首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.

Purpose

A generic hotspot assessment of social impacts from a product was conducted, using a laptop computer as a case. The aims of the case study were to identify social hotspots of the laptop and to test and evaluate the methodology.

Methods

The case study was based on the social LCA methodology described in the Guidelines for social LCA and included the product system from ‘cradle to grave’ as well as the impacts on all relevant stakeholders. We focused on a simplified list of materials and used mainly country-specific data.

Results and discussion

A new method for impact assessment of hotspots was developed. The total activity in each phase was distributed among countries. The countries were divided into groups related to the extent of activity in the product system, as well as to their performance on a subcategory. High values in both groups were highlighted and hotspots were identified. The results revealed some hotspots, some hot countries and some hot issues, all indicating a risk of negative social impacts in the product system of a laptop. It also identified workers and the local community as the stakeholders most at risk of negative social impacts. Among the hotspots identified, the following subcategories were of importance: safe and healthy living conditions, social benefit/social security, access to material resources, involvement in areas with armed conflicts, community engagement (lack of), corruption, and access to immaterial resources.

Conclusions

The study showed it is possible to conduct a social LCA on a generic complex product using the Guidelines, even though data collection was impaired by lack of data and low data quality. It identified methodological issues that need further attention, for example the indicator impact pathways. Still, it is clear that new insights can be gained by social LCA, where the life cycle perspective and the systematic approach help users identify potentially important aspects that could otherwise have been neglected.  相似文献   

2.

Purpose

With the increasing concerns related to integration of social and economic dimensions of the sustainability into life cycle assessment (LCA), traditional LCA approach has been transformed into a new concept, which is called as life cycle sustainability assessment (LCSA). This study aims to contribute the existing LCSA framework by integrating several social and economic indicators to demonstrate the usefulness of input–output modeling on quantifying sustainability impacts. Additionally, inclusion of all indirect supply chain-related impacts provides an economy-wide analysis and a macro-level LCSA. Current research also aims to identify and outline economic, social, and environmental impacts, termed as triple bottom line (TBL), of the US residential and commercial buildings encompassing building construction, operation, and disposal phases.

Methods

To achieve this goal, TBL economic input–output based hybrid LCA model is utilized for assessing building sustainability of the US residential and commercial buildings. Residential buildings include single and multi-family structures, while medical buildings, hospitals, special care buildings, office buildings, including financial buildings, multi-merchandise shopping, beverage and food establishments, warehouses, and other commercial structures are classified as commercial buildings according to the US Department of Commerce. In this analysis, 16 macro-level sustainability assessment indicators were chosen and divided into three main categories, namely environmental, social, and economic indicators.

Results and discussion

Analysis results revealed that construction phase, electricity use, and commuting played a crucial role in much of the sustainability impact categories. The electricity use was the most dominant component of the environmental impacts with more than 50 % of greenhouse gas emissions and energy consumption through all life cycle stages of the US buildings. In addition, construction phase has the largest share in income category with 60 % of the total income generated through residential building’s life cycle. Residential buildings have higher shares in all of the sustainability impact categories due to their relatively higher economic activity and different supply chain characteristics.

Conclusions

This paper is an important attempt toward integrating the TBL perspective into LCSA framework. Policymakers can benefit from such approach and quantify macro-level environmental, economic, and social impacts of their policy implications simultaneously. Another important outcome of this study is that focusing only environmental impacts may misguide decision-makers and compromise social and economic benefits while trying to reduce environmental impacts. Hence, instead of focusing on environmental impacts only, this study filled the gap about analyzing sustainability impacts of buildings from a holistic perspective.  相似文献   

3.

Purpose

Sustainable development aims to enhance the quality of life by improving the social, economic and environmental conditions for present and future generations. A sustainable engineering decision-making strategy for design and assessment of construction works (i.e., civil engineering and buildings) should take into account considerations regarding the society, the economy and the environment. This study presents a novel approach for the life cycle assessment (LCA) of a case-study building subjected to seismic actions during its service life, accounting for structural reliability.

Methods

A methodology is presented that evaluates the time-dependent probability of exceeding a limit state considering the uncertainty in the representation of seismic action. By employing this methodology, the earthquake-induced damages are related to the environmental and social losses caused by the occurrence of the earthquake. A LCA of a case-study building accounting for the time-dependent seismic reliability is conducted using a damage-oriented LCA approach.

Results and discussion

The contributions of the different life cycle phases to the total environmental impact related to the building lifetime are in agreement with previous results in this field of study. However, the LCA results revealed significant risk-based contributions for the rehabilitation phase due to the induced damage resulting in seismic events. Particularly, the rehabilitation phase is expected to contribute to the total environmental impact with around the 25 % of the initial environmental impact load (related to the pre-use phase) as a consequence of seismic damage.

Conclusions and recommendations

The probability of occurrence of seismic events affects the LCA results for various life cycle phases of a building in terms of all the indicators adopted in the analysis. The time-dependent probability of collapse in a year can represent a benchmark indicator for human safety in the context of social sustainability for the building sector. The proposed approach can be implemented in a sustainable decision-making tool for design and assessment.  相似文献   

4.

Purpose

Sustainability assessment in life cycle assessment (LCA) addresses societal aspects of technologies or products to evaluate whether a technology/product helps to address important challenges faced by society or whether it causes problems to society or at least selected social groups. In this paper, we analyse how this has been, and can be addressed in the context of economic assessments. We discuss the need for systemic measures applicable in the macro-economic setting.

Methods

The modelling framework of life cycle costing (LCC) is analysed as a key component of the life cycle sustainability assessment (LCSA) framework. Supply chain analysis is applied to LCC in order to understand the relationships between societal concerns of value adding and the basic cost associated with a functional unit. Methods to link LCC as a foreground economic inventory to a background economy wide inventory such as an input–output table are shown. Other modelling frameworks designed to capture consequential effects in LCSA are discussed.

Results

LCC is a useful indicator in economic assessments, but it fails to capture the full dimension of economic sustainability. It has potential contradictions in system boundary to an environmental LCA, and includes normative judgements at the equivalent of the inventory level. Further, it has an inherent contradiction between user goals (minimisation of cost) and social goals (maximisation of value adding), and has no clear application in a consequential setting. LCC is focussed on the indicator of life cycle cost, to the exclusion of many relevant indicators that can be utilised in LCSA. As such, we propose the coverage of indicators in economic assessment to include the value adding to the economy by type of input, import dependency, indicators associated with the role of capital and labour, the innovation potential, linkages and the structural impact on economic sectors.

Conclusions

If the economic dimension of LCSA is to be equivalently addressed as the other pillars, formalisation of equivalent frameworks must be undertaken. Much can be advanced from other fields that could see LCSA to take a more central role in policy formation.  相似文献   

5.
6.

Purpose

Odour is an important aspect of systems for human and agricultural waste management and many technologies are developed with the sole purpose of reducing odour. Compared with greenhouse gas assessment and the assessment of toxicity, odour assessment has received little attention in the life cycle assessment (LCA) community. This article aims to redress this.

Methods

Firstly, a framework for the assessment of odour impacts in LCA was developed considering the classical LCA framework of emissions, midpoint and endpoint indicators. This suggested that an odour footprint midpoint indicator was worth striving for. An approach to calculating an areal indicator we call “odour footprint”, which considers the odour detection threshold, the diffusion rate and the kinetics of degradation of odourants, was implemented in MATLAB. We demonstrated the use of the characterisation factors we calculated in a case study based on odour removal technology applied to a pig barn.

Results and discussion

We produced a list of 33 linear characterisation factors based on hydrogen sulphide equivalents, analogous to the linear carbon dioxide equivalency factors in use in carbon footprinting, or the dichlorobenzene equivalency factors developed for assessment of toxic impacts in LCA. Like the latter, this odour footprint method does not take local populations and exposure pathway analysis into account—its intent is not to assess regulatory compliance or detailed design. The case study showed that despite the need for materials and energy, large factor reductions in odour footprint and eutrophication potential were achieved at the cost of a smaller factor increase in greenhouse emissions.

Conclusions

The odour footprint method is proposed as an improvement on the established midpoint method for odour assessment in LCA. Unlike it, the method presented here considers the persistence of odourants. Over time, we hope to increase the number of characterised odourants, enabling analysts to perform simple site-generic LCA on systems with odourant emissions.  相似文献   

7.

Purpose

The construction industry has considerable impacts on the environment, economy, and society. Although quantifying and analyzing the sustainability implications of the built environment is of great importance, it has not been studied sufficiently. Therefore, the overarching goal of this study is to quantify the overall environmental, economic, and social impacts of the U.S. construction sectors using an economic input–output-based sustainability assessment framework.

Methods

In this research, the commodity-by-industry supply and use tables published by the U.S. Bureau of Economic Analysis, as part of the International System of National Accounts, are merged with a range of environmental, economic, and social metrics to develop a comprehensive sustainability assessment framework for the U.S. construction industry. After determining these sustainability assessment metrics, the direct and indirect sustainability impacts of U.S construction sectors have been analyzed from a triple bottom-line perspective.

Results

When analyzing the total sustainability impacts by each construction sector, “Residential Permanent Single and Multi-Family Structures" and "Other Non-residential Structures" are found to have the highest environmental, economic, and social impacts in comparison with other construction sectors. The analysis results also show that indirect suppliers of construction sectors have the largest sustainability impacts compared with on-site activities. For example, for all U.S. construction sectors, on-site construction processes are found to be responsible for less than 5 % of total water consumption, whereas about 95 % of total water use can be attributed to indirect suppliers. In addition, Scope 3 emissions are responsible for the highest carbon emissions compared with Scopes 1 and 2. Therefore, using narrowly defined system boundaries by ignoring supply chain-related impacts can result in underestimation of triple bottom-line sustainability impacts of the U.S. construction industry.

Conclusions

Life cycle assessment (LCA) studies that consider all dimensions of sustainability impacts of civil infrastructures are still limited, and the current research is an important attempt to analyze the triple bottom-line sustainability impacts of the U.S. construction sectors in a holistic way. We believe that this comprehensive sustainability assessment model will complement previous LCA studies on resource consumption of U.S. construction sectors by evaluating them not only from environmental standpoint, but also from economic and social perspectives.  相似文献   

8.

Purpose

The main goal of any life cycle assessment (LCA) study is to identify solutions leading to environmental savings. In conventional LCA studies, practitioners select from some alternatives the one which better matches their preferences. This task is sometimes simplified by ranking these alternatives using an aggregated indicator defined by attaching weights to impacts. We address here the inverse problem. That is, given an alternative, we aim to determine the weights for which that solution becomes optimal.

Methods

We propose a method based on linear programming (LP) that determines, for a given alternative, the ranges within which the weights attached to a set of impact metrics must lie so that when a weighting combination of these impacts is optimized, the alternative can be optimal, while if the weights fall outside this range, it is guaranteed that the solution will be suboptimal. A large weight value implies that the corresponding LCA impact is given more importance, while a low value implies the converse. Furthermore, we provide a rigorous mathematical analysis on the implications of using weighting schemes in LCA, showing that this practice guides decision-making towards the adoption of some specific alternatives (those lying on the convex envelope of the resulting trade-off curve).

Results and discussion

A case study based on the design of hydrogen infrastructures is taken as a test bed to illustrate the capabilities of the approach presented. Given are a set of production and storage technologies available to produce and deliver hydrogen, a final demand, and cost and environmental data. A set of designs, each achieving a unique combination of cost and LCA impact, is considered. For each of them, we calculate the minimum and maximum weight to be given to every LCA impact so that the alternative can be optimal among all the candidate designs. Numerical results show that solutions with lower impact are selected when decision makers are willing to pay larger monetary penalties for the environmental damage caused.

Conclusions

LP can be used in LCA to translate the decision makers’ preferences into weights. This information is rather valuable, particularly when these weights represent economic penalties, as it allows screening and ranking alternatives on the basis of a common economic basis. Our framework is aimed at facilitating decision making in LCA studies and defines a general framework for comparing alternatives that show different performance in a wide variety of impact metrics.  相似文献   

9.
10.

Background, aim and scope

Freshwater is a basic resource for humans; however, its link to human health is seldom related to lack of physical access to sufficient freshwater, but rather to poor distribution and access to safe water supplies. On the other hand, freshwater availability for aquatic ecosystems is often reduced due to competition with human uses, potentially leading to impacts on ecosystem quality. This paper summarises how this specific resource use can be dealt with in life cycle analysis (LCA).

Main features

The main quantifiable impact pathways linking freshwater use to the available supply are identified, leading to definition of the flows requiring quantification in the life cycle inventory (LCI).

Results

The LCI needs to distinguish between and quantify evaporative and non-evaporative uses of ‘blue’ and ‘green’ water, along with land use changes leading to changes in the availability of freshwater. Suitable indicators are suggested for the two main impact pathways [namely freshwater ecosystem impact (FEI) and freshwater depletion (FD)], and operational characterisation factors are provided for a range of countries and situations. For FEI, indicators relating current freshwater use to the available freshwater resources (with and without specific consideration of water ecosystem requirements) are suggested. For FD, the parameters required for evaluation of the commonly used abiotic depletion potentials are explored.

Discussion

An important value judgement when dealing with water use impacts is the omission or consideration of non-evaporative uses of water as impacting ecosystems. We suggest considering only evaporative uses as a default procedure, although more precautionary approaches (e.g. an ‘Egalitarian’ approach) may also include non-evaporative uses. Variation in seasonal river flows is not captured in the approach suggested for FEI, even though abstractions during droughts may have dramatic consequences for ecosystems; this has been considered beyond the scope of LCA.

Conclusions

The approach suggested here improves the representation of impacts associated with freshwater use in LCA. The information required by the approach is generally available to LCA practitioners

Recommendations and perspectives

The widespread use of the approach suggested here will require some development (and consensus) by LCI database developers. Linking the suggested midpoint indicators for FEI to a damage approach will require further analysis of the relationship between FEI indicators and ecosystem health.  相似文献   

11.

Purpose

In life cycle assessment (LCA), resource availability is currently evaluated by means of models based on depletion time, surplus energy, etc. Economic aspects influencing the security of supply and affecting availability of resources for human use are neglected. The aim of this work is the development of a new model for the assessment of resource provision capability from an economic angle, complementing existing LCA models. The inclusion of criteria affecting the economic system enables an identification of potential supply risks associated with resource use. In step with actual practice, such an assessment provides added value compared to conventional (environmental) resource assessment within LCA. Analysis of resource availability including economic information is of major importance to sustain industrial production.

Methods

New impact categories and characterization models are developed for the assessment of economic resource availability based on existing LCA methodology and terminology. A single score result can be calculated providing information about the economic resource scarcity potential (ESP) of different resources. Based on a life cycle perspective, the supply risk associated with resource use can be assessed, and bottlenecks within the supply chain can be identified. The analysis can be conducted in connection with existing LCA procedures and in line with current resource assessment practice and facilitates easy implementation on an organizational level.

Results and discussion

A portfolio of 17 metals is assessed based on different impact categories. Different impact factors are calculated, enabling identification of high-risk metals. Furthermore, a comparison of ESP and abiotic depletion potential (ADP) is conducted. Availability of resources differs significantly when economic aspects are taken into account in addition to geologic availability. Resources assumed uncritical based on ADP results, such as rare earths, turn out to be associated with high supply risks.

Conclusions

The model developed in this work allows for a more realistic assessment of resource availability beyond geologic finiteness. The new impact categories provide organizations with a practical measure to identify supply risks associated with resources. The assessment delivers a basis for developing appropriate mitigation measures and for increasing resilience towards supply disruptions. By including an economic dimension into resource availability assessment, a contribution towards life cycle sustainability assessment (LCSA) is achieved.  相似文献   

12.

Purpose

Cultures are increasingly recognised for their inherent value, yet, despite political and societal concern, culture is widely unrecognised in assessment techniques. Life cycle sustainability assessment (LCSA), a technique encompassing environmental, social and economic aspects, is growing in popularity. However, cultural values are rarely considered in LCSA. This paper reviews the meaning of culture; current efforts to include culture in environmental life cycle assessment (LCA), social LCA (S-LCA) and LCSA; and aspects to address when investigating integration of culture in LCA, S-LCA and LCSA.

Methods

A literature review was undertaken on definitions of culture, recognition of culture in policy and decision making, and how culture is incorporated into assessment techniques. The potential for integrating culture in LCSA was evaluated in terms of the potential benefits and challenges.

Results

Culture is often intangible and inaccessible, which may then lead to a lack of recognition in decision-making processes, or if it is recognised, then it is relegated as an afterthought. Explicitly including consideration of culture within LCSA will allow its representation alongside other sustainability aspects. The challenges of representing culture within LCSA include recognising when ‘culture’ should be distinguished from ‘social’; culture’s dynamic nature; the data collection process; and the diversity of cultures between stakeholders and at different scales from community through to nation. The potential benefits of representing culture within LCSA include greater resonance of LCSA results with stakeholders; a more comprehensive decision support tool which appropriately accounts for values; and an assessment technique which may help protect communities and their diversity of cultures.

Conclusions

Representing culture in LCSA is not straightforward and, to some extent, may be addressed through social indicators. However, developing LCSA to explicitly address cultural values has potential benefits. Future research should focus on opportunities for the development of (a) a culturally inclusive LCSA process and (b) additional cultural indicators and/or dimensions of existing LCSA indicators that represent cultural values.  相似文献   

13.
14.

-

DOI: http://dx.doi.org/10.1065/lca2006.04.017

Background, Aims and Scope

Social impacts in supply chains and product life cycles are of increasing interest to policy makers and stakeholders. Work is underway to develop social impact indicators for LCA, and to identify the social inventory data that will drive impact assessment for this category. Standard LCA practice collects and aggregates inventory data of the form \units of input or output (elementary flow) per unit of process output.\ Measurement of social impacts within workplaces as well as host communities and societies poses new challenges not heretofore faced by LCA database developers. Participatory measurement and auditing of social impacts and of workplace health issues has been shown to provide important benefits relative to external auditor-based methods, including greater likelihood of detecting rights abuses, and stronger support of subsequent action for improvement. However, nonstandardized auditing and metrics poses challenges for the supply chain-wide aggregation and comparison functions of LCA. An analogous challenge arises in the case of resource extractive processes, for which the certification of best management practices provides an important and practical environmental metric. In both the social and resource extraction examples, it may be that attributes of the process are more valuable metrics to measure and incentivize than measured quantities per unit of process output. But how to measure, how to aggregate across life cycles, how to compare product life cycles, and how to incentivize progress as with product policy?

Methods

A methodology is presented and demonstrated which estimates the health impacts of economic development stemming from product life cycles. This methodology does not introduce new social indicators; rather, it works with the already common LCA endpoint of human health, and introduces and applies a simplified empirical relationship to characterize the complex pathways from product life cycles' economic activity to health in the aggregate.

Results

A simple case study indicates that the health benefits of economic development impacts in product life cycles have the potential to be very significant, possibly even orders of magnitude greater than the health damages from the increased pollution. While the simple macro model points up the dramatic importance of socio-economic pathways to health in product life cycles, it lacks any sensitivity to the vitally important, contextspecific attributes of the economic development associated with each process. This result begs the question of how to measure, aggregate, compare, and stimulate society-wide improvement of context-dependent attributes within and across product life cycles in LCA.

Discussion

Before attempting an answer to the question noted above, a brief reconsideration is offered concerning life cycle assessment. Namely, where does it come from, and what does it bring?

Recommendations and Outlook

Finally, the paper concludes by sketching a life cycle approach to promoting localized assessments, to summarizing their results over supply chains and life cycles, and to comparing product life cycles in terms of their results. Often, localized assessments will yield information on the attributes of a process, rather than (or in addition to) the traditional form of life cycle inventory information, which is \units of something per unit of process output.\ The methodology can enable product policy users to promote reporting of basic attributes of processes within supply chains, together with local measurement and reporting of context-relevant impacts. For attributes linked to progress on impacts of local and global concern, promotion of these attributes within supply chain processes will bring strong benefits. In addition, over time it may be possible for researchers to develop and refine models that estimate, based on cross-sectional and time series analysis of attributes and impacts, relationships between attributes and impacts. In any case, while local impacts across supply chains may not be precisely knowable – let alone controllable – by a microdecision maker at the time of their product-related decision, life cycle attribute analysis may give such decision makers an opportunity to empower progress throughout life cycles and supply chains, which is after all a motivating goal of LCA.
  相似文献   

15.

Purpose

Employing representative data is necessary for producing a credible LCA informing decision making process. When the data is available from multiple sources, and in incompatible formats such as point estimates, intervals, approximations, and may even be conflicting in nature, it is important to synthesize it with minimal loss of information to enhance the credibility of LCA. This article introduces a framework for information fusion that can serve this purpose within the current operational procedure of LCA.

Methods

The character of information gathered from multiple sources is inherently different than that exhibited by the information generated by a single random source. The framework of possibility theory can be used to merge such heterogeneous information as demonstrated by its application in the diverse fields such as engineering, finance, and social sciences. This article introduces this methodology for LCAs by first introducing the theory behind data modeling and data fusion with possibility theory. Then, this framework is applied to the disparate data from literature on the manufacturing energy requirements for semiconductor device fabrication, and also to a hypothetical example of linguistic inputs from experts in order to demonstrate the operationalization of the theory. A flowchart is provided to recap the framework and for easy navigation through the steps of merging procedure.

Results and discussion

The framework for fusion of information applied the numerical and linguistic heterogeneous data in the LCA context illustrates that this methodology can be implemented relatively easily to increase the data quality and credibility of LCA. This can be done without making any changes in the usual preferred way of conducting an LCA. Information fusion may be performed either after the sensitivity analysis identifies the most impactful categories that need further investigation, or it can be performed upfront to the select input categories of interest.

Conclusions

The article introduces a well-established framework of information fusion to the field of LCA where disparate data may need to be fused to perform the assessment under certain conditions. This framework can be easily implemented, and will enhance data quality and LCA credibility. We also hope that data entry software such as ecoEditor make provision for the data entry mechanism necessary to enter fused data.  相似文献   

16.

Purpose

This study analyzes the influence of value choices in impact assessment models for human health, such as the choice of time horizon, on life cycle assessment outcomes.

Methods

For 756 products, the human health damage score is calculated using three sets of characterization factors (CFs). The CFs represent seven human health impact assessment categories: water scarcity, tropospheric ozone formation, particulate matter formation, human toxicity, ionizing radiation, stratospheric ozone depletion, and climate change. Each set of CFs embeds a combination of value choices following the Cultural Theory, and reflects the individualist, hierarchist, or egalitarian perspective.

Results

We found that the average difference in human health damage score goes from 1 order of magnitude between the individualist and hierarchist perspectives to 2.5 orders of magnitude between the individualist and egalitarian perspectives. The difference in damage score of individual materials among perspectives depends on the combination of emissions driving the impact of both perspectives and can rise up to 5 orders of magnitude.

Conclusions

The value choices mainly responsible for the differences in results among perspectives are the choice of time horizon and inclusion of highly uncertain effects. A product comparison can be affected when the human health damage score of two products differ less than a factor of 5, or the comparing products largely differ in their emitted substances. Overall, our study implies that value choices in impact assessment modeling can modify the outcomes of a life cycle assessment (LCA) and thus the practical implication of decisions based on the results of an LCA.  相似文献   

17.

Purpose

In this two-part paper (Background and Initial Assumptions (part 1) and Results of Survey Research (part 2)), we present surveys whose main objective is to determine whether, and to what extent, the life cycle assessment (LCA) technique is used for the identification and assessment of environmental aspects in environmental management systems (EMS) and whether there are any differences in this respect between the companies and countries analysed.

Methods

The survey research was carried out using the computer assisted self-administered interviewing method among selected Polish, German and Swedish organisations which implement EMS in accordance with the requirements of ISO 14001 and/or the EMAS regulation.

Results

The organisations investigated, regardless of their country, are dominated by qualitative and semi-quantitative techniques of assessment and identification of environmental aspects. LCA was used sporadically, although some differences can be observed between the countries analysed.

Conclusions

The environmental managers accustomed to traditional qualitative and semi-quantitative solutions have not been given preparation to enable them to understand and adopt different approaches such as LCA. On the other hand, representatives of the organisations investigated declared that they were ready to accept an even longer timescale for the identification and assessment processes relating to environmental aspects, which represents a potential opportunity for LCA. The more precise understanding and definition of environmental problems that are precisely defined in LCA would represent a novelty for environmental managers. In practice, environmental problems are defined in a general sense and rather ambiguously, as this level of detail is sufficient in the context of qualitative and semi-quantitative techniques commonly used for the identification and assessment of environmental aspects.  相似文献   

18.

Purpose

The production of bioethanol in Argentina is based on the sugarcane plantation system, with extensive use of agricultural land, scarce use of fertilizers, pesticides, and artificial irrigation, and burning of sugarcane prior to harvesting. The objective of this paper is to develop a life cycle assessment (LCA) of the fuel ethanol from sugarcane in Tucumán (Argentina), assessing the environmental impact potentials to identify which of them cause the main impacts.

Methods

Our approach innovatively combined knowledge about the main impact pathways of bioethanol production with LCA which covers the typical emission-related impact categories at the midpoint life cycle impact assessment. Real data from the Argentinean industry subsystems have been used to perform the study: S1—sugarcane production, S2—milling process, S3—sugar production, and S4—ethanol production from molasses, honey, or sugarcane juice.

Results and discussion

The results are shown in the three alternative pathways to produce bioethanol. Different impact categories are assessed, with global warming potential (GWP) having the highest impact. So, the production of 1 kg of ethanol from molasses emitted 22.5 kg CO2 (pathway 1), 19.2 kg CO2 from honey (pathway 2), and 15.0 kg CO2 from sugarcane juice (pathway 3). Several sensitivity analyses to study the variability of the GWP according to the different cases studied have been performed (changing the agricultural yield, including economic and calorific allocation in sugar production, and modifying the sugar price).

Conclusions

Agriculture is the subsystem which shows the highest impact in almost all the categories due to fossil fuel consumption. When an economic and calorific allocation is considered to assess the environmental impact, the value is lower than when mass allocation is used because ethanol is relatively cheaper than sugars and it has higher calorific value.  相似文献   

19.

Background, aim, and scope

Many studies evaluate the results of applying different life cycle impact assessment (LCIA) methods to the same life cycle inventory (LCI) data and demonstrate that the assessment results would be different with different LICA methods used. Although the importance of uncertainty is recognized, most studies focus on individual stages of LCA, such as LCI and normalization and weighting stages of LCIA. However, an important question has not been answered in previous studies: Which part of the LCA processes will lead to the primary uncertainty? The understanding of the uncertainty contributions of each of the LCA components will facilitate the improvement of the credibility of LCA.

Methodology

A methodology is proposed to systematically analyze the uncertainties involved in the entire procedure of LCA. The Monte Carlo simulation is used to analyze the uncertainties associated with LCI, LCIA, and the normalization and weighting processes. Five LCIA methods are considered in this study, i.e., Eco-indicator 99, EDIP, EPS, IMPACT 2002+, and LIME. The uncertainty of the environmental performance for individual impact categories (e.g., global warming, ecotoxicity, acidification, eutrophication, photochemical smog, human health) is also calculated and compared. The LCA of municipal solid waste management strategies in Taiwan is used as a case study to illustrate the proposed methodology.

Results

The primary uncertainty source in the case study is the LCI stage under a given LCIA method. In comparison with various LCIA methods, EDIP has the highest uncertainty and Eco-indicator 99 the lowest uncertainty. Setting aside the uncertainty caused by LCI, the weighting step has higher uncertainty than the normalization step when Eco-indicator 99 is used. Comparing the uncertainty of various impact categories, the lowest is global warming, followed by eutrophication. Ecotoxicity, human health, and photochemical smog have higher uncertainty.

Discussion

In this case study of municipal waste management, it is confirmed that different LCIA methods would generate different assessment results. In other words, selection of LCIA methods is an important source of uncertainty. In this study, the impacts of human health, ecotoxicity, and photochemical smog can vary a lot when the uncertainties of LCI and LCIA procedures are considered. For the purpose of reducing the errors of impact estimation because of geographic differences, it is important to determine whether and which modifications of assessment of impact categories based on local conditions are necessary.

Conclusions

This study develops a methodology of systematically evaluating the uncertainties involved in the entire LCA procedure to identify the contributions of different assessment stages to the overall uncertainty. Which modifications of the assessment of impact categories are needed can be determined based on the comparison of uncertainty of impact categories.

Recommendations and perspectives

Such an assessment of the system uncertainty of LCA will facilitate the improvement of LCA. If the main source of uncertainty is the LCI stage, the researchers should focus on the data quality of the LCI data. If the primary source of uncertainty is the LCIA stage, direct application of LCIA to non-LCIA software developing nations should be avoided.  相似文献   

20.

Purpose

The objective of this research was to evaluate the appropriateness of using life cycle assessment (LCA) for new applications that incorporate emerging materials and involve site-specific scenarios. Cradle-to-grave impacts of copper-treated lumber used in a raised garden bed are assessed to identify key methodological challenges and recommendations applying LCA for such purposes as well as to improve sustainability within this application.

Methods

The functional unit is a raised garden bed measuring 6.67 board feet (bf) in volume over a period of 20 years. The garden beds are made from softwood lumber such as southern yellow pine. The two treatment options considered were alkaline copper quaternary and micronized copper quaternary. Ecoinvent 2.2 provided certain life cycle inventory (LCI) data needed for the production of each garden bed, while additional primary and secondary sources were accessed to supplement the LCI.

Results and discussion

Primary data were not available for all relevant inventory requirements, as was anticipated, but enough secondary data were gathered to conduct a screening-level LCA on these raised garden bed applications. A notable finding was that elimination of organic solvent could result in a more sustainable lumber treatment product. Conclusions are limited by data availability and key methodological challenges facing LCA and emerging materials.

Conclusions

Although important data and methodological challenges facing LCA and emerging materials exist, this LCA captured material and process changes that were important drivers of environmental impacts. LCA methods need to be amended to reflect the properties of emerging materials that determine their fate, transport, and impacts to the environment and health. It is not necessary that all recommendations come to light before LCA is applied in the context of emerging materials. Applications of such materials involve many inputs beyond emerging materials that are already properly assessed by LCA. Therefore, LCA should be used in its current state to enhance the decision-making context for the sustainable development of these applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号