首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Balali GR  Kowsari M 《Mycopathologia》2004,158(3):377-384
Rhizoctonia disease, caused by Rhizoctonia solani is one of the most important fungal diseases in bean fields in Isfahan, Iran. Bean plants showing stem and root cankers were collected and Rhizoctonia-like fungi obtained from the samples were identified by anastomosis. Pure cultures of bean isolates of R. solani were identified as AG-4. There were also AG-4 isolates from tomato, potato, cucumber, alfalfa and sugar beet in the areas sampled. A total of 163 isolates of R. solani AG-4 originating from stem and root cankers of beans were examined using pectic zymogram electrophoresis. Polygalacturonase (PG) and pectin estrase isozymes were observed in all AG-4 isolates tested. One (PG) and one pectic esterase (PE) band was found in common between all isolates examined. The electrophoretic patterns were grouped into seven zymogram groups (ZGs) according to the diagnostic PG and PE bands. One ZG occurred in a high frequency throughout the areas sampled. A pathogenicity test was conducted and representative isolates of each ZG were used to inoculate healthy bean plants. The results showed that each ZG caused different symptoms with varying severity. Isolates belonging to two ZGs were highly pathogenic causing root, stem and hypocotyl cankers whereas isolates of the other ZGs produced weak or no symptoms.  相似文献   

2.
Summay Soil samples were taken from 48 fields in the southern part of Thailand in which either bambara groundnut (Vigna subterranea) or groundnut (Arachis hypogeae) had been planted. Bacillus spp. were isolated using soil dilution plates and heat treatment to screen for endospore-producing bacteria. Among 342 Bacillus spp. isolates tested, 168 isolates were not antagonistic to Bradyrhizobium sp. strain NC-92 using dual culture technique. Further testing found 16 isolates of Bacillus spp. had the ability to inhibit mycelial growth of Rhizoctonia solani, a causal agent of leaf blight of bambara groundnut. Among these isolates, Bacillus spp. isolate TRV 9-5-2 had the greatest activity in anti-microbial tests against R. solani. This isolate was later identified as B. firmus. A powder formulation of B. firmus was developed by mixing bacterial endospores, talcum, sodium carboxymethylcellulose (SCMC) and polyvinylpyrolidone (PVP). The formulations contained bacterial levels ranging from 108 to 1010 c.f.u./g and the viability of bacteria in all formulations remained high after 1 year storage at room temperature (26–32 °C). All formulations showed satisfactory effectiveness in vitro in suppressing mycelial growth of R. solani using dual culture technique. The application of formulations as seed treatment showed that these formulations did not cause abnormality of seedling shape and had no effect on the germination of bambara groundnut seeds.  相似文献   

3.
Rhizoctonia solani and Phytophthora capsici are two of the most destructive phytopathogens occurring worldwide and are only partly being managed by traditional control strategies. Fluorescent Pseudomonas isolates PGC1 and PGC2 were checked for the antifungal potential against R. solani and P. capsici. Both the isolates were screened for the ability to produce a range of antifungal compounds. The results of this study indicated the role of chitinase and β-1,3-glucanase in the inhibition of R. solani, however, antifungal metabolites of a non-enzymatic nature were responsible for inhibition of P. capsici. The study confirmed that multiple and diverse mechanisms are adopted by the same antagonist to suppress different phytopathogens, as evidenced in case of R. solani and P. capsici.  相似文献   

4.
Bacteria isolated from spent mushroom substrate (SMS) were evaluated for the suppression of Pyricularia grisea, the causal agent of gray leaf spot of perennial ryegrass (Lolium perenne) turf. Thirty-two of 849 bacterial isolates (3.8%) from SMS significantly inhibited the mycelial growth of P. grisea in vitro. Six bacterial isolates that afforded maximum inhibition of P. grisea were also refractory to Rhizoctonia solani, Rhizoctonia cerealis, Sclerotinia homoeocarpa, and Fusarium culmorum. Each of the six isolates was identified as Pseudomonas aeruginosa by fatty acid profile analysis. The biocontrol activity of the bacterial isolates was not compromised by a prolonged exposure to UV radiation in vitro. In controlled-environment chamber experiments, all 32 bacterial isolates were tested for suppression of gray leaf spot on Pennfine perennial ryegrass when applied as seed treatment or foliar sprays. Foliar applications of the bacteria (108 cfu/ml 0.1% carboxymethylcellulose), but not the seed treatment, significantly reduced disease severity and incidence. The three most efficient isolates from foliar application treatments, which were among the six bacterial isolates identified as P. aeruginosa, were further evaluated for suppression of gray leaf spot as a function of timing of application. The three isolates of P. aeruginosa suppressed gray leaf spot in perennial ryegrass in Cone-tainers when applied at 1, 3, and 7 days prior to inoculation with P. grisea both in controlled-environment chamber experiments, and in potted ryegrass plants maintained in the field. All application intervals, regardless of the bacterial isolate, provided significant reduction of gray leaf spot severity. Suppression of gray leaf spot by isolates of P. aeruginosa under controlled-environment chamber conditions was not different from that observed in potted ryegrass plants maintained in the field. In field experiments, an isolate of P. aeruginosa provided significant suppression of gray leaf spot when applied at 1, 7, and 14 days prior to inoculation with P. grisea. The bacterium proved effective against gray leaf spot of perennial ryegrass maintained as fairway and rough heights. These results indicate that P. aeruginosa may be a potential biocontrol agent for gray leaf spot of perennial ryegrass turf.  相似文献   

5.
A plant growth-promoting isolate of a fluorescent Pseudomonas sp. EM85 and two bacilli isolates MR-11(2) and MRF, isolated from maize rhizosphere, were found strongly antagonistic to Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina, causal agents of foot rots and wilting, collar rots/stalk rots and root rots and wilting, and charcoal rots of maize, respectively. Pseudomonas sp. EM85 produced antifungal antibiotics (Afa+), siderophore (Sid+), HCN (HCN+) and fluorescent pigments (Flu+) besides exhibiting plant growth promoting traits like nitrogen fixation, phosphate solubilization, and production of organic acids and IAA. While MR-11(2) produced siderophore (Sid+), antibiotics (Afa+) and antifungal volatiles (Afv+), MRF exhibited the production of antifungal antibiotics (Afa+) and siderophores (Sid+). Bacillus spp. MRF was also found to produce organic acids and IAA, solubilized tri-calcium phosphate and fixed nitrogen from the atmosphere. All three isolates suppressed the diseases caused by Fusarium moniliforme, Fusarium graminearum and Macrophomina phaseolina in vitro. A Tn5:: lac Z induced isogenic mutant of the fluorescent Pseudomonas EM85, M23, along with the two bacilli were evaluated for in situ disease suppression of maize. Results indicated that combined application of the two bacilli significantly (P = 0.05) reduced the Macrophomina-induced charcoal rots of maize by 56.04%. Treatments with the MRF isolate of Bacillus spp. and Tn5:: lac Z mutant (M23) of fluorescent Pseudomonas sp. EM85 significantly reduced collar rots, root and foot rots, and wilting of maize caused by Fusarium moniliforme and F. graminearum (P = 0.05) compared to all other treatments. All these isolates were found very efficient in colonizing the rhizotic zones of maize after inoculation. Evaluation of the population dynamics of the fluorescent Pseudomonas sp. EM85 using the Tn5:: lac Z marker and of the Bacillus spp. MRF and MR-11(2) using an antibiotic resistance marker revealed that all the three isolates could proliferate successfully in the rhizosphere, rhizoplane and endorhizosphere of maize, both at 30 and 60 days after seeding. Four antifungal compounds from fluorescent Pseudomonas sp. EM85, one from Bacillus sp. MR-11(2) and three from Bacillus sp. MRF were isolated, purified and tested in vitro and in thin layer chromatography bioassays. All these compounds inhibited R. solani, M. phaseolina, F. moniliforme, F. graminearum and F. solani strongly. Results indicated that antifungal antibiotics and/or fluorescent pigment of fluorescent Pseudomonas sp. EM85, and antifungal antibiotics of the bacilli along with the successful colonization of all the isolates might be involved in the biological suppression of the maize root diseases.  相似文献   

6.
The genus Trichoderma is a potential biocontrol agent against several phytopathogenic fungi. One parameter for its successful use is an efficient coiling process followed by a substantial production of hydrolytic enzymes. The interaction between fifteen isolates of Trichoderma harzianum and the soil-borne plant pathogen, Rhizoctonia solani, was studied by light microscopy and transmission electron microscopy (TEM). Macroscopic observations of fungal growth in dual cultures revealed that growth inhibition of the pathogen occurred soon after contact with the antagonist. All T. harzianum isolates tested exhibited coiling around the hyphae of R. solani. The strains ALL23, ALL40, ALL41, ALL43 and ALL49 did not differ in coiling frequency and gave equal coiling performances. No correlation between coiling frequency and the production of cell wall-degrading chitinases, N-acetyl-β-d-glucosaminidase and β-1,3-glucanases, was found.  相似文献   

7.
A number of Penicillium isolates were recovered in association to Rhizoctonia solani strains pathogenic on tobacco and from soil on plates pre-colonized by the pathogen itself. Their antagonism toward R. solaniAG-2-1 was evaluated in dual cultures in vitro. Inhibition of growth was evident to some extent in most pairings, while hyphal interactions referable to mycoparasitic relationships were not observed. However, the occurrence of plasmolysis and/or vacuolisation and the induction of monilioid cells were indicative of the release of bioactive compounds. Therefore, production of fungitoxic metabolites was tested by adding concentrated culture filtrates of each Penicillium isolate to the growth medium of R. solani. Complete and lasting inhibition was incited by culture filtrates of some isolates belonging to P. brevicompactum, P. expansum, and P. pinophilum. Three purified compounds, respectively mycophenolic acid, patulin and 3-O-methylfunicone, which were extracted from culture filtrates, were able to inhibit R. solani in vitro. Their production was also detected in dual cultures of the same Penicilliumstrains with R. solani prepared in sterilized soil and when the Penicilliumstrains were cultured directly on R. solani mycelium harvested from liquid cultures. The possible role of such metabolites in antagonism of the above-mentioned Penicilliumspecies against R. solani is discussed.  相似文献   

8.
Cocoyam (Colocasia spp.) corms and cormels showing spoilage symptoms were collected from many stores in Nsukka locality and examined for rot and associated fungal pathogens. Aspergillus niger, Botryodiplodia theobromae, Corticium rolfsii, Geotrichum candidum, Fusarium oxysporum, and F. solani were recovered from rotten cocoyams. The representative isolates of these species caused cocoyam rot in pathogenicity tests. The rot due to A. niger, B. theobromae and C. rolfsii was extensive resulting in complete maceration of cocoyam tissue. Potassium sorbate (0.1 mg/ml) protected cocoyams from fungal rot with the exception of C. rolfsii.  相似文献   

9.
Fusarium is one of the important phytopathogenic genera of microfungi causing serious losses on cucurbit plants in Kermanshah province, the largest area of cucurbits plantation in Iran. Therefore, the objectives in this study were to isolate and identify disease-causing Fusarium spp. from infected cucurbit plants, to ascertain their pathogenicity, and to determine their phylogenetic relationships. A total of 100 Fusarium isolates were obtained from diseased cucurbit plants collected from fields in different geographic regions in Kermanshah province, Iran. According to morphological characters, all isolates were identified as Fusarium oxysporum, Fusarium proliferatum, Fusarium equiseti, Fusarium semitectum and Fusarium solani. All isolates of the five Fusarium spp. were evaluated for their pathogenicity on healthy cucumber (Cucumis sativus) and honeydew melon (Cucumis melo) seedlings in the glasshouse. F. oxysporum caused damping-off in 20–35 days on both cucurbit seedlings tested. Typical stem rot symptoms were observed within 15 days after inoculation with F. solani on both seedlings. Based on the internal transcribed spacer (ITS) regions of ribosomal DNA (rDNA) restriction fragment length polymorphism (RFLP) analysis, the five Fusarium species were divided into two major groups. In particular, isolates belonging to the F. solani species complex (FSSC) were separated into two RFLP types. Grouping among Fusarium strains derived from restriction analysis was in agreement with criteria used in morphological classification. Therefore, the PCR-ITS-RFLP method provides a simple and rapid procedure for the differentiation of Fusarium strains at species level. This is the first report on identification and pathogenicity of major plant pathogenic Fusarium spp. causing root and stem rot on cucurbits in Iran.  相似文献   

10.
Sixty isolates of Rhizoctonia spp. were obtained from Cuban bean fields during the period 2004–2007. Isolates were characterized with different techniques, including nuclei staining, pectic zymogram, PCR–RFLP analysis of the rDNA–ITS region and sequencing of the rDNA–ITS region. The majority of the isolates were identified as multinucleate Rhizoctonia solani isolates, representing two different anastomosis groups (AGs), AG 2‐2 WB and AG 4 HGI; the remaining isolates were binucleate Rhizoctonia isolates and belonged to AG F and AG A. AG 4 HGI isolates were equally distributed in all soil types; AG 2‐2 isolates were more frequently isolated from cambisols, whereas AG F isolates were related to calcisols. Pathogenicity experiments in vitro and in the greenhouse, revealed that binucleate isolates only caused root rot, whereas R. solani isolates were able to cause root rot and hypocotyl rot. Furthermore, differences in virulence level were observed between R. solani and binucleate isolates and among different AGs. Isolates of R. solani AG 4 HGI and R. solani AG 2‐2 WB were the most aggressive, binucleate isolates of AG F were intermediate aggressive, whereas a binucleate isolate of AG A was weakly aggressive. In contrast with other reports about R. solani in bean, web blight symptoms were never observed during this study.  相似文献   

11.
Five isolates ofCladorrhinum foecundissimum, added to soilless mix as 10-day-old fresh bran preparations (1.0% w/w), significantly reduced (P≤ 0.05) damping-off of eggplant and pepper caused byRhizoctonia solanistrain R-23. After 4 weeks of growth, plant stands in the biocontrol-amended, pathogen-infested treatments (>80%) were comparable to those in the noninfested controls. Since plant stands were similar at 2 and 4 weeks, most of the disease was preemergence damping-off. The bran preparations also reduced saprophytic growth of the pathogen, and there was an inverse correlation (r2= −0.94) between saprophytic growth and eggplant stand. Added to soilless mix at a rate of 2.0% (w/w), alginate prill containing 20% fermentor-produced biomass of six biocontrol isolates ofC. foecundissimumreduced (P≤ 0.05) damping-off of eggplant caused byR. solani, but only the prill with biomass of isolates Cf-1 or Cf-2 yielded plant stands (>80%) comparable to that in the noninfested control. As with the bran preparations, there was also an inverse correlation (r2= −0.80) between saprophytic growth of R-23 and eggplant stand with the alginate prills. Alginate prill with biomass of Cf-1 or Cf-2 also reduced (P≤ 0.05) damping-off of eggplant and pepper caused by other isolates (195, NG-2, DPR-1) ofR. solani, but only the stands (>80%) of pepper were similar to that in the noninfested control. Alginate prill formulations ofC. foecundissimum(Cf-1, Cf-2, and Cf-3) also reduced (P≤ 0.05) populations of the pathogen and damping-off of eggplant and pepper caused byPythium ultimum(PuZ3). However, although the plant stands in the treatments were not as high as those in the noninfested controls, they were higher than those in the pathogen-infested controls. The treatments also reduced populations ofP. ultimumin the soilless mix so that there were inverse correlations between the pathogen population and eggplant stand (r2= −0.81) and pepper stand (r2= −0.78). Extruded flour/clay granules containing 5.0% biomass of Cf-1 and Cf-2, added toR. solani-infested soilless mix (2.0%), reduced (P≤ 0.05) damping-off of eggplant and pepper. However, only the Cf-2 treatments resulted in stands (>80%) equal to those in the noninfested controls for the crops after 4 weeks of growth. The influence of bran and alginate prill of Cf-1 or Cf-2 on the spatial spread ofR. solaniand its ability to incite damping-off of eggplant showed that prill with Cf-1 or Cf-2 and bran with Cf-2 were equally effective in reducing the spread of the pathogen from the point source of the inoculum to the center of the flats.  相似文献   

12.
Bioethanol is one of the alternatives of the conventional fossil fuel. In present study, effect of different carbon sources on the production of cellulolytic enzyme (CMCase) from Trichoderma reesei at different temperatures, duration and pH were investigated and conditions were optimized. Acid treated Kans grass (Saccharum sponteneum) was subjected to enzymatic hydrolysis to produce fermentable sugars which was then fermented to bioethanol using Saccharomyces cerevisiae. The maximum CMCase production was found to be 1.46 U mL−1 at optimum condition (28 °C, pH 5 and cellulose as carbon source). The cellulases and xylanase activity were found to be 1.12 FPU g−1 and 6.63 U mL−1, respectively. Maximum total sugar was found to be 69.08 mg/g dry biomass with 20 FPU g−1 dry biomass of enzyme dosage under optimum condition. Similar results were obtained when it was treated with pure enzyme. Upon fermentation of enzymatic hydrolysate, the yield of ethanol was calculated to be 0.46 g g−1.  相似文献   

13.
The aim of the present study was to characterize sixteen isolates of Trichoderma originating from a field of sugar beet where disease patches caused by Rhizoctonia solani were observed. Use of both molecular and morphological characteristics gave consistent identification of the isolates. Production of water-soluble and volatile inhibitors, mycoparasitism and induced systemic resistance in plant host were investigated using in vitro and in vivo tests in both sterilized and natural soils. This functional approach revealed the intra-specific diversity as well as biocontrol potential of the different isolates. Different antagonistic mechanisms were evident for different strains. The most antagonistic strain, T30 was identified as Trichoderma gamsii. This is the first report of an efficient antagonistic strain of T. gamsii being able to reduce the disease in different conditions. The ability to produce water-soluble inhibitors or coil around the hyphae of the pathogen in vitro was not related to the disease reduction in vivo. Additionally, the strains collected from the high disease areas in the field were better antagonists. The antagonistic activity was not characteristic of a species but that of a population.  相似文献   

14.
Summary The accumulation of mansonones E and F was investigated in Ulmus americana L. seedlings 5 weeks after inoculation with three aggressive and three non-aggressive isolates of Ophiostoma ulmi (Buism.) Nannf. The three non-aggressive isolates stimulated significantly more mansonone E and F accumulation than the three aggressive isolates of O. ulmi. Mansonone induction also varied within both the aggressive and the non-aggressive groups. Aggressive and non-aggressive isolates were recovered in equal frequencies from the inoculation wounds, whereas the aggressive isolates were recovered more frequently than the non-aggressive isolates 15 cm and 25 cm up the seedlings' stem. Vascular browning in the outer xylem of the seedlings correlated with mansonone E and F accumulation. Mansonone accumulation in U. americana seedlings is therefore associated with vascular browning and a reduction in fungal spread.  相似文献   

15.
Seventy-nine Trichoderma strains were isolated from soil taken from 28 commercial plantations of Agave tequilana cv. ‘Azul’ in the State of Jalisco, Mexico. Nine of these isolates produced nonvolatile metabolites that completely inhibited the growth of Thielaviopsis paradoxa on potato dextrose agar plates. These isolates were identified as Trichoderma longibrachiatum on the basis of their morphology and DNA sequence analysis of two genes (ITS rDNA and translation elongation factor EF-1α). Mycoparasitism of Th. paradoxa by T. longibrachiatum strains in dual cultures was examined by scanning electron microscopy. The Trichoderma hyphae grew alongside the Th. paradoxa hyphae, but penetration of Thielaviopsis hyphae by Trichoderma was no apparent. Aleurioconidia of Th. paradoxa were parasitized by Trichoderma. Both hyphae and aleurioconidia of Th. paradoxa lost turgor pressure, wrinkled, collapsed and finally disintegrated. In liquid cultures, all nine Trichoderma isolates produced proteases, β-1,3-glucanases and chitinases that would be responsible for the degradation of Thielaviopsis hyphae. These results demonstrate that the modes of action of T. longibrachiatum involved against Th. paradoxa in vitro experiments are mycoparasitism and the production of nonvolatile toxic metabolites.  相似文献   

16.
The population structure of Magnaporthe oryzae from green foxtail (Setaria viridis) in Japan was examined by DNA fingerprint analyses using the transposable elements MGR586 and MAGGY as probes. Fifteen M. oryzae isolates from green foxtail were collected from 11 Japanese prefectures so that a macrogeographic population of this pathogen is represented. All the 15 isolates were sorted into distinct haplotypes by DNA fingerprint analyses with both probes. Furthermore, similarities between the DNA fingerprint profiles of the 15 isolates were exclusively low; i.e., if lineages are arbitrarily established based on greater than 70% similarities in isolates, the 15 isolates could be categorized into 13 distinct lineages by DNA fingerprinting with both probes. We also examined the MGR586 DNA fingerprint variations of this pathogen in 9 microgeographic populations each of which contained 20 to 24 isolates collected from a 1 m2 or 50 m2 area. In all the 9 populations, more than 2 haplotypes, which shared less than 70% similarities, were identified in the DNA fingerprint profiles. These results suggested that M. oryzae isolates from the green foxtail in Japan possessed a complex lineage structure, even at the microgeographic scale.  相似文献   

17.
One hundred and forty-two different actinomycete strains were isolated from rhizosphere soil of Vitis vinifera L. sampled from four Moroccan areas. To evaluate the antifungal effect of the different collected actinomycete isolates, five fungi known to be phytopathogens (Pythium ultimum, Fusarium oxyysporum f. sp. albedinis, Sclerotium rolfsii, Verticillium dahliae and Botrytis cinerea) were used. Results showed that 24 isolates had an in vitro inhibitory effect toward at least 4 of the indicator fungi, but only 9 inhibited all these phytopathogens. These nine isolates were subsequently evaluated individually using in vitro grapevine plantlets for their ability to protect against plant gray mold. We demonstrate here that pre-inoculation of plantlets with these isolates allow them to withstand Botrytis cinerea. Six of these strains were shown to belong to the genus Streptomyces and three to the genus Micromonospora. These findings indicate the potential of developing effective actinomycetes from Moroccan habitats for the biological control of Botrytis cinerea. Electronic supplementary material  The online version of this article (doi:) contains supplementary material, which is available to authorized users.  相似文献   

18.
Beauveria bassiana has long been used as a mycopesticide. It has a wide host range; isolates have been reported to differ in host range and virulence to a given insect species. Identification of a molecular marker linked to a virulent phenotype to a target pest would be useful in screening for isolates effective against it. Twenty B. bassiana isolates were tested for their virulence to the second instar larvae of Chilo partellus Swinhoe in laboratory bioassays and their DNA fingerprints were generated by RAPD-PCR. Three arbitrary categories of aggressiveness were chosen; isolates that caused >70%, between 70 and 40% and <40% larval mortality were grouped as highly, medium and less aggressive types, respectively. In the random amplified polymorphic DNA (RAPD) analysis a 30% variability was observed among the isolates; which clustered into three major groups. The groups based on virulence rating did not match with the RAPD clusters. One of the highly aggressive isolates clustered with less aggressive isolates in one cluster and the other grouped along with the medium aggressive isolates in a different cluster. The B. bassiana isolates were classified phenotypically based on the taxonomic order of the original insect host and the climatic zone (tropical/temperate) from which they were isolated. No correlation between the aggressiveness of the isolate and the relatedness of the original insect host to the tested insect was observed; both the highly aggressive isolates were from coleopteran insects. A correlation was found between the RAPD grouping and the phenotypic classification of the isolates. All the lepidopteran isolates grouped into one major cluster, most sub clusters were constituted by isolates from the same climatic zone.  相似文献   

19.
Rhizoctonia solani isolates used in this investigation were identified as anastomosis-4 (AG-40), collected from different localities from Assiut governorate in Egypt. Pathogenicity test of seven isolates of R. solani was evaluated on soybean Giza 111 cultivar under greenhouse conditions. All tested isolates were able to infect soybean plants causing root rot with different degrees of severities, isolate No. 1, 2 and 3 showed significantly highest root rot severity, while isolate No. 5 gave the lowest percentage of root rot rating. The sodium dodecyl sulphate polyacrylamide gel electrophoresis patterns were used to compare three isolates of R. solani. There are no variations among R. solani isolates except a few exceptions according to their protein patterns. DNA markers obtained from all isolates showed genetic similarity among different isolates obtained from different geographical regions barring few exceptions. Correlation between DNA patterns of R. solani isolates and their virulence was detected, but no correlation with anastomosis groups (AG).  相似文献   

20.
New information on N uptake and transport of inorganic and organic N in arbuscular mycorrhizal fungi is reviewed here. Hyphae of the arbuscular mycorrhizal fungus Glomus mosseae (Nicol. and Gerd.) Gerd. and Trappe (BEG 107) were shown to transport N supplied as 15N-Gly to wheat plants after a 48 h labelling period in semi-hydroponic (Perlite), non-sterile, compartmentalised pot cultures. Of the 15N supplied to hyphae in pot cultures over 48 h, 0.2 and 6% was transported to plants supplied with insufficient N or sufficient N, respectively. The increased 15N uptake at the higher N supply was related to the higher hyphal length density at the higher N supply. These findings were supported by results from in vitro and monoxenic studies. Excised hyphae from four Glomus isolates (BEG 84, 107, 108 and 110) acquired N from both inorganic (15NH4 15NO3, 15NO3 or 15NH4 +) and organic (15N-Gly and 15N-Glu, except in BEG 84 where amino acid uptake was not tested) sources in vitro during short-term experiments. Confirming these studies under sterile conditions where no bacterial mineralisation of organic N occurred, monoxenic cultures of Glomus intraradices Schenk and Smith were shown to transport N from organic sources (15N-Gly and 15N-Glu) to Ri T-DNA transformed, AM-colonised carrot roots in a long-term experiment. The higher N uptake (also from organic N) by isolates from nutrient poor sites (BEG 108 and 110) compared to that from a conventional agricultural field implied that ecotypic differences occur. Although the arbuscular mycorrhizal isolates used contributed to the acquisition of N from both inorganic and organic sources by the host plants/roots used, this was not enough to increase the N nutritional status of the mycorrhizal compared to non-mycorrhizal hosts. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号