首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 281 毫秒
1.
Stokes JR  Davies GA 《Biorheology》2007,44(3):141-160
The rheology of saliva is highly important due to its influence on oral health and physiochemical processes within the oral environment. While the rheology of human whole saliva (HWS) is considered important for its functionality, its measurement is often performed erroneously and/or limited to the viscosity at a single shear rate. To ensure accurate rheological measurements, it is necessary to test HWS immediately after expectoration and to apply a thin layer of surfactant solution around the rim of the rheometer plates so that protein adsorption is minimized at the air-liquid interface. It is shown for the first time that the viscosity and viscoelasticity of HWS depends greatly upon the method of stimulation. Mechanical action stimulates slightly shear-thinning and relatively inelastic saliva, while acidic solutions (e.g. 0.25% citric acid) stimulate secretion of saliva that is highly elastic and shear-thinning. However, both acidic solutions and mechanical action stimulate similar volumes of saliva. For acid-stimulated saliva, the ratio of the primary normal stress difference to the shear stress is of order 100 and the viscosity at high shear rates is only marginally above that of water. This extremely high stress ratio for such a low viscosity fluid indicates that saliva's elastic properties dominate its flow behavior and may assist in facilitating lubrication within the oral cavity. It is anticipated that the variation in saliva rheology arises because the individual glands secrete saliva of different rheology, with the proportion of saliva secreted from each gland depending on the method of stimulation. The steady-shear rheology and linear viscoelasticity of HWS are described reasonably well using a FENE-P constitutive model and a 3-mode Maxwell model respectively. These models indicate that there are several long relaxation modes within saliva, possibly arising from the presence of large flexible macromolecules such as mucin glycoproteins.  相似文献   

2.
F J Nordt  G V Seaman 《Biorheology》1989,26(2):389-400
Electrokinetic measurements and rheological studies conducted in parallel have previously shown red cell surface charge to play a role in governing aggregative behavior and bulk flow properties of red cell suspensions. For these and other types of model investigations, aldehyde stabilized cells have been widely used. In this communication, the influence of the purity of formaldehyde was investigated. It was found that (a) the direct dissolution of commercially available paraformaldehyde in water or suitably buffered saline results in impure solutions which, if utilized in the fixation of human erythrocytes, produces cells which have significantly different electrophoretic properties from native cells; (b) the basis for the differences is the presence of metallic impurities in some commercially available paraformaldehyde preparations; (c) the impurities and thus the anomalous electrokinetic properties of the fixed cells may be eliminated by generating formaldehyde gas from paraformaldehyde by heating the latter to 203-210 degrees C; (d) alternatively, the impurities may be eliminated by addition of disodium ethylenediamine tetraacetate dihydrate to fixative solutions prepared directly from paraformaldehyde.  相似文献   

3.
This research is relevant to oral processing of lipid continuous foods. During this first step of food digestion, lipid continuous foods such as chocolate or margarine phase invert into oil-in-water emulsions stimulated through the mechanical action of tongue and teeth in combination with the change in temperature and the high surface activity of salivary proteins. These are hypothesised to stabilise the newly formed interface in competition with surfactants or surface active molecules released from the food if present. Here competitive adsorption between mechanically stimulated human whole saliva (HWS) and lecithin dissolved in sunflower oil freed of interfacially active contaminants was investigated in-vitro using a pendant drop tensiometer for dynamic interfacial tension and interfacial rheological measurements. Initially, it was validated that the interfacial properties of HWS samples remained unaffected by frozen storage at ?80 °C during 6 weeks. Protein concentration affected the absolute values of interfacial tension and in particular the dilatational elastic modulus. Competitive adsorption studies revealed a mixed interface and it follows that emulsion stabilisation during oral processing involves both salivary proteins and lecithin present in the oil phase.  相似文献   

4.
The spinnbarkeit of saliva reflects the ability of saliva to adhere to surfaces within the mouth, thereby serving as a protective role and aiding in lubrication. Therefore, alterations in the extensional rheology of saliva may result in the loss in adhesiveness or the ability to bind onto surfaces. Mucin glycoproteins and their structures are known to be important factors for the extensional rheological properties of saliva. The conformation of mucin depends on factors such as pH and ionic strength. Chewing is one of the main stimuli for salivary secretion but creates significant sheer stress on the salivary film which could influence mouthfeel perceptions. The current study investigates the possible factors which affect the extensional rheological properties of saliva by comparing submandibular/sublingual saliva with different oral stimuli within the same group of subjects. Unstimulated and stimulated saliva (chew, smell and taste) salivas were collected primarily from submandibular/sublingual glands. The saliva samples were measured for Spinnbarkeit followed by the measuring mucin, total protein, total calcium and bicarbonate concentrations. The results indicated correlations between rheological properties and mucin/ion concentrations. However, chewing stimulated submandibular/sublingual saliva is shown to have significantly lower Spinnbarkeit, but factors such as mucin, protein and calcium concentrations did not account for this variation. Analysis of the concentration of bicarbonate and pH appears to suggest that it has a prominent effect on extensional rheology of saliva.  相似文献   

5.
Recently reported data from mechanical measurements of cultured airway smooth muscle cells show that stiffness of the cytoskeletal matrix is determined by the extent of static contractile stress borne by the cytoskeleton (Wang N, Toli?-N?rrelykke IM, Chen J, Mijailovich SM, Butler JP, Fredberg JJ, and Stamenovi? D. Am J Physiol Cell Physiol 282, C606-C616, 2002). On the other hand, rheological measurements on these cells show that cytoskeletal stiffness changes with frequency of imposed mechanical loading according to a power law (Fabry B, Maksym GN, Butler JP, Glogauer M, Navajas DF, and Fredberg JJ. Phys Rev Lett 87: 148102, 2001). In this study, we examine the possibility that these two empirical observations might be interrelated. We combine previously reported data for contractile stress of human airway smooth muscle cells with new data describing rheological properties of these cells and derive quantitative, mathematically tractable, and experimentally verifiable empirical relationships between contractile stress and indexes of cell rheology. These findings reveal an intriguing role of the contractile stress: although it maintains structural stability of the cell under applied mechanical loads, it may also regulate rheological properties of the cytoskeleton, which are essential for other cell functions.  相似文献   

6.
Enhancement of the viscosity of mucin by serum albumin.   总被引:4,自引:0,他引:4       下载免费PDF全文
The interaction of serum albumin with a model epithelial mucin from pig stomach was explored by rotary viscometry. During 30 min of incubation of human serum albumin(20mg/ml) and pig gastric mucin (8mg/ml) in iso-osmotic buffers at 37 degrees C, the solution became markedly viscous. Viscosity enhancement was proportional to albumin concentration (2-40mg/ml), was most pronounced under conditions of low shear rate (less than 45S-1), and was considerably greater than the additive or multiplicative viscosity values calculated from albumin or mucin solutions measured separately. The viscous mucin-albumin complex was destroyed by high shear rates (greater than 90S-1), but slowly re-formed under zero shear conditions. Elevation of pH (7 to 9), ionic strength (0.1 to 1.0), and addition of disodium EDTA (5mM) did not cause marked or specific alterations in the viscosity of the mixture, suggesting that electrostatic interactions probably do not stabilize mucin-albumin complexes. Urea (7M) and heating (35 to 55 degrees C) caused a major increase in the viscosity of mucin and mucin-albumin mixtures, suggesting that rupture of hydrogen bonds, unfolding and partial denaturation of mucin promotes greater intertangling (possibly hydrophobic interactions) between mucin and albumin molecules. The implications of mucin-albumin interaction in diseases associated with mucus obstruction are briefly discussed.  相似文献   

7.
Rheology of the vitreous body. Part I: Viscoelasticity of human vitreous.   总被引:5,自引:0,他引:5  
B Lee  M Litt  G Buchsbaum 《Biorheology》1992,29(5-6):521-533
  相似文献   

8.
The physicochemical and rheological properties of a water-soluble chitosan (WSC) derivative were characterized in order to facilitate its use as a novel material for biomedical applications. The WSC was prepared by conjugating glycidyltrimethylammonium chloride (GTMAC) onto chitosan chains. Varying the molar ratio of GTMAC to chitosan from 3:1 to 6:1 produced WSCs with a degree of substitution (DS) that ranged from 56% to 74%. The WSC with the highest DS was soluble in water up to concentrations of 25 g/dL at room temperature. An increase in the polymer concentration gradually increased both the pH and conductivity of the WSC solutions. The rheological properties of the WSC solutions were found to be dependent on the salt and polymer concentrations as well as the DS value. In the absence of salt, the rheological behavior of the WSC was found to be typical of that for a polyelectrolyte in the dilute solution regime. However, the addition of salt decreased the viscosity of the polymer solution due to the reduction of electrostatic repulsions by the positively charged trimethylated ammonium groups of the WSC. In the concentrated regime, the viscosity of the WSCs was found to follow a power-law expression. The lowest DS WSC had the more favorable viscoelastic properties that were attributed to its high molecular weight, as confirmed by the stress relaxation spectra and intrinsic viscosity measurements. The effect of DS on the degree of interaction between WSC and the lipid egg phosphatidylcholine was investigated by FTIR analysis. Overall, the lower DS WSC had enhanced rheological properties and was capable of engaging in stronger intermolecular physical interactions.  相似文献   

9.
The thermal and rheological properties of spray-dried, ethanol-precipitated, purified, and deacetylated spruce galactoglucomannans (GGM) were investigated by rheological measurements and differential scanning calorimetry. The shear rate dependence of viscosity and the effects of the drying method, temperature, ionic strength, and deacetylation on rheological properties were studied. GGM solutions exhibited a shear thinning behaviour. GGM solutions did not obey the Cox–Merz rule. The storage modulus of GGM solutions increased with an increase in concentration; gradually until a concentration of 5%, but rapidly at higher concentrations. Ethanol-precipitated GGM solutions showed a more elastic behaviour than spray-dried GGM solutions. Deacetylation caused an increase in apparent viscosity and more significantly in storage modulus. The storage modulus increased slightly with a decrease in temperature. A small amount addition of NaCl slightly changed the oscillatory behaviour. The effects of above factors were discussed in terms of molecular interactions. The rheological measurements of GGM solutions provide the basis of functionalities of GGM solutions.  相似文献   

10.
High protein titers are gaining importance in biopharmaceutical industry. A major challenge in the development of highly concentrated mAb solutions is their long-term stability and often incalculable viscosity. The complexity of the molecule itself, as well as the various molecular interactions, make it difficult to describe their solution behavior. To study the formulation stability, long- and short-range interactions and the formation of complex network structures have to be taken into account. For a better understanding of highly concentrated solutions, we combined established and novel analytical tools to characterize the effect of solution properties on the stability of highly concentrated mAb formulations. In this study, monoclonal antibody solutions in a concentration range of 50–200 mg/ml at pH 5–9 with and without glycine, PEG4000, and Na2SO4 were analyzed. To determine the monomer content, analytical size-exclusion chromatography runs were performed. ζ-potential measurements were conducted to analyze the electrophoretic properties in different solutions. The melting and aggregation temperatures were determined with the help of fluorescence and static light scattering measurements. Additionally, rheological measurements were conducted to study the solution viscosity and viscoelastic behavior of the mAb solutions. The so-determined analytical parameters were scored and merged in an analytical toolbox. The resulting scoring was then successfully correlated with long-term storage (40 d of incubation) experiments. Our results indicate that the sensitivity of complex rheological measurements, in combination with the applied techniques, allows reliable statements to be made with respect to the effect of solution properties, such as protein concentration, ionic strength, and pH shift, on the strength of protein-protein interaction and solution colloidal stability.  相似文献   

11.
Gas cell stability during bread making is controlled by both surface and bulk properties. This paper is focused on studying the surface properties of the water-soluble phase of the dough, the dough liquor (with and without lipids), as well as the composition of the air/water interface. Using infrared reflection measurements, we showed that in lipid-poor liquor, proteins are the dominant species present at the air/water interface. With complete liquor (including the lipids), a mixed interface of protein and lipids is obtained. However, the presence of lipids in the surface layer did not significantly affect the surface pressure. We also added enzymes to the flour to evaluate in what way the surface-active properties of the liquor components can be affected. These results were compared to the effect of adding a surfactant [diacetyl tartaric esters of mono- and diglycerides (DATEM)]. Biobake 10804, a xylanase that increased the arabinoxylan content of the dough liquor, decreased the surface pressure and increased the dilational modulus in lipid-poor liquor. This effect was not observed with the liquor including the lipids. Lipopan 50 BG, a 1,3-specific lipase, increased the surface pressure of the liquor that included the lipids. Lipopan F BG, which converts polar lipids to their lyso form, strongly increased the surface pressure not only in the lipid-containing liquor but also in the lipid-poor liquor. DATEM, as expected, increased the surface pressure while strongly decreasing the dilational modulus. Results of these studies were used to help explain changes in loaf volume observed in a series of baking tests, using the same enzymes and additives. This led to the conclusion that the effect of surface-active components alone cannot account for the larger loaf volumes observed. Clearly, both the effect of bulk and interfacial rheological properties should be considered together when explaining gas cell stability.Presented at the 2005 AACC annual Meeting, Orlando, FL, September 11–14.  相似文献   

12.
We report the rheological behaviour of a succinoglycan polysaccharide in dilute and semi-dilute solutions as a function of temperature, ionic strength and the nature of counterion. We have examined the viscosity dependence as a function of molecular weight using samples obtained by ultrasonication. We have also prepared samples lacking succinate substitutes and compared their behaviour with that of the native polymer. In both cases, we observed that, after heating a polymer solution for the first time above the conformational transition temperature, a different ordered state was obtained on cooling. This state had a lower molecular weight and intrinsic viscosity but identical chemical structure and local properties. A role for the side chain in the stabilization of breaks in the backbone is suggested. Nevertheless, a unique curve is obtained for the specific viscosity as a function of the overlap parameter c[eta] for different polymer concentrations of both the native and heated forms. However, different curves are obtained for normal and succinate-free polymers, and the succinate-free polymer is characterized by a lower Huggins constant.  相似文献   

13.
Polymeric excipients are often the least well-characterized components of pharmaceutical formulations. The aim of this study was to facilitate the QbD approach to pharmaceutical manufacturing by evaluating the inter-grade and inter-batch variability of pharmaceutical-grade polymeric excipients. Sodium alginate, a widely used polymeric excipient, was selected for evaluation using appropriate rheological methods and test conditions. The materials used were six different grades of sodium alginate and an additional ten batches of one of the grades. To compare the six grades, steady shear measurements were conducted on solutions at 1%, 2%, and 3% w/w, consistent with their use as thickening agents. Small-amplitude oscillation (SAO) measurements were conducted on sodium alginate solutions at higher concentrations (4–12% w/w) corresponding to their use in controlled-release matrices. In order to compare the ten batches of one grade, steady shear and SAO measurements were performed on their solutions at 2% w/w and 8% w/w, respectively. Results show that the potential interchangeability of these different grades used as thickening agents could be established by comparing the apparent viscosities of their solutions as a function of both alginate concentration and shear conditions. For sodium alginate used in controlled-release formulations, both steady shear behavior of solutions at low concentrations and viscoelastic properties at higher concentrations should be considered. Furthermore, among batches of the same grade, significant differences in rheological properties were observed, especially at higher solution concentrations. In conclusion, inter-grade and inter-batch variability of sodium alginate can be determined using steady shear and small-amplitude oscillation methods.  相似文献   

14.
The bulk theological properties of exopolymers produced by three species of microalgae are destroyed by shear stress. The properties are drag reduction in capillary pressure flow and low shear rate viscosity. As such, shear stress constitutes an experimental probe into the macromolecular structure which effects bulk Theological properties. Native and sheared exopolymer solutions were subjected to analysis by electrophoresis, size exclusion chromatography, hydrolysis, dialysis, and reducing end-group analysis. The evidence indicates that shearing did not break the glycoside backbone of these exopolymers, rather shearing disrupted subtle interactions between copolymers. The interactions necessary for bulk rheological properties are likely at the quaternary level of macromolecular organization, specifically weak aggregations.  相似文献   

15.
In studying perfluorooctyl bromide (PFOB) dispersions in aqueous media, we have used two types of surfactant: egg yolk phospholipids (EYP) and polyglycerol esters (PGE). Our interest in these dispersions arises from their potential biomedical applications as imaging solutions and oxygen-carrying solutions (i.e., blood substitutes). For EYP systems, we have identified the dispersion structure as consisting of (a) PFOB droplets (250-nm diameter) stabilized by a phospholipid monolayer adsorbed irreversibly at the o/w interface and (b) small empty phospholipid vesicles. With both surfactants commercial preparations yielded stable systems, while purified samples, being non-dispersible, could not be made to act as emulsifiers. In both cases, minor components in the commercial surfactant were found to be necessary for the formation of a stable dispersion, enabling the transport of the pure surfactant to the PFOB/water interface.  相似文献   

16.
Objective: This study sought to evaluate whether root dentine caries‐like lesions could be remineralised by saliva substitutes. Methods: Root dentine slabs (3 × 3 × 2 mm) were cut from bovine incisors, ground flat, polished and pre‐tested for Knoop microhardness (KHN) at five locations spaced 500 μm apart and 500 μm from the left edge of each sectioned piece. After 60 out of the 100 slabs had been selected based upon their KHN values, specimens were coated with wax except for their outer surface. Specimens were then cycled through a highly cariogenic challenge model to induce caries‐like lesions, whose formation was confirmed by KHN measurements located 500 μm from the right edge of the specimen. According to a randomised complete block design, the experimental units (n = 15) were exposed to 1.5 ml of saliva substitutes, based on either mucin (MC) or carboxymethylcellulose (CM), to natural human saliva (HS) or to 100% relative humidity (RH) over 20 days. Remineralisation was verified by KHN measurements located 1000 μm apart from the right edge of the specimen. Results: Analysis of variance indicated a significant (p < 0.0001) difference among the KHN values attained by the carious root dentine after exposure to the remineralising agents. Tukey's test ascertained that remineralisation was greatest with MC, intermediate with CM and least with HS, but rehardening did not reach the pre‐caries lesion formation values. Conclusion: Saliva substitutes may provide partial remineralisation to preformed caries‐like lesions in root dentine.  相似文献   

17.
Raman spectroscopy was used to study the anomalous decrease in the freezing temperature of water produced by an antifreeze glycoprotein obtained from the sera of an Antarctic fish. An active fraction of this glycoprotein has a molecular weight of approximately 18,000 by equilibrium sedimentation compared to an apparent weight of 20 by freezing temperature depression. The Raman spectra of water present in a 1% antifreeze glycoprotein solution and of ice frozen from this solution were indistinguishable from the spectra of pure water and ice, respectively. These results indicate that the bulk properties of water and ice are unaffected by the presence of the antifreeze glycoprotein. Raman measurements on ice grown slowly, using as seed an oriented single crystal of ice in contact with 1% glycoprotein solutions, showed that the active glycoprotein was not excluded from the ice phase. On the other hand, we found that a smaller, inactive glycoprotein was excluded. Comparison of the Raman spectra of active and inactive glycoprotein components as solids, in 5% solutions, and rapidly frozen 5% solutions, showed that the two components differ in conformation and possibly in the environment of their carbohydrate hydroxyls. These observations suggest that hydrogen bonding of the carbohydrate hydroxyls of the active glycoprotein at the ice-solution interface may physically prevent growth of the ice lattice.  相似文献   

18.
The role of saliva in the oral cavity is manifold; an important function is to serve as lubricant between hard (enamel) and soft (mucosal) tissues. Intraoral lubrication is of crucial importance in order to maintain functions such as deglutition, mastication and the faculty of speech. A large number of people suffer from impaired salivary functions, displaying symptoms such as 'dry mouth'. This results in a need for methods to assess the lubricating properties of both native saliva and potential artificial saliva formulations. Here, normal as well as lateral forces, acting between adsorbed salivary films, have been measured for the first time by means of colloidal probe atomic force microscopy (AFM). It was found that the presence of salivary pellicles between hard surfaces reduces the friction coefficient by a factor of 20. This reduction of friction is consistent with the long-range purely repulsive nature of the normal forces acting between the salivary films. The lubricating mechanism is presumably based on a full separation of the sliding surfaces by the salivary films. The friction between salivary films has been investigated at normal loads that cover the clinical jaw closing forces, and it can be concluded that the lubricating properties are maintained within this load interval. The present study indicates the usefulness of colloidal probe AFM, which offers a direct and quantitative measure of lubrication at a molecular level, in the study of biotribological phenomena. In particular, the results obtained here may have implications for the development of saliva substitutes.  相似文献   

19.
Epithelial tissues act as barriers and, therefore, must repair themselves, respond to environmental changes and grow without compromising their integrity. Consequently, they exhibit complex viscoelastic rheological behavior where constituent cells actively tune their mechanical properties to change the overall response of the tissue, e.g., from solid-like to fluid-like. Mesoscopic mechanical properties of epithelia are commonly modeled with the vertex model. While previous studies have predominantly focused on the rheological properties of the vertex model at long time scales, we systematically studied the full dynamic range by applying small oscillatory shear and bulk deformations in both solid-like and fluid-like phases for regular hexagonal and disordered cell configurations. We found that the shear and bulk responses in the fluid and solid phases can be described by standard spring-dashpot viscoelastic models. Furthermore, the solid-fluid transition can be tuned by applying pre-deformation to the system. Our study provides insights into the mechanisms by which epithelia can regulate their rich rheological behavior.  相似文献   

20.
The structure of a semidilute solution of mercerized cellulose (CC1m) in 8% (w/w) LiCl.DMAc, which contained some aggregates, was investigated using static and dynamic light scattering measurements. The static scattering function of the polymer solution containing a small amount of aggregates can be separated into fast- and slow-mode components by combining static and dynamic light scattering measurements. The osmotic modulus was identical for the fast-mode component of the CC1m solutions and the native cellulose (CC1) solutions, in which cellulose is dispersed molecularly. This indicates that the molecularly dispersed component of the CC1m solutions has an identical conformation with the cellulose molecules in the CC1 solutions. The correlation length was also identical for the fast-mode components of CC1m solutions and the CC1 solutions, indicating that these solutions have the same mesh size of the polymer entanglement. These observations for the fast-mode components are consistent with the concentration dependence of the zero shear rate viscosity and the plateau modulus estimated in the rheological measurements. The slow-mode component, on the other hand, gave information on the aggregate structure in the CC1m solution. The radius of gyration of the aggregate structure estimated from the slow-mode component was about 70 nm, which is independent of the concentration of the solution. The plots for particle scattering factor of the slow-mode component lay between the theoretical curve of a sphere and a Gaussian chain, implying that the structure of the aggregate in the CC1m solution is like a multiarm polymer. A characteristic time of the slow-mode component calculated with the translational diffusion coefficient and the radius of gyration were almost identical with the relaxation time of the long-time relaxation observed in the rheological measurements. This indicates that the long-time relaxation of CC1m solutions originates in the translational diffusion of the aggregate structure in the solution.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号