a fluorescence spectrum with a maximum at 394 nm. Reduction of pyridoxal phosphate-treated protein with NaB3H4 resulted in incorporation of 3H into the protein and paper chromatography of the acid hydrolysate of the modified protein showed only one fluorescent spot which was labeled and ninhydrin positive and had an Rf identical to that of authentic N6-pyridoxyllysine. When [4-3H]pyridoxal phosphate was used all of the 3H, incorporated into the protein, was found in pyridoxyllysine. All of these results strongly suggest that pyridoxal phosphate inhibited fatty acid synthetase by forming a Schiff base with the ?-amino group of lysine in the enoyl-CoA reductase domain of the enzyme. The number of lysine residues modified was estimated with [4-3H]pyridoxal-5′-phosphate/NaBH4 and by pyridoxal-5′-phosphate/NaB3H4. Scatchard analysis showed that modification of two lysine residues per subunit resulted in complete inactivation of the overall activity and enoyl-CoA reductase of fatty acid synthetase. NADPH prevented the inactivation of the enzyme by protecting one of these two lysine residues from modification. The present results are consistent with the hypothesis that each subunit of the enzyme contains an enoyl-CoA reductase domain in which a lysine residue, at or near the active site, interacts with NADPH.  相似文献   

4.
Pigeon liver fatty acid synthetase was inactivated irreversibly by 2,4,6-trinitrobenzenesulphonic acid (TNBS). Biphasic inactivation of the enzyme was observed with the inhibitor. NADPH provided protection to the enzyme against inactivation by TNBS and the extent of protection increased with NADPH concentration indicating that the essential lysine residues are present at the NADPH binding site. The stoichiometric results with TNBS showed that 4 mol of lysine residues are modified per mole of fatty acid synthetase upon complete inactivation. The rapid reaction of two amino groups per enzyme molecule led to the loss of 60% of the enzyme activity. These approaches suggested that two lysine residues present at the active site are essential for the enzymatic activity of fatty acid synthetase.  相似文献   

5.
Malonyl-CoA synthetase fromPseudomonas fluorescens was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of 775 M?1 min?1 atpH 7.0, 25°C, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. The inactivated enzyme at low concentration of DEP (<0.2 mM) could be completely reactivated by hydroxylamine but not completely reactivated at high concentration (>0.5 mM), indicating that there may be another functional group modified by DEP. Complete inactivation of malonyl-CoA synthetase required the modification of seven residues per molecule of enzyme; however, only one is calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity.pH dependence of inactivation indicated the involvement of a residue with apK a of 6.7, which is closely related to that of histidyl residue of proteins. Whena subunit treated with DEP was mixed with β subunits complex, the enzyme activity completely disappeared, whereas when β subunit complex treated with the reagent was mixed witha subunit, the activity remained. Inactivation of the enzyme by the reagent was protected by the presence of malonate and ATP. These results indicate that a catalytically essential histidyl residue is located at or near the malonate and ATP binding region ona subunit of the enzyme.  相似文献   

6.
Phosphoribosylpyrophosphate synthetase from Salmonella typhimurium contains four cysteine residues per subunit. Three of these react readily with 5, 5'-dithiobis(2-nitrobenzoic acid) (DTNB), forming an active derivative with kinetic and physical properties similar to the native enzyme, but one reacts only under denaturing conditions. Stoichiometric amounts of KMnO4 inactivate the DTNB-treated enzyme. The loss of activity is correlated with the oxidation of the remaining cysteinyl group to cysteic acid by KMnO4. Amino acid analysis indicates that no other residues are altered. The rate of inactivation of the enzyme is decreased 30-fold by saturatin g concentrations of the substrate ATP. Inorganic phosphate also protects substantially against KMnO4. Titration of the native enzyme with limiting amounts of KMnO4 shows that the sulfhydryl group essential for activity competes effectively with the other sulfhydryl groups for KMnO4. These results suggest that the essential sulfhydryl group is near the active site, and that KMnO4, a phosphate analogue, can act as an active site-directed reagent at the ATP binding site of the enzyme. The KMnO4-oxidized enzyme is more highly aggregated than untreated enzyme and fails to bind ATP appreciably.  相似文献   

7.
The apoenzyme of diol dehydrase was inactivated by modification with pyridoxal 5′-phosphate (pyridoxal-P). The inactivation was accompanied by appearance of a new peak at 425 nm which was shifted to 325 nm by reduction with NaBH4. ?-N-Pyridoxyl lysine was detected by paper chromatography and paper electrophoresis from the hydrolysate of the NaBH4-reduced enzyme-pyridoxal-P complex. The relationship of inactivation vs pyridoxal-P incorporation as well as kinetic experiments suggests that one lysyl residue per enzyme molecule was essential for catalytic activity, although two to three pyridoxal-P molecules were introduced into the almost completely inactivated enzyme molecule. Both 1,2-propanediol (substrate) and adenosylcobalamin (coenzyme) completely protected the enzyme from inactivation. The result of disc gel electrophoresis showed that the inactivation of diol dehydrase by pyridoxal-P results from irreversible dissociation of the enzyme into subunits upon pyridoxal-P modification. Therefore, it is suggested that this modifiable lysyl residue is essential for subunit interaction to form an active oligomeric enzyme. The inactivated enzyme restored activity by addition of excess component F, but not by S, suggesting that the essential lysyl residue is located in component F of the enzyme. Pyridoxal-P-modified enzyme was no longer able to bind cyanocobalamin (a competitive inhibitor of adenosylcobalamin).  相似文献   

8.
Rabbit muscle phosphofructokinase (PFK) is rapidly inactivated by a 2′,3′-dialdehyde derivative of adenosine triphosphate (dialdehyde-ATP). When allowed to react with 0.6 mm dialdehyde-ATP in 0.1 m borate buffer (pH 8.6) containing 0.2 mm EDTA and 0.5 mm dithiothreitol, PFK loses essentially all activity (99%) in 30 min. The modified PFK remains inactive following dialysis of the reaction mixture against sodium borate (pH 8.0) containing fructose diphosphate, EDTA, and dithiothreitol. Experiments with [14C]dialdehyde-ATP show that 99% inactivation of PFK corresponds to incorporation of 3 to 4 mol of the ATP analog per PFK protomer. The inactivation of PFK with dialdehyde reagent is not caused by dissociation of the 340,000 Mr, tetramer to the 170,000 Mr dimer, as determined by analytical ultracentrifugation. Adenosine diphosphate or ATP protect PFK from inactivation by dialdehyde-ATP at pH 8.6, but fructose 6-phosphate, cyclic 3′,5t-?adenosine monophosphate, or fructose diphosphate, which protect PFK from modification by pyridoxal phosphate, provide little protection from inactivation. Amino acid analyses of dialdehyde-inactivated PFK and of a control sample of the enzyme were compared following reaction of each with 2,4-dinitrofluorobenzene. The results show that three or four lysine residues per PFK protomer are modified by dialdehyde-ATP. Additional data indicate that these lysine residues react with dialdehyde-ATP to form dihydroxymorpholine-like adducts rather than Schiff bases.  相似文献   

9.
The acetyl-CoA:acetoacetate CoA-transferase of Escherichia coli was reversibly inactivated by pyridoxal 5′-phosphate. The residual activity of the enzyme was dependent on the concentration of the modifying reagent to a concentration of 5 mm. The maximum level of inactivation was 89%. Kinetic and equilibrium analyses of inactivation were consistent with a two-step process (Chen and Engel, 1975, Biochem. J.149, 619) in which the extent of inactivation was limited by the ratio of first-order rate constants for the reversible formation of an inactive Schiff base of pyridoxal 5′-phosphate and the enzyme from a noncovalent, dissociable complex of the enzyme and modifier. The calculated minimum residual activity was in close agreement with the experimentally determined value. The conclusion that the loss of catalytic activity resulted from modification of a lysine residue at the active site was based on the following data, (a) After incubation with 5 mm pyridoxal 5′-phosphate, 3.95 mol of the reagent was incorporated per mole of free enzyme with 89% loss of activity, while 2.75 mol of pyridoxal 5′-phosphate was incorporated into the enzyme-CoA intermediate with a loss of 10% of catalytic activity; the intermediate was formed in the presence of acetoacetyl-CoA; (b) acid hydrolysis of the modified, reduced enzyme-CoA intermediate yielded a single fluorescent compound that was identified as N6-pyridoxyllysine by chromatography in two solvent systems; (c) the enzyme was also protected from inactivation by saturating concentrations of free CoA and ADP but not by adenosine. The results suggested that a lysine residue is involved in the electrostatic binding of the pyrophosphate group of CoA. Carboxylic acid substrate did not protect the enzyme from inactivation.  相似文献   

10.
Treatment of 1 microM wheat-germ aspartate transcarbamoylase with 1 mM-pyridoxal 5'-phosphate caused a rapid loss of activity, concomitant with the formation of a Schiff base. Complete loss of activity occurred within 10 min when the Schiff base was reduced with a 100-fold excess of NaBH4. Concomitantly, one amino group per chain was modified. No further residues were modified in the ensuing 30 min. The kinetics of inactivation were examined under conditions where the Schiff base was reduced before assay. Inactivation was apparently first-order. The pseudo-first-order rate constant, kapp., showed a hyperbolic dependence upon the concentration of pyridoxal 5'-phosphate, suggesting that the enzyme first formed a non-covalent complex with the reagent, modification of a lysine then proceeding within this complex. Inactivation of the enzyme by pyridoxal was 20 times slower than that by pyridoxal 5'-phosphate, indicating that the phosphate group was important in forming the initial complex. Partial protection against pyridoxal phosphate was provided by the leading substrate, carbamoyl phosphate, and nearly complete protection was provided by the bisubstrate analogue, N-phosphonoacetyl-L-aspartate, and the ligand-pair carbamoyl phosphate plus succinate. Steady-state kinetic studies, under conditions that minimized inactivation, showed that pyridoxal 5'-phosphate was also a competitive inhibitor with respect to the leading substrate, carbamoyl phosphate. Pyridoxal 5'-phosphate therefore appears to be an active-site-directed reagent. A sample of the enzyme containing one reduced pyridoxyl group per chain was digested with trypsin, and the labelled peptide was isolated and shown to contain a single pyridoxyl-lysine residue. Partial sequencing around the labelled lysine showed little homology with the sequence surrounding lysine-84, an active-centre residue of the catalytic subunit of aspartate transcarbamoylase from Escherichia coli, whose reaction with pyridoxal 5'-phosphate shows many similarities to the results described in the present paper. Arguably the reactive lysine is conserved between the two enzymes whereas the residues immediately surrounding the lysine are not. The same conclusion has been drawn in a comparison of reactive histidine residues in the two enzymes [Cole & Yon (1986) Biochemistry 25, 7168-7174].  相似文献   

11.
Malonyl-CoA synthetase fromPseudomonas fluorescens was inactivated by diethylpyrocarbonate (DEP) with the second-order rate constant of 775 M–1 min–1 atpH 7.0, 25°C, showing a concomitant increase in absorbance at 242 nm due to the formation of N-carbethoxyhistidyl derivatives. The inactivated enzyme at low concentration of DEP (<0.2 mM) could be completely reactivated by hydroxylamine but not completely reactivated at high concentration (>0.5 mM), indicating that there may be another functional group modified by DEP. Complete inactivation of malonyl-CoA synthetase required the modification of seven residues per molecule of enzyme; however, only one is calculated to be essential for enzyme activity by a statistical analysis of the residual enzyme activity.pH dependence of inactivation indicated the involvement of a residue with apK a of 6.7, which is closely related to that of histidyl residue of proteins. Whena subunit treated with DEP was mixed with subunits complex, the enzyme activity completely disappeared, whereas when subunit complex treated with the reagent was mixed witha subunit, the activity remained. Inactivation of the enzyme by the reagent was protected by the presence of malonate and ATP. These results indicate that a catalytically essential histidyl residue is located at or near the malonate and ATP binding region ona subunit of the enzyme.  相似文献   

12.
The sensitivities of three enzymes of the β-ketoadipate pathway to inactivation by N-methyl-N′-nitro-N-nitrosoguanidine (MNNG) were determined in vivo and in vitro under conditions compatible with mutagenesis.One enzyme, β-ketoadipate enol-lactone hydrolase, is very sensitive to inactivation by low concentrations of MNNG. This enzyme is also sensitive to inactivation by N-ethylmaleimide and mercurial reagents. The free sulfhydryl content of native enol-lactone hydrolase was determined to be two moles free sulfhydryl per mole of enzyme. A 95% inactivation of enol-lactone hydrolase by MNNG results in a masking of slightly more than one mole sulfhydryl per mole enzyme.Muconate lactonizing enzyme is moderately sensitive to inactivation by low concentrations of MNNG, but is not inactivated by sulfhydryl reagents. Muconolactone isomerase is resistant to inactivation by low concentrations of MNNG and is not inactivated by sulfhydryl reagents. Upon exposure to high concentrations of MNNG, muconolactone isomerase is rapidly inactivated. Spectrophotometric evidence indicates the lysine residues are nitroguanidinated proportionally with a loss in the enzymatic activity.These data indicate that the exposure of cells to low concentrations of MNNG should affect the activity of enzymes with essential sulfhydryl groups.  相似文献   

13.
Under mild conditions, 3-bromo-1,4-dihydroxy-2-butanone 1,4-bisphosphate rapidly and irreversibly inactivates ribulosebisphosphate carboxylase from Rhodospirillum rubrum. The substrate ribulosebisphosphate protects the enzyme against inactivation. Incorporation of reagent has been quantitated by reduction of the modified carboxylase with [3H]NaBH4. Based on the difference in the levels of incorporation found in the inactivated enzyme as compared with the protected enzyme, loss of enzymic activity results from the modification of about 0.4 residue per catalytic subunit. Analyses of hydrolysates demonstrate that both cysteinyl and lysyl derivatives are present in the inactivated carboxylase; the protected sample contains about the same amount of modified cysteine but little of the modified lysine. Thus, inactivation appears to correlate with derivatization of lysyl residues.  相似文献   

14.
Two arginine modifying reagents, phenylglyoxal and 2,3-butanedione, inactivated fatty acid synthetase from goose uropygial gland. This inactivation could be partially prevented by NADP, 2′-AMP, and 2′,5′-ADP, whereas acetyl-CoA and/or malonyl-CoA provided very little protection. Ketoacyl reductase and enoyl reductase activities of fatty acid synthetase showed similar inactivation by phenylglyoxal and butanedione and protection by only NADP and its 2′-phosphate-containing analogs. Furthermore, 2′-AMP was found to be a competitive inhibitor of overall fatty acid synthetase, ketoacyl reductase, and enoyl reductase with apparent Ki values of 1.4, 0.2, and 14 mm, respectively. These results suggest that binding of NADPH to fatty acid synthetase involves specific interaction of the 2′-phosphate with the guanidino group of arginine residues at the active site of the two reductases. Quantitation of the number of arginine residues modified revealed that 4 out of 106 arginine residues per subunit of the synthetase showed high reactivity toward phenylglyoxal. Scatchard analysis showed that two rapidly reacting arginine residues had no effect on the catalytic activity, while modification of two additional arginine residues resulted in complete loss of enzyme activity. Under these conditions, of the seven partial reactions of fatty acid synthetase, only the ketoacyl reductase and enoyl reductase activities were inhibited by phenylglyoxal. The differential reversal of inhibition of the two reductases and the overall activity of fatty acid synthetase, resulting from dialysis of the modified enzyme, suggested that both ketoacyl reductase sites and enoyl reductase sites are required for the full expression of fatty acid synthetase activity. The results of the present chemical modification studies are consistent with the hypothesis that each subunit of fatty acid synthetase contains one ketoacyl reductase and one enoyl reductase and suggest that one essential arginine is present at each of these active sites.  相似文献   

15.
o-Succinylbenzoyl coenzyme A (OSB-CoA) synthetase, when treated with diethylpyrocarbonate (DEP), showed a time-dependent loss of enzyme activity. The inactivation follows pseudo-first-order kinetics with a second-order rate constant of 9.2 x 10(-4) +/- 1.4 x 10(-4) microM(-1) min(-1). The difference spectrum of the modified enzyme versus the native enzyme showed an increase in A242 that is characteristic of N-carbethoxyhistidine and was reversed by treatment with hydroxylamine. Inactivation due to nonspecific secondary structural changes in the protein and modification of tyrosine, lysine, or cysteine residues was ruled out. Kinetics of enzyme inactivation and the stoichiometry of histidine modification indicate that of the eight histidine residues modified per subunit of the enzyme, a single residue is responsible for the enzyme activity. A plot of the log reciprocal of the half-time of inactivation against the log DEP concentration further suggests that one histidine residue is involved in the catalysis. Further, the enzyme was partially protected from inactivation by either o-succinylbenzoic acid (OSB), ATP, or ATP plus Mg2+ while inactivation was completely prevented by the presence of the combination of OSB, ATP, and Mg2+. Thus, it appears that a histidine residue located at or near the active site of the enzyme is essential for activity. When His341 present in the previously identified ATP binding motif was mutated to Ala, the enzyme lost 65% of its activity and the Km for ATP increased 5.4-fold. Thus, His341 of OSB-CoA synthetase plays an important role in catalysis since it is probably involved in the binding of ATP to the enzyme.  相似文献   

16.
Chemical modification of lysine residues of eukaryotic tyrosyl-tRNA synthetase was studied. It was shown that only four out of 22 lysine residues per enzyme dimer could be modified with pyridoxal-5'-phosphate. This modification led to the inactivation of tRNATyr aminoacylation by more than 90% but did not practically affect the rate of ATP-[32P]pyrophosphate exchange. Low molecular weight substrates (ATP, ATP-tyrosine) weakly protected the enzyme from inactivation, whereas tRNATyr afforded a much more effective protection. It was supposed that lysine residues of tyrosyl-tRNA synthetase can be involved in the interaction with tRNATyr.  相似文献   

17.
Incubation of adenylosuccinate synthetase from Escherichia coli with low concentrations of pyridoxal 5'-phosphate (PLP) resulted in a rapid loss of activity (92%), concomitant with the formation of a Schiff base. The inactivation of the enzyme by PLP is apparently first order with respect to PLP. The pseudo-first order rate constant, Kapp, showed a hyperbolic dependence on the concentration of PLP, indicating that a kinetically significant PLP.enzyme intermediate is formed during the inactivation process. Stoichiometry and peptide isolation studies showed that 2 lysine residues were modified during reaction of the enzyme with PLP. The three substrates of adenylosuccinate synthetase (GTP, IMP, and aspartate) showed different effects in their ability to protect the enzyme against PLP inactivation. Complete protection of the enzyme against inactivation can be observed only in the presence of high concentrations of GTP. One lysine residue was protected under these conditions. In contrast to GTP, addition of the other two substrates either alone or together to reaction mixtures did not render protection. Peptide mapping by digesting the enzyme with trypsin revealed that the lysine shielded by GTP is Lys140. Replacing the Lys140 with Ile140 by site-directed mutagenesis resulted in total loss of the activity. These results suggest that Lys140 may play an important role in enzymatic activity.  相似文献   

18.
Glutamine synthetase of plants is the physiological target of tabtoxinine-beta-lactam, a toxin produced by several disease-causing pathovars of Pseudomonas syringae. This toxin, a unique amino acid, is an active site-directed, irreversible inhibitor of glutamine synthetase from pea. ATP is required for inactivation. Neither ADP, AMP, nor adenosine 5'-(beta,gamma-methylene)triphosphate (AMP-PCP) supports inactivation. Adenyl-5'-yl imidophosphate (AMP-PNP) is slowly hydrolyzed by glutamine synthetase to produce adenyl-5'-yl phosphoramidate (AMP-PN) and inorganic phosphate as identified by 31P NMR spectroscopic analysis. AMP-PNP also supports a slow inactivation of glutamine synthetase by tabtoxinine-beta-lactam. These data are consistent with gamma-phosphate transfer being involved in the inactivation. Completely inactivated glutamine synthetase has 0.9 mumol of toxin bound/mumol of subunit. One mumol of ATP is bound per mumol of subunit of glutamine synthetase in the absence of either the toxin or another active site-directed inhibitor, methionine sulfoximine; whereas, a 2nd mumol of either [alpha- or gamma-32P]ATP is bound per mumol of subunit when glutamine synthetase is incubated in the presence of either toxin or methionine sulfoximine until all enzyme activity is lost. These data suggest that the gamma-phosphate hydrolyzed from ATP during inactivation remains with the enzyme-inhibitor complex, as well as the ADP. The open chain form, tabtoxinine, was neither a reversible nor an irreversible inhibitor of glutamine synthetase, suggesting that the beta-lactam ring is necessary for inhibition. The inactivation of glutamine synthetase with tabtoxinine-beta-lactam is pseudo-first-order when done in buffer containing 15% (v/v) ethylene glycol. The rate constant for this reaction is 3 X 10(-2) S-1, and the Ki for the toxin is 1 mM. Removal of the ethylene glycol from the buffer allows the reaction to proceed in a non-first-order manner with the apparent rate constant decreasing with time. As the enzyme is inactivated in these conditions, the binding affinity for the toxin appears to decrease, while the Km observed for glutamate does not change.  相似文献   

19.
Treatment of yeast fatty acid synthetase with pyridoxal 5'-phosphate inhibited the enzyme. Assays of the partial activities of the pyridoxal phosphate-treated synthetase showed that only the beta-ketoacyl reductase was significantly inhibited. NADPH prevented inactivation of the enzyme by pyridoxal phosphate, indicating that pyridoxal modifies a residue near or in the beta-ketoacyl reductase site. The pyridoxal-treated synthetase shows a fluorescence spectrum with a maximum of 426 nm after uv irradiation at 325 nm. Binding of the pyridoxal phosphate to the synthetase is reversible as shown by the disappearance of the fluorescence band after dialysis of pyridoxal-treated enzyme. Reduction with NaBH4 of the pyridoxal-treated enzyme eliminates this fluorescence maximum and causes the appearance of a new band at 393 nm. These observations suggest that pyridoxal phosphate interacts with the synthetase by forming a Schiff base with lysine residue at the beta-ketoacyl reductase site. Amino acid analyses of the HCl hydrolysates of the borohydride-reduced, pyridoxal-treated synthetase showed the presence of 6 mol of N6-pyridoxal derivative of lysine per mole of fatty acid synthetase, indicating the presence of six sites of beta-ketoacyl reductase in the native enzyme. Autoradiography of sodium dodecyl sulfate-polyacrylamide gels of the pyridoxal phosphate enzyme reduced with NaB3H4 indicates that the alpha subunit contains the beta-ketoacyl reductase domain. These findings are consistent with the proposed structure of the alpha 6 beta 6 complex required for palmitoyl-CoA synthesis.  相似文献   

20.
Philip G. Koga  Richard L. Cross 《BBA》1982,679(2):269-278
1. Soluble beef-heart mitochondrial ATPase (F1) was incubated with [3H]pyridoxal 5′-phosphate and the Schiffbase complex formed was reduced with sodium borohydride. Spectral measurements indicate that lysine residues are modified and gel electrophoresis in the presence of detergent shows the tritium label to be associated with the two largest subunits, α and β. 2. In the absence of protecting ligands, the loss of ATP hydrolysis activity is linearly dependent on the level of pyridoxylation with complete inactivation correlating to 10 mol pyridoxamine phosphate incorporated per mol enzyme. Partial inactivation of F1 with pyridoxal phosphate has no effect on either the Km for ATP or the ability of bicarbonate to stimulate residual hydrolysis activity, suggesting a mixed population of fully active and fully inactive enzyme. 3. In the presence of excess magnesium, the addition of ADP or ATP, but not AMP, decreases the rate and extent of modification of F1 by pyridoxal phosphate. The non-hydrolyzable ATP analog, 5′-adenylyl-β, γ-imidodiphosphate, is particularly effective in protecting F1 against both modification and inactivation. Efrapeptin and Pi have no effect on the modification reaction. 4. Prior modification of F1 with pyridoxal phosphate decreases the number of exchangeable nucleotide binding sites by one. However, pyridoxylation of F1 is ineffective in displacing endogenous nucleotides bound at non-catalytic sites and does not affect the stoichiometry of Pi binding. 5. The ability of nucleotides to protect against modification and inactivation by pyridoxal phosphate and the loss of one exchangeable nucleotide site with the pyridoxylation of F1 suggest the presence of a positively charged lysine residue at the catalytic site of an enzyme that binds two negatively charged substrates.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号