首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The effect of cholesterol depletion on the activity of phosphatidylinositol/phosphatidylinositol 4-phosphate and diacylglycerol kinases and polyphosphoinositide phosphodiesterase has been studied in isolated membranes of human normal and cholesterol-depleted erythrocytes. Polyphosphoinositide synthesis (phosphatidylinositol/phosphatidylinositol 4-phosphate kinase activities) were found to depend on the permeability and sidedness characteristics of the membrane vesicles, which could limit the accessibility of ATP for the enzymes. When measured under proper conditions, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate synthesis were decreased in cholesterol-depleted membranes as compared with control membranes. The same level of synthesis could be obtained in both membranes by the addition of phosphatidylinositol (and Triton X-100) or of phosphatidylinositol 4-phosphate. Phosphatidic acid synthesis (diacylglycerol kinase activity) was also decreased in cholesterol-depleted membranes as compared with control membranes when measured in the presence of Ca2+. Addition of diolein (and Triton X-100) caused a large increase in phosphatidic acid synthesis which reached approximately the same level in both membranes. This showed that the apparent inhibition of polyphosphoinositide and phosphatidic acid synthesis was not due to a loss or to an inactivation of the kinases. Ca2+-activated polyphosphoinositide phosphodiesterase promoted the hydrolysis of 65-70% of the polyphosphoinositides in control and of only 45-55% in cholesterol-depleted membranes without changing the Ca2+ concentration for half-maximum hydrolysis (1 microM). Upon addition of sodium oleate, the extent of polyphosphoinositide hydrolysis became identical in both membranes, indicating again that there was no loss nor inactivation of the polyphosphoinositide phosphodiesterase in the cholesterol-depleted membranes. Since the concentration of the polyphosphoinositides was not changed by cholesterol depletion [Giraud, M'Zali, Chailley & Mazet (1984) Biochim. Biophys. Acta 778, 191-200], the reduction in both their synthesis and degradation observed here could be attributed to a reorganization of the phosphoinositides in membrane domains where they were not accessible to the kinases and phosphodiesterase. The reduction in phosphatidic acid synthesis was likely caused by a reduction in the total amount of the substrate diacylglycerol in cholesterol-depleted membranes as already shown [Giraud, M'Zali, Chailley & Mazet (1984) Biochim. Biophys. Acta 778, 191-200].  相似文献   

2.
Incubation of blowfly salivary gland homogenates with 30 microM [gamma-32P]ATP resulted in a rapid, Mg2+-dependent, synthesis of [32P]polyphosphoinositides and [32P]phosphatidic acid. 5-Methyltryptamine, in the presence of 10 microM guanosine 5'-(3-O-thio)trisphosphate, reduced the net accumulation of 32P label into phosphatidylinositol-4,5-P2 and phosphatidylinositol-4-P by 35 and 20%, respectively. 5-Methyltryptamine did not affect synthesis of [32P]phosphatidic acid. Phosphorylation of polyphosphoinositides was not affected by 5-methyltryptamine. In membranes labeled in vitro with [gamma-32P]ATP, 5-methyltryptamine stimulated a rapid breakdown of the [32P]polyphosphoinositides. These results indicate that in blowfly salivary gland homogenates, hormone stimulates breakdown of the newly synthesized polyphosphoinositides. In the presence of hormone, the rate of polyphosphoinositide synthesis does not compensate for the rate of polyphosphoinositide degradation.  相似文献   

3.
Addition of Ca2+ to a plasma-membrane fraction derived from human or rabbit neutrophils led to the specific breakdown of polyphosphoinositides. The degradation products were identified as diacylglycerol and inositol bis- and tris-phosphate, thus demonstrating the presence of a Ca2+-activated phospholipase C. The newly generated diacylglycerol resembled the polyphosphoinositides in its fatty acid composition, and in the presence of MgATP2- it was converted into phosphatidate. These results therefore demonstrate the presence in neutrophil plasma membranes not only of polyphosphoinositide phosphodiesterase but also of diacylglycerol kinase.  相似文献   

4.
Isolated rat liver nuclei and subnuclear fractions synthesize polyphosphoinositides in vitro in a mode dependent on the presence of nuclear membrane, detergent and exogenous substrates. The nuclear membrane is not essential as a source of lipid kinases, since the addition of exogenous phosphatidylinositol or phosphatidylinositol monophosphate to reaction mixtures lacking membranes restores the synthesis of phosphatidylinositol mono- and bisphosphate, respectively. Inositide phosphorylation is best accomplished by high-salt extracted nuclei and pre-detergent lamina. These data suggest that the nucleus, and especially the nuclear periphery, is a cell compartment in which polyphosphoinositide synthesis occurs; this might be related to the progression of phosphatidylinositol metabolism-dependent signals to the genetic apparatus.  相似文献   

5.
The fatty acid compositions of 1,2-diacylglycerol and polyphosphoinositides have been determined in human erythrocyte membranes that have been incubated in the presence or in the absence of Ca2+. The results show that the diacylglycerol that is formed in Ca2+-treated membranes has a fatty acid composition closely similar to that of the inositides, consistent with previous indications that Ca2+ stimulates the activity of a polyphosphoinositide phosphodiesterase in the membranes. In contrast with some previous results, it appears that these plasma-membrane inositides and their derived diacylglycerols are rich in stearic acid and arachidonic acid.  相似文献   

6.
Incubation of a crude rat liver plasma membrane preparation with [gamma-32P]ATP resulted in a rapid Mg2+-dependent incorporation of 32P into phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate. Preincubation of the membranes with cholera toxin under ADP-ribosylating conditions reduced the labeling of the polyphosphoinositides. This action of cholera toxin required NAD+ and guanine nucleotides, was dose-dependent with respect to cholera toxin, and could not be mimicked by cAMP. It therefore appears that ADP-ribosylation of the stimulatory guanine nucleotide-binding regulatory protein of adenylate cyclase, or another G-protein, in rat liver plasma membranes affects the activity of enzymes in the polyphosphoinositide pathway.  相似文献   

7.
Recent evidence has implicated caveolae/DIGs in various aspects of signal transduction, a process in which polyphosphoinositides play a central role. We therefore undertook a study to determine the distribution of phosphoinositides and the enzymes that utilize them in these detergent-insoluble domains. We report here that the polyphosphoinositide phosphatase, but not several other phosphoinositide-utilizing enzymes, is highly enriched in a low density, Triton-insoluble membrane fraction that contains caveolin. This fraction is also enriched in polyphosphoinositides, containing approximately one-fifth of the total cellular phosphatidylinositol (4,5)P2. Treatment of cells with the tumor-promoting phorbol ester, phorbol 12-myristate 13-acetate (PMA), did not alter the distribution of polyphosphoinositides or the polyphosphoinositide phosphatase. However, PMA treatment did lead to a decrease in the mitogen-activated protein kinase and actin present in these domains. PMA also induced the recruitment of protein kinase C alpha to the caveolae/DIGs fraction. These findings suggest that polyphosphoinositides, the polyphosphoinositide phosphatase and protein kinase C play an important role in the structure or function of detergent-insoluble membrane domains.  相似文献   

8.
The polyphosphoinositide phosphodiesterase of erythrocyte membranes   总被引:94,自引:53,他引:41       下载免费PDF全文
1. A new assay procedure has been devised for measurement of the Ca(2+)-activated polyphosphoinositide phosphodiesterase (phosphatidylinositol polyphosphate phosphodiesterase) activity of erythrocyte ghosts. The ghosts are prepared from cells previously incubated with [(32)P]P(i). They are incubated under appropriate conditions for activation of the phosphodiesterase and the released (32)P-labelled inositol bisphosphate and inositol trisphosphate are separated by anion-exchange chromatography on small columns of Dowex-1 (formate form). When necessary, phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate can be deacylated and the released phosphodiesters separated on the same columns. 2. The release of both inositol bisphosphate and inositol trisphosphate was rapid in human ghosts, with half of the labelled membrane-bound phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate broken down in only a few minutes in the presence of 0.5mm-Ca(2+). For both esters, optimum rates of release were seen at pH6.8-6.9. Mg(2+) did not provoke release of either ester. 3. Ca(2+) provoked rapid polyphosphoinositide breakdown in rabbit erythrocyte ghosts and a slower breakdown in rat ghosts. Erythrocyte ghosts from pig or ox showed no release of inositol phosphates when exposed to Ca(2+). 4. In the presence of Mg(2+), the inositol trisphosphate released from phosphatidylinositol 4,5-bisphosphate was rapidly converted into inositol bisphosphate by phosphomonoesterase activity. 5. Neomycin, an aminoglycoside antibiotic that interacts with polyphosphoinositides, inhibited the breakdown of both phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate, with the latter process being appreciably more sensitive to the drug. Phenylmethanesulphonyl fluoride, an inhibitor of serine esterases that is said to inhibit phosphatidylinositol phosphodiesterase, had no effect on the activity of the erythrocyte polyphosphoinositide phosphodiesterase. 6. These observations are consistent with the notion that human, and probably rabbit and rat, erythrocyte membranes possess a single polyphosphoinositide phosphodiesterase that is activated by Ca(2+) and that attacks phosphatidylinositol 4-phosphate and phosphatidylinositol 4,5-bisphosphate with equal facility. Inhibition of this activity by neomycin seems likely to be due to interactions between neomycin and the polyphosphoinositides, with the greater inhibition of phosphatidylinositol 4,5-bisphosphate breakdown consistent with the greater affinity of the drug for this lipid. In addition, erythrocyte membranes possess Mg(2+)-dependent phosphomonoesterase that converts inositol 1,4,5-triphosphate into inositol bisphosphate.  相似文献   

9.
Membranes prepared from clone D1 of Madin-Darby canine kidney (MDCK) cells contain activity that can be attributed to Gp, a guanine nucleotide binding protein linked to phosphatidylinositol 4,5-bisphosphate dependent phospholipase C. Polyphosphoinositides are produced by addition of GTP, nonhydrolyzable GTP analogs, or fluoroaluminate. This production is inhibited by guanosine 5'-(beta-thiodiphosphate). While Ca2+ at 1 microM or more can generate high yields of inositol phosphates, guanine nucleotide activation of Gp can potentiate this Ca2(+)-dependent yield at resting levels of the cation. Membranes from cells expressing large amounts of ras-p21 exhibit small differences in guanine nucleotide induced polyphosphoinositide quantities. The greatest difference between normal and ras membranes was seen with AlF4- incubation. Of the three inositol phosphates measured, only the inositol bisphosphate yield was greatly increased in ras membranes compared with membranes from both parental and the D-1 clone of MDCK cells. From these data, we conclude that the presence of ras-p21 may affect production of polyphosphoinositides in MDCK cell membranes by some means other than direct participation in phospholipase C activation.  相似文献   

10.
The effects of guanine nucleotides, thrombin, and platelet cytosol (100,000 X g supernatant) on the hydrolysis of polyphosphoinositides by phospholipase C was examined in isolated platelet membranes labeled with [3H]inositol. Guanosine 5'-(3-O-thio)triphosphate (GTP gamma S) (10 microM) caused a 2-fold stimulation of polyphosphoinositide hydrolysis, compared to background. GTP gamma S (10 microM) plus thrombin (1 unit/ml) stimulated the release of inositol triphosphate, inositol diphosphate, and inositol phosphate 500, 300, and 250%, respectively, compared to GTP gamma S alone. Cytosol prepared from unlabeled platelets slightly increased the release of inositol phosphates from [3H]inositol-labeled membranes. Addition of cytosol plus GTP gamma S (10 microM), however, resulted in a 300% enhancement of the release of inositol phosphates compared to membranes incubated with thrombin and GTP gamma S. The stimulatory effects of cytosol and GTP gamma S on polyphosphoinositide hydrolysis were also observed when membranes were replaced by sonicated lipid vesicles prepared from a total platelet lipid extract. These data suggest that PIP2 hydrolysis in platelets is catalyzed by a soluble phospholipase C which is regulated by a GTP-binding regulatory protein.  相似文献   

11.
Phosphoinositides in frog skeletal muscle: a quantitative analysis   总被引:1,自引:0,他引:1  
The contents of major phospholipids per g of wet wt. in frog skeletal muscle are: 5.3 mumol PC; 1.4 mumol PE; 1 mumol SM; 0.4 mumol PtdIns; 0.3 mumol CL; and 0.13 mumol PS. The quantities of polyphosphoinositides per g of wet wt. are: 181 nmol PtInsP; 28 nmol PtdInsP2; and 8 nmol lyso-PtdInsP2. The specific activity of labelling of the total muscle ATP attained by external incubation with [32P]Pi was found to be 57 dpm/nmol x g muscle wet wt. PtdInsP2, the highest labelled polyphosphoinositide, showed a specific activity of 64,000 dpm/nmol per g muscle wet wt., suggesting that high specific activity ATP may be compartmentalized in the local environment of the triads and used as a substrate by the PtdIns and PtInsP kinase in that region. PtdInsP2 which is the immediate precursor for the release of InsP3, is found at a significant concentration and strategically located for its postulated role as a substrate for the action of phosphoinositidase C. The presence of a novel endogenous polyphosphoinositide, lyso-PtdInsP2, in animal tissues is reported for the first time. Electrical stimulation leads towards a rapid catabolization of polyphosphoinositides revealed by reductions in the 3H- and 32P-labelling, suggesting that muscle excitation is associated with the activation of breaking down of polyphosphoinositides.  相似文献   

12.
The relationship of polyphosphoinositide metabolism to erythrocyte ATP levels was examined. Turnover of polyphosphoinositides was not closely dependent on ATP as it is reported to be in yeast. Neomycin increased 32P incorporation into diphosphoinositide and to a lesser extent into triphosphoinositide without affecting intracellular ATP. Treatment of intact cells with ionophore A23187 resulted in a decrease of at least 80% in polyphosphoinositide levels which followed a decrease in cellular ATP and an increase in phosphatidate. The results indicate that polyphosphoinositide turnover does not regulate energy charge in the erythrocyte. However some of the events which follow treatment of erythrocytes with metabolic inhibitors or calcium and ionophore may be related to the accompanying decrease in polyphosphoinositide levels.  相似文献   

13.
The phosphorylation of endogenous diacylglycerol (DAG) and phosphoinositides by [tau-32P]ATP was studied in bovine rod outer segments (ROS) selectively depleted of soluble or peripheral and soluble proteins by treatment with moderate (100 mM) or low (5 mM) ionic strength medium, respectively. DAG kinase activity was similar in bleached and non-bleached ROS extracted with 100 mM medium, and amounted to 70% of that observed in the corresponding non-extracted ROS. Phosphatidic acid (PtdH) labelling in ROS extracted in the dark with low ionic strength medium was markedly lower than in those extracted in light. Thus, even when a major proportion of DAG kinase was associated to the membrane, a soluble form also occurred. Most of the membrane-bound fraction behaved as a peripherally associated protein, its binding to the membrane being modified by light. Ir ROS extracted at moderate ionic strength the labelling of inositides was similar to that in non-extracted ROS. A marked enhancement in polyphosphoinositide labelling was observed in ROS extracted in the dark with low ionic strength. Alkaline treatment of ROS also produced inhibition of polyphosphoinositide phosphorylation. A peripheral form of a type C phospholipase, or a peripheral protein-mediated activation of a particulate form thereof, is suggested. Labelled polyphosphoinositides were more actively hydrolyzed in the light and in the dark plus GTP tau S than in the dark-incubated membranes. The results of phosphorylation experiments in membranes where differential extraction of the alpha subunit of transducin was carried out suggest that alpha and beta tau subunits may play opposite modulating roles in PtdH and polyphosphoinositide metabolism.  相似文献   

14.
The intracellular concentrations of polyphosphoinositides and inositol phosphates were determined, and their role in growth factor-initiated cell division was investigated in a Chinese hamster ovary cell inositol auxotroph (CHO-K1-Ins). Metabolic labeling experiments during inositol starvation of CHO-K1-Ins cells showed that 1) the lipid-linked inositol component was maintained at the expense of the soluble inositol pool, 2) the decreasing cellular content of phosphatidylinositol was replaced by phosphatidylglycerol, and 3) the concentrations of inositol polyphosphates and polyphosphoinositides were conserved at the expense of inositol and phosphatidylinositol. These data show that homeostatic mechanisms exist for the maintenance of the polyphosphoinositide and inositol phosphate pools at the expense of inositol and phosphatidylinositol. The addition of alpha-thrombin to growth-arrested (serum-starved) CHO-K1-Ins cells stimulated the incorporation of [3H]thymidine into DNA to the same extent as that observed following serum readdition. gamma-Thrombin was also an effective mitogen, but active site-inhibited alpha-thrombin was not. Both alpha- and gamma-thrombin, but not catalytic site-inhibited alpha-thrombin, initiated phosphatidylinositol turnover in vivo and increased phosphatidylinositol 4,5-bisphosphate phospholipase C activity in vitro. Serum and insulin were potent CHO-K1-Ins cell mitogens, but neither triggered phosphatidylinositol turnover in vivo nor activated phospholipase C in vitro. The activation of phospholipase C plays a determinant role in thrombin-initiated cell cycle progression in Chinese hamster ovary cells, although other growth factor-signaling pathways exist that are independent of polyphosphoinositide catabolism.  相似文献   

15.
We have studied the effect of gamma-aminobutyric acid (GABA) and other GABA-receptor agonists (3-aminopropanesulphonic acid and muscimol) on the noradrenaline-induced stimulation of polyphosphoinositide metabolism in rat hippocampal slices. Formation of water-soluble inositol phosphates, and polyphosphoinositide metabolism were studied in hippocampal slices prelabelled with [3H]myoinositol. Noradrenaline induced formation of inositol mono-, bis- and trisphosphate during 10 min incubation in the presence of lithium; activation of phospholipase C by noradrenaline was also reflected by the hydrolysis of polyphosphoinositides and by the increased metabolism of phosphatidylinositol. GABA-receptor agonists were unable to activate per se phospholipase C; however, when added together with a low concentration of noradrenaline, they greatly potentiated the noradrenaline-stimulated polyphosphoinositide metabolism. We conclude that GABA-receptor agonists potentiate the effect of noradrenaline on polyphosphoinositide turnover and we discuss the role of this neurotransmitter interaction in the physiology of the hippocampus.  相似文献   

16.
Protein kinase C(PKC) is a Ca2+- and phospholipid-dependent protein kinase which can be activated by diacylglycerol, a product of polyphosphoinositide hydrolysis. In this report, we show that the polyphosphoinositides L-alpha-phosphatidylinositol 4-monophosphate (PI 4P) and L-alpha-phosphatidylinositol 4,5-diphosphate (PI 4.5DP) can serve as phospholipid cofactors of isolated rat brain PKC. The order of potency of the phosphoinositides in the activation of PKC, PI greater than PI 4P greater than PI 4,5DP, shows a negative correlation with the degree of acidity of the phospholipid head group, whether 1 mM Ca2+ or 200 nM TPA is present in the reaction assay mixture. Although the polyphosphoinositides are by themselves weaker activators of PKC than PI, small amounts of PI 4,5DP cause a two-fold enhancement of PKC in the presence of Ca2+ and PI. While the endogenous phospholipid cofactors of PKC remain to be identified, these results suggest that the small amounts of polyphosphoinositides which are present in cell membranes may play a direct role in the activation of PKC in vivo, by serving as phospholipid cofactors of the enzyme.  相似文献   

17.
Modulation of inositol phospholipid metabolism by polyamines.   总被引:4,自引:0,他引:4       下载免费PDF全文
At low concentrations of Mg2+, incorporation of 32P from [gamma-32P]ATP into phosphatidylinositol 4-phosphate (PIP) and phosphatidylinositol 4,5-bisphosphate (PIP2) in plasma membranes isolated from human polymorphonuclear leucocytes was enhanced 2-4-fold by the polyamines spermidine and spermine. Polyamines had no effects on inositol phospholipid phosphorylation at high concentrations of Mg2+. At 1 mM-Mg2+, [32P]PIP2 synthesis was maximally enhanced by 2 mM-spermine and 5 mM-spermidine, whereas putrescine only slightly enhanced synthesis. Spermine decreased the EC50 (concn. for half-maximal activity) for Mg2+ in [32P]PIP2 synthesis from 5 mM to 0.5 mM. Spermine did not modulate the Km for ATP for [32P]PIP or [32P]PIP2 synthesis. Spermine also decreased the EC50 for PI in [32P]PIP synthesis. In contrast, spermine elevated the apparent Vmax, without affecting the EC50 for PIP, for [32P]PIP2 synthesis. Spermine and spermidine also inhibited the hydrolysis of [32P]PIP2 by phosphomonoesterase activity. Therefore polyamines appear to activate inositol phospholipid kinases by eliminating the requirements for super-physiological concentrations of Mg2+. Polyamine-mediated inhibition of polyphosphoinositide hydrolysis would serve to potentiate further their abilities to promote the accumulation of polyphosphoinositides in biological systems.  相似文献   

18.
Stimulation of rabbit polymorphonuclear leucocytes with A23187 causes phospholipase C mediated breakdown of polyphosphoinositides, as evidenced by accumulation of [3H]inositol-labelled inositol bisphosphate and inositol trisphosphate. At the same time the polyphosphoinositides and the products of their breakdown, diacylglycerol and phosphatidic acid, label rapidly with radioactive arachidonic acid. Enhancement of polyphosphoinositide labelling is not as great as enhancement of diacylglycerol or phosphatidic acid labelling, suggesting additional early activation of a second independent synthetic pathway to the last named lipids. Experiments using double (3H/14C) labelling, to distinguish pools with different rates of turnover, suggest the major pool of arachidonic acid used for synthesis of lipoxygenase metabolites turns over more slowly than arachidonic acid in diacylglycerol, but at about the same rate as arachidonic acid esterified in phosphatidylcholine or phosphatidylinositol. Further, when cells are prelabelled with [14C]arachidonic acid, then stimulated for 5 min, it is only from phosphatidylcholine, and to a lesser extent phosphatidylinositol, that radiolabel is lost. Release of arachidonic acid is probably via phospholipase A2, since it is blocked by the phospholipase A2 inhibitor manoalide. The absence of accumulated lysophosphatides can be explained by reacylation and, in the case of lysophosphatidylinositol, deacylation. The importance of phospholipase A2 in phosphatidylinositol breakdown contrasts with the major role of phospholipase C in polyphosphoinositide hydrolysis. Measurements of absolute free fatty acid levels, as well as studies showing a correlation between production of radiolabelled hydroxyeicosatetraenoic acids and release of radiolabel from the phospholipid pool, both suggest that hydrolysis of arachidonic acid esterified into phospholipids is the limiting factor regulating formation of lipoxygenase metabolites. By contrast with A23187, fMet-Leu-Phe (a widely used polymorphonuclear leucocyte activator) is a poor stimulant for arachidonic acid release unless a 'second signal' (e.g. cytochalasin B, or a product of A23187-stimulated cells) is also present. In the presence of cytochalasin B, fMet-Leu-Phe, like A23187, stimulates release of radiolabelled arachidonic acid principally from phosphatidylcholine.  相似文献   

19.
Under normal conditions the rate of the 32P-orthophosphate incorporation into the polyphosphoinositides was 30--40 times greater than into the other phospholipid fraction of the normal rat liver. There was a rapid postmortem alteration of the polyphosphoinositide content in the liver. Under conditions studied the changes in the phospholipid content were revealed in the polyphosphoinositide fractions only. The changes in the content and in the metabolic intensity of rat polyphosphoinositide in the liver were in many respects similar to those in the brain. Polyphosphoinositide fractions were found to be the most labile of all the phospholipid fractions in the rat liver.  相似文献   

20.
Sheep seminal vesicles contain two immunologically distinct phospholipase C (PLC) enzymes that can hydrolyze phosphatidylinositol (PI) (Hofmann, S.L., and Majerus, P.W. (1982) J. Biol. Chem. 257, 6461-6469). One of these enzymes (PLC-I) has been purified to homogeneity; the second (PLC-II) has been purified 2600-fold from a crude extract of seminal vesicles. In the present study we have compared the ability of these purified enzymes to hydrolyze PI, phosphatidylinositol 4-phosphate (PI-4-P), and phosphatidylinositol 4,5-diphosphate (PI-4,5-P2). Using radiolabeled substrates in small unilamellar phospholipid vesicles of defined composition, the two enzymes were found to hydrolyze all three of the phosphoinositides. Hydrolysis of all three phosphoinositides by both enzymes was stimulated by Ca2+; however, in the presence of EGTA only the polyphosphoinositides were hydrolyzed. The two enzymes displayed substrate affinities in the order PI greater than PI-4-P greater than PI-4,5-P2, and maximum hydrolysis rates in the order PI-4,5-P2 greater than PI-4-P greater than PI. When present in the same vesicles, PI and the polyphosphoinositides competed for a limiting amount of either enzyme. Inclusion of phosphatidylcholine into vesicles containing the phosphoinositides resulted in greater inhibition of PI hydrolysis than polyphosphoinositide hydrolysis. When all three phosphoinositides were present in vesicles mimicking the cytoplasmic leaflet of cell membranes, there was preferential hydrolysis of the polyphosphoinositides over PI. We conclude that a single phospholipase C can account for the hydrolysis of all three phosphoinositides seen during agonist-induced stimulation of secretory cells. The cytoplasmic Ca2+ concentration and phospholipid composition of the membrane, however, may influence the relative rate of hydrolysis of the three phosphoinositides.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号