首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 125 毫秒
1.
B Pope  M Way  A G Weeds 《FEBS letters》1991,280(1):70-74
Gelsolin binds two monomers in the nucleating complex with G-actin in calcium and caps actin filaments. However, 3 actin-binding domains have been identified within its 6 repeating sequence segments corresponding to S1 S2-3 and S4-6. S1 and S4-6 bind only G-actin whereas S2-3 binds specifically to F-actin. Two of the three domains (S2-3 and S4-6) are required for nucleation and a different pair (S1 and S2-3) for severing. Here we show for the first time that the domains unique to nucleation (S4-6) or severing (S1) compete for the same region on subdomain 1 of G-actin. We further show that S2-3 binds actin monomers weakly in G-buffer conditions and that this interaction persists when S1 or S4-6 are also bound. Thus gelsolin associates with two distinct regions on actin. Since S2-3 does not bind monomeric actin in F-buffer, we suggest that its high affinity 1:1 stoichiometry for filament subunits reflects interaction with two adjacent subunits.  相似文献   

2.
Gelsolin can sever actin filaments, nucleate actin filament assembly, and cap the fast-growing end of actin filaments. These functions are activated by Ca2+ and inhibited by polyphosphoinositides (PPI). We report here studies designed to delineate critical domains within gelsolin by deletional mutagenesis, using COS cells to secrete truncated plasma gelsolin after DNA transfection. Deletion of 11% of gelsolin from the COOH terminus resulted in a major loss of its ability to promote the nucleation step in actin filament assembly, suggesting that a COOH-terminal domain is important in this function. In contrast, derivatives with deletion of 79% of the gelsolin sequence exhibited normal PPI-regulated actin filament-severing activity. Combined with previous results using proteolytic fragments, we deduce that an 11-amino acid sequence in the COOH terminus of the smallest severing gelsolin derivative identified here mediates PPI-regulated binding of gelsolin to the sides of actin filaments before severing. Deletion of only 3% of gelsolin at the COOH terminus, including a dicarboxylic acid sequence similar to that found on the NH2 terminus of actin, resulted in a loss of Ca2+-requirement for filament severing and monomer binding. Since these residues in actin have been implicated as potential binding sites for gelsolin, our results raise the possibility that the analogous sequence at the COOH terminus of gelsolin may act as a Ca2+-regulated pseudosubstrate. However, derivatives with deletion of 69-79% of the COOH-terminal residues of gelsolin exhibited normal Ca2+ regulation of severing activity, establishing the intrinsic Ca2+ regulation of the NH2-terminal region. One or both mechanisms of Ca2+ regulation may occur in members of the gelsolin family of actin-severing proteins.  相似文献   

3.
Various concentrations of gelsolin (25-100 nM) were added to 2 microM polymerized actin. The concentrations of free calcium were adjusted to 0.05-1.5 microM by EGTA/Ca2+ buffer. Following addition of gelsolin actin depolymerization was observed that was caused by dissociation of actin subunits from the pointed ends of treadmilling actin filaments and inhibition by gelsolin of polymerization at barbed ends. The time course of depolymerization revealed an initial lag phase that was followed by slow decrease of the concentration of polymeric actin to reach the final steady state polymer and monomer concentration. The initial lag phase was pronounced at low free calcium and low gelsolin concentrations. On the basis of quantitative analysis the kinetics of depolymerization could be interpreted as capping, i.e. binding of gelsolin to the barbed ends of actin filaments and subsequent inhibition of polymerization, rather than severing. The main argument for this conclusion was that even gelsolin concentrations (100 nM) that exceed the concentration of filament ends ( approximately 2 nM), cause the filaments to depolymerize at a rate that is similar to the rate of depolymerization of the concentration of pointed ends existing before addition of gelsolin. The rate of capping is directly proportional to the free calcium concentration. These experiments demonstrate that at micromolar and submicromolar free calcium concentrations gelsolin acts as a calcium-regulated capping protein but not as an actin filament severing protein, and that the calcium binding sites of gelsolin which regulate the various functions of gelsolin (capping, severing and monomer binding), differ in their calcium affinity.  相似文献   

4.
The F-actin binding domains of gelsolin and alpha-actinin compete for the same site on actin filaments with similar binding affinities. Both contain tandem repeats of approximately 125 amino acids, the first of which is shown to contain the actin-binding site. We have replaced the F-actin binding domain in the NH2-terminal half of gelsolin by that of alpha-actinin. The hybrid severs filaments almost as efficiently as does gelsolin or its NH2-terminal half, but unlike the latter, requires calcium ions. The hybrid binds two actin monomers and caps the barbed ends of filaments in the presence or absence of calcium. The cap produced by the hybrid binds with lower affinity than that of gelsolin and is not stable: It dissociates from filament ends with a half life of approximately 15 min. Although there is no extended sequence homology between these two different F-actin binding domains, our experiments show that they are functionally equivalent and provide new insights into the mechanism of microfilament severing.  相似文献   

5.
A family of homologous actin-binding proteins sever and cap actin filaments and accelerate actin filament assembly. The functions of two of these proteins, villin and gelsolin, and of their proteolytically derived actin binding domains were compared directly by measuring their effects, under various ionic conditions, on the rates and extents of polymerization of pyrene-labeled actin. In 1 mM Ca2+ and 150 mM KCl, villin and gelsolin have similar severing and polymerization-accelerating properties. Decreasing [Ca2+] to 25 microM greatly reduces severing by villin but not gelsolin. Decreasing [KCl] from 150 to 10 mM at 25 microM Ca2+ increases severing by villin, but not gelsolin, over 10-fold. The C-terminal half domains of both proteins have Ca2+-sensitive actin monomer-binding properties, but neither severs filaments nor accelerates polymerization. The N-terminal halves of villin and gelsolin contain all the filament-severing activity of the intact proteins. Severing by gelsolin's N-terminal half is Ca2+-independent, but that of villin has the same Ca2+ requirement as intact villin. The difference in Ca2+ sensitivity extends to 14-kDa N-terminal fragments which bind actin monomers and filament ends, requiring Ca2+ in the case of villin but not gelsolin. Severing of filaments by villin and its N-terminal half is shown to be inhibited by phosphatidylinositol 4,5-bisphosphate, as shown previously for gelsolin (Janmey, P.A., and Stossel, T.P. (1987) Nature 325, 362-364). The functional similarities of villin and gelsolin correlate with known structural features, and the greater functional dependence of villin on Ca2+ compared to gelsolin is traced to differences in their N-terminal domains.  相似文献   

6.
CapG is the only member of the gelsolin family unable to sever actin filaments. Changing amino acids 84-91 (severing domain) and 124-137 (WH2-containing segment) simultaneously to the sequences of gelsolin results in a mutant, CapG-sev, capable of severing actin filaments. The gain of severing function does not alter actin filament capping, but is accompanied by a higher affinity for monomeric actin, and the capacity to bind and sequester two actin monomers. Analysis of CapG-sev crystal structure suggests a more loosely folded inactive conformation than gelsolin, with a shorter S1-S2 latch. Calcium binding to S1 opens this latch and S1 becomes separated from a closely interfaced S2-S3 complex by an extended arm consisting of amino acids 118-137. Modeling with F-actin predicts that the length of this WH2-containing arm is critical for severing function, and the addition of a single amino acid (alanine or histidine) eliminates CapG-sev severing activity, confirming this prediction. We conclude that efficient severing utilizes two actin monomer-binding sites, and that the length of the WH2-containing segment is a critical functional determinant for severing.  相似文献   

7.
The Ca2+-activated actin-binding protein gelsolin regulates actin filament length by severing preformed filaments and by binding actin monomers, stabilizing nuclei for their assembly into filaments. Gelsolin binds to phosphatidylinositol 4,5-bisphosphate (PIP2), with consequent inhibition of its filament severing activity and dissociation of EGTA-resistant complexes made with rabbit macrophage or human plasma gelsolin and rabbit muscle actin. This study provides evidence for an interaction of gelsolin with phosphatidylinositol monophosphate (PIP) as well as PIP2 and further describes their effects on gelsolin's function. Both phosphoinositides completely dissociate EGTA-insensitive rabbit macrophage cytoplasmic gelsolin-actin complexes and inhibit gelsolin's severing activity. The magnitude of inhibition depends strongly on the physical state of the phosphoinositides, being maximal in preparations that contain small micelles of either purified PIP or PIP2. Aggregation of PIP or PIP2 micelles by divalent cations or insufficient sonication or their incorporation into vesicles containing other phospholipids decreases but does not eliminate the inhibitory properties of the polyphosphoinositides. The presence of gelsolin partly inhibits the divalent cation-induced aggregation of PIP2 micelles. PIP2 in combination with EGTA inactivates gelsolin molecules that block the fast-growing end of actin filaments, thereby accelerating actin polymerization. Regulation of gelsolin by the intracellular messengers Ca2+ and polyphosphoinositides allows for the formation of several different gelsolin-actin intermediates with distinct functional properties that may be involved in changes in the state of cytoplasmic actin following cell stimulation.  相似文献   

8.
Dynamic cytoplasmic streaming, organelle positioning, and nuclear migration use molecular tracks generated from actin filaments arrayed into higher-order structures like actin cables and bundles. How these arrays are formed and stabilized against cellular depolymerizing forces remains an open question. Villin and fimbrin are the best characterized actin-filament bundling or cross-linking proteins in plants and each is encoded by a multigene family of five members in Arabidopsis thaliana. The related villins and gelsolins are conserved proteins that are constructed from a core of six homologous gelsolin domains. Gelsolin is a calcium-regulated actin filament severing, nucleating and barbed end capping factor. Villin has a seventh domain at its C terminus, the villin headpiece, which can bind to an actin filament, conferring the ability to crosslink or bundle actin filaments. Many, but not all, villins retain the ability to sever, nucleate, and cap filaments. Here we have identified a putative calcium-insensitive villin isoform through comparison of sequence alignments between human gelsolin and plant villins with x-ray crystallography data for vertebrate gelsolin. VILLIN1 (VLN1) has the least well-conserved type 1 and type 2 calcium binding sites among the Arabidopsis VILLIN isoforms. Recombinant VLN1 binds to actin filaments with high affinity (K(d) approximately 1 microM) and generates bundled filament networks; both properties are independent of the free Ca(2+) concentration. Unlike human plasma gelsolin, VLN1 does not nucleate the assembly of filaments from monomer, does not block the polymerization of profilin-actin onto barbed ends, and does not stimulate depolymerization or sever preexisting filaments. In kinetic assays with ADF/cofilin, villin appears to bind first to growing filaments and protects filaments against ADF-mediated depolymerization. We propose that VLN1 is a major regulator of the formation and stability of actin filament bundles in plant cells and that it functions to maintain the cable network even in the presence of stimuli that result in depolymerization of other actin arrays.  相似文献   

9.
Gelsolin is a Ca2+- and polyphosphoinositide-modulated actin-binding protein which severs actin filaments, nucleates actin assembly, and caps the "barbed" end of actin filaments. Proteolytic cleavage analysis of human plasma gelsolin has shown that the NH2-terminal half of the molecule severs actin filaments almost as effectively as native gelsolin in a Ca2+-insensitive but polyphosphoinositide-inhibited manner. Further proteolysis of the NH2-terminal half generates two unique fragments (CT14N and CT28N), which have minimal severing activity. Under physiological salt conditions, CT14N binds monomeric actin coupled to Sepharose but CT28N does not. In this paper, we show that CT28N binds stoichiometrically and with high affinity to actin subunits in filaments, suggesting that it preferentially recognizes the conformation of polymerized actin. Analysis of the binding data shows that actin filaments have one class of CT28N binding sites with Kd = 2.0 X 10(-7) M, which saturates at a CT28N/actin subunit ratio of 0.8. Binding of CT28N to actin filaments is inhibited by phosphatidylinositol 4,5-bisphosphate micelles. In contrast, neither CT14N nor another actin-binding domain located in the COOH-terminal half of gelsolin form stable stoichiometric complexes with actin along the filaments, and their binding to actin monomers is not inhibited by PIP2. Based on these observations, we propose that CT28N is the polyphosphoinositide-regulated actin-binding domain which allows gelsolin to bind to actin subunits within a filament before serving.  相似文献   

10.
The actin filament-severing domain of plasma gelsolin   总被引:20,自引:10,他引:10       下载免费PDF全文
Gelsolin, a multifunctional actin-modulating protein, has two actin-binding sites which may interact cooperatively. Native gelsolin requires micromolar Ca2+ for optimal binding of actin to both sites, and for expression of its actin filament-severing function. Recent work has shown that an NH2-terminal chymotryptic 17-kD fragment of human plasma gelsolin contains one of the actin-binding sites, and that this fragment binds to and severs actin filaments weakly irrespective of whether Ca2+ is present. The other binding site is Ca2+ sensitive, and is found in a chymotryptic peptide derived from the COOH-terminal two-thirds of plasma gelsolin; this fragment does not sever F-actin or accelerate the polymerization of actin. This paper documents that larger thermolysin-derived fragments encompassing the NH2-terminal half of gelsolin sever actin filaments as effectively as native plasma gelsolin, although in a Ca2+-insensitive manner. This result indicates that the NH2-terminal half of gelsolin is the actin-severing domain. The stringent Ca2+ requirement for actin severing found in intact gelsolin is not due to a direct effect of Ca2+ on the severing domain, but indirectly through an effect on domains in the COOH-terminal half of the molecule to allow exposure of both actin-binding sites.  相似文献   

11.
The gelsolin family of proteins is a major class of actin regulatory proteins that sever, cap, and nucleate actin filaments in a calcium-dependent manner and are involved in various cellular processes. Typically, gelsolin-related proteins have three or six repeats of gelsolin-like (G) domain, and each domain plays a distinct role in severing, capping, and nucleation. The Caenorhabditis elegans gelsolin-like protein-1 (gsnl-1) gene encodes an unconventional gelsolin-related protein with four G domains. Sequence alignment suggests that GSNL-1 lacks two G domains that are equivalent to fourth and fifth G domains of gelsolin. In vitro, GSNL-1 severed actin filaments and capped the barbed end in a calcium-dependent manner. However, unlike gelsolin, GSNL-1 remained bound to the side of F-actin with a submicromolar affinity and did not nucleate actin polymerization, although it bound to G-actin with high affinity. These results indicate that GSNL-1 is a novel member of the gelsolin family of actin regulatory proteins and provide new insight into functional diversity and evolution of gelsolin-related proteins.  相似文献   

12.
Microinjection of gelsolin into living cells   总被引:11,自引:18,他引:11  
Gelsolins are actin-binding proteins that cap, nucleate, and sever actin filaments. Microinjection of cytoplasmic or plasma gelsolin into living fibroblasts and macrophages did not affect the shape, actin distribution, deformability, or ruffling activity of the cells. Gelsolin requires calcium for activity, but the NH2-terminal half is active without calcium. Microinjection of this proteolytic fragment had marked effects: the cells rounded up, stopped ruffling, became soft, and stress fibers disappeared. These changes are similar to those seen with cytochalasin, which also caps barbed ends of actin filaments. Attempts to raise the cytoplasmic calcium concentration and thereby activate the injected gelsolin were unsuccessful, but the increases in calcium concentration were minimal or transient and may not have been sufficient. Our interpretation of these results is that at the low calcium concentrations normally found in cells, gelsolin does not express the activities observed in vitro at higher calcium concentrations. We presume that gelsolin may be active at certain times or places if the calcium concentration is elevated to a sufficient level, but we cannot exclude the existence of another molecule that inhibits gelsolin. Microinjection of a 1:1 gelsolin/actin complex had no effect on the cells. This complex is stable in the absence of calcium and has capping activity but no severing and less nucleation activity as compared with either gelsolin in calcium or the NH2-terminal fragment. The NH2-terminal fragment-actin complex also has capping and nucleating activity but no severing activity. On microinjection it had the same effects as the fragment alone. The basis for the difference between the two complexes is unknown. The native molecular weight of rabbit plasma gelsolin is 82,500, and the extinction coefficient at 280 nm is 1.68 cm2/mg. A new simple procedure for purification of plasma gelsolin is described.  相似文献   

13.
Regulation of the F-actin severing activity of gelsolin by Ca2+ has been investigated under physiologic ionic conditions. Tryptophan fluorescence intensity measurements indicate that gelsolin contains at least two Ca2+ binding sites with affinities of 2.5 x 10(7) M-1 and 1.5 x 10(5) M-1. At F-actin and gelsolin concentrations in the range of those found intracellularly, gelsolin is able to bind F-actin with half-maximum binding at 0.14 microM free Ca2+ concentration. Steady-state measurements of gelsolin-induced actin depolymerization suggest that half-maximum depolymerization occurs at approximately 0.4 microM free Ca2+ concentration. Dynamic light scattering measurements of the translational diffusion coefficient for actin filaments and nucleated polymerization assays for number concentration of actin filaments both indicate that severing of F-actin occurs slowly at micromolar free Ca2+ concentrations. The data suggest that binding of Ca2+ to the gelsolin-F-actin complex is the rate-limiting step for F-actin severing by gelsolin; this Ca2+ binding event is a committed step that results in a Ca2+ ion bound at a high-affinity, EGTA-resistant site. The very high affinity of gelsolin for the barbed end of an actin filament drives the binding reaction equilibrium toward completion under conditions where the reaction rate is slow.  相似文献   

14.
Gelsolin complexes with calcium (gelsolin-Ca2+) binds to the ends of actin filaments to which monomers add preferentially during elongation. It forms a stable complex with actin in a low ionic strength solution which does not normally favor the polymerization of actin. Gelsolin-Ca2+ increases the rate of nucleation of actin which precedes polymerization, but decreases the rate of elongation of the filaments. The final average length of filaments formed in the presence of gelsolin-Ca2+ is shorter and the equilibrium monomer concentration increases relative to actin polymerized in the absence of gelsolin-Ca2+. Gelsolin-Ca2+ also increases the number of actin filaments because the magnitude of the increase in monomer concentration is disproportionately small compared with the reduction in polymer length. In these respects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of ects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of ects, the population of actin filaments formed during polymerization in the presence of gelsolin-Ca2+ is similar to that resulting from the action of gelsolin on previously assembled actin filaments (Yin, H. L., Zaner, K. S., and Stossel, T. P. (1980) J. Biol. Chem. 255, 9494-9500). The calcium-dependent shortening of actin filaments is the primary mechanism for the dissolution of an actin gel by gelsolin. Therefore, the ability of gelsolin to produce short filaments irrespective of the initial state of assembly of the actin offers flexibility for controlling the network structure of the cytoplasm in which either the monomeric or polymeric form of actin molecules might predominate at different times.  相似文献   

15.
Gelsolin is a Ca2+-binding protein of mammalian leukocytes, platelets and other cells which has multiple and closely regulated powerful effects on actin. In the presence of micromolar Ca2+, gelsolin severs actin filaments, causing profound changes in the consistency of actin polymer networks. A variant of gelsolin containing a 25-amino acid extension at the NH2-terminus is present in plasma where it may be involved in the clearance of actin filaments released during tissue damage. Gelsolin has two sites which bind actin cooperatively. These sites have been localized using proteolytic cleavage and monoclonal antibody mapping techniques. The NH2-terminal half of the molecule contains a Ca2+-insensitive actin severing domain while the COOH-terminal half contains a Ca2+-sensitive actin binding domain which does not sever filaments. These data suggest that the NH2-terminal severing domain in intact gelsolin is influenced by the Ca2+-regulated COOH-terminal half of the molecule. The primary structure of gelsolin, deduced from human plasma gelsolin cDNA clones, supports the existence of actin binding domains and suggests that these may have arisen from a gene duplication event, and diverged subsequently to adopt their respective unique functions. The plasma and cytoplasmic forms of gelsolin are encoded by a single gene, and preliminary results indicate that separate mRNAs code for the two forms. Further application of molecular biological techniques will allow exploration into the structural basis for the multifunctionality of gelsolin, as well as the molecular basis for the genesis of the cytoplasmic and secreted forms of gelsolin.  相似文献   

16.
《The Journal of cell biology》1985,101(4):1236-1244
Platelet gelsolin (G), a 90,000-mol-wt protein, binds tightly to actin (A) and calcium at low ionic strength to form a 1:2:2 complex, GA2Ca2 (Bryan, J., and M. Kurth, 1984, J. Biol. Chem. 259:7480-7487). Chromatography of actin and gelsolin mixtures in EGTA-containing solutions isolates a stable binary complex, GA1Ca1 (Kurth, M., and J. Bryan, 1984, J. Biol. Chem. 259:7473-7479). The effects of platelet gelsolin and the binary gelsolin-actin complex on the depolymerization kinetics of rabbit skeletal muscle actin were studied by diluting pyrenyl F-actin into gelsolin or complex-containing buffers; a decrease in fluorescence represents disassembly of filaments. Dilution of F- actin to below the critical concentration required for filament assembly gave a biphasic depolymerization curve with both fast and slow components. Dilution into buffers containing gelsolin, as GCa2, increased the rate of depolymerization and gave a first order decay. The rate of decrease in fluorescence was found to be gelsolin concentration dependent. Electron microscopy of samples taken shortly after dilution into GCa2 showed a marked reduction in filament length consistent with filament severing and an increase in the number of ends. Conversely, occupancy of the EGTA-stable actin-binding site by an actin monomer eliminated the severing activity. Dilution of F-actin into the gelsolin-actin complex, either as GA1Ca1 or GA1Ca2, resulted in a decrease in the rate of depolymerization that was consistent with filament end capping. This result indicates that the EGTA-stable binding site is required and must be unoccupied for filament severing to occur. The effectiveness of gelsolin, GCa2, in causing filament depolymerization was dependent upon the ionic conditions: in KCI, actin filaments appeared to be more stable and less susceptible to gelsolin, whereas in Mg2+, actin filaments were more easily fragmented. Finally, a comparison of the number of kinetically active ends generated when filaments were diluted into gelsolin versus the number formed when gelsolin can function as a nucleation site suggests that gelsolin may sever more than once. The data are consistent with a mechanism where gelsolin, with both actin-binding sites unoccupied, can sever but not cap F-actin. Occupancy of the EGTA-stable binding site yields a gelsolin-actin complex that can no longer sever filaments, but can cap filament ends.  相似文献   

17.
Gelsolin is an actin filament severing protein composed of six similar structured domains that differ with respect to actin, calcium and polyphospho-inositide binding. Previous work has established that gelsolin binds tropomyosin [Koepf, E.K. and Burtnick, L.D. (1992) FEBS Lett. 309, 56-58]. We have produced various specific gelsolin domains in Escherichia coli in order to establish which of the six domains binds tropomyosin. Gelsolin domains 1-3 (G1-3), G1-2 and G2 all bind tropomyosin in a pH and calcium insensitive manner whereas binding of G4-6 to tropomyosin was barely detectable under the conditions tested. We conclude that gelsolin binds tropomyosin via domain 2 (G2).  相似文献   

18.
Khaitlina S  Walloscheck M  Hinssen H 《Biochemistry》2004,43(40):12838-12845
The basic mechanism for the nucleating effect of gelsolin on actin polymerization is the formation of a complex of gelsolin with two actin monomers. Probably due to changes in the C-terminal part of gelsolin, a stable ternary complex is only formed at [Ca(2+)] >10(-5) M [Khaitlina, S., and Hinssen, H. (2002) FEBS Lett. 521, 14-18]. Therefore, we have studied the binding of actin monomer to the isolated C-terminal half of gelsolin (segments 4-6) over a wide range of calcium ion concentrations to correlate the conformational changes to the complex formation. With increasing [Ca(2+)], the apparent size of the C-terminal half as determined by gel filtration was reduced, indicating a transition into a more compact conformation. Moreover, Ca(2+) inhibited the cleavage by trypsin at Lys 634 within the loop connecting segments 5 and 6. Though the inhibitory effect was observed already at [Ca(2+)] of 10(-7) M, it was enhanced with increasing [Ca(2+)], attaining saturation only at >10(-4) M Ca(2+). This indicates that the initial conformational changes are followed by additional molecular transitions in the range of 10(-5)-10(-4) M [Ca(2+)]. Consistently, preformed complexes of actin with the C-terminal part of gelsolin became unstable upon lowering the calcium ion concentrations. These data provide experimental support for the role of the type 2 Ca-binding sites in gelsolin segment 5 proposed by structural studies [Choe et al. (2002) J. Mol. Biol. 324, 691]. We assume that the observed structural transitions contribute to the stable binding of the second actin monomer in the ternary gelsolin-actin complex.  相似文献   

19.
Gelsolin is a calcium binding protein that shortens actin filaments. This effect occurs in the presence but not in the absence of micromolar calcium ion concentrations and is partially reversed following removal of calcium ions. Once two actin molecules have bound to gelsolin in solutions containing Ca2+, one of the actins remains bound following chelation of calcium, so that the reversal of gelsolin's effect cannot be accounted for simply by its dissociation from the ends of the shortened filaments to allow for elongation. In this paper, the interactions with actin of the ethylene glycol bis(beta-aminoethyl ether)-N,N,N',N'-tetraacetic acid (EGTA) stable 1:1 gelsolin-actin complexes are compared with those of free gelsolin. The abilities of free or complexed gelsolin to sever actin filaments, nucleate filament assembly, bind to the fast growing (+) filament ends, and lower the filament size distribution in the presence of either Ca2+ or EGTA were examined. The results show that both free gelsolin and gelsolin-actin complexes are highly dependent on Ca2+ concentration when present in a molar ratio to actin less than 1:50. The gelsolin-actin complexes, however, differ from free gelsolin in that they have a higher affinity for (+) filament ends in EGTA and they cannot sever filaments in calcium. The limited reversal of actin-gelsolin binding following removal of calcium and the calcium sensitivity of nucleation by complexes suggest an alternative to reannealing of shortened filaments that involves redistribution of actin monomers and may account for the calcium-sensitive functional reversibility of the solation of actin by gelsolin.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号