首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到19条相似文献,搜索用时 125 毫秒
1.
免疫应答期间脑和淋巴器官中去甲肾上腺素含量的变化   总被引:3,自引:0,他引:3  
应用高效液相色谱-电化学检测法(HPLC-ECD)测定大鼠在用绵羊红细胞(SRBC)免疫后第2-7天期间,下丘脑、海马、脑干、胸腺和脾脏中去甲肾上腺素(NA)含量的变化。实验结果表明,下丘脑内NA含量在免疫后第4-7天明显增加,其中第7天有回降趋势。海马内NA含量在第4-5天显著增多。而胸腺和脾脏中NA水平在第4-5天均明显降低。脑干在免疫应答期间无明显改变。以上结果说明,体液免疫应答可影响脑和淋  相似文献   

2.
目的:探讨实验性变态反应性脑脊髓炎(EAE)时,中枢和外周儿茶酚胺水平的变化规律,为神经系统自身免疫性疾病的发病机制和治疗的进一步研究提供实验依据。方法:用豚鼠脊髓加完全弗氏佐剂的佐剂乳化物诱导Wistar大鼠发生EAE。在EAE2级和3级临床症状时,用高效液相色谱-电化学检测法(HPLC-ECD)测定下丘脑、海马、肠系膜淋巴结和血清中去甲肾上腺素(NA)、多巴胺(DA)和肾上腺素(A)的含量。F  相似文献   

3.
于大鼠皮下埋入含醋酸去氧皮质酮(DOCA)的交管以形成DOCA-salt高血压,其中一组动物在埋管前切除(T9-L2)脊髓右侧背根神经,每周以尾套法测定大鼠收缩压,埋管后6周测定大鼠脑和血浆中儿茶酚胺(CA)和血管紧张素Ⅱ(AngⅡ)的浓度,用电脑血管显微图像分析系统测量血管的结构变化。与对照鼠相比,DOCA-salt高血压大鼠下丘脑和延脑 肾上腺素含量和AngⅡ放免活性及血浆去甲肾上腺素(NE)  相似文献   

4.
于大鼠皮下埋入含醋酸去氧皮质酮(DOCA)的硅胶管以形成DOCA-salt高血压,其中一组动物在埋管前切除(T_9-L_2)脊髓右侧背根神经,每周以尾套法测定大鼠收缩压,埋管后6周测定大鼠脑和血浆中儿茶酚胺(CA)和血管紧张素Ⅱ(AngⅡ)的浓度,用电脑血管显微图像分析系统测量血管的结构变化。与对照鼠相比,DOCA-salt高血压大鼠下丘脑和延脑的肾上腺素含量和AngⅡ放免活性及血浆去甲肾上腺素(NE)浓度均明显增加,血浆AngⅡ浓度降低,心系数(心重/体重)和肠系膜动脉的中层厚度、壁厚与腔径(壁腔)比值增大;切除脊髓背根可明显延缓DOCA-salt高血压的形成、预防以上组织CA浓度和AngⅡ放免活性增加以及缓解心肌和血管平滑肌的肥厚。提示,肾神经传入纤维在DOCA-salt高血压形成中起作用,其机制可能通过影响脑内肾上腺素能神经元和激活脑肾素-血管紧张素系统增加交感传出而起作用。  相似文献   

5.
为探讨八肽胆囊收缩素(CCk-8)和阿片肽相互作用的分子机理,利用抗体免疫沉淀技术研究了CCK-8与NDAP(k阿片受体激动剂)对大鼠脑(去皮层和小脑)和脊髓背柱组织Fos蛋白的影响。结果表明,0.1μmol/LCCK-8可显著刺激脑和脊髓组织中Fos蛋白增加(分别是对照组的3.8倍和3.6倍)。相同浓度的NDAP对Fos蛋白的生成亦有一定的诱导作用,分别是对照组的2.7倍和2.6倍。CCK-8和NDAP共同处理组织,Fos蛋白生成水平相似(脑)或高于(脊髓)CCK~-8单独诱导的水平。结果表明,CCK-8和NDAP均可直接诱导大鼠脑和脊髓组织c-fos的表达,它们对c-fos表达的相互作用在脑和脊髓中呈现不同的模式。  相似文献   

6.
电磁脉冲对大鼠学习和脑内神经递质的影响   总被引:9,自引:0,他引:9  
探讨电磁脉冲(EMP)对大鼠神经系统的效应。实验采用Wistar大鼠,EMP辐照后不同时间用Y-型迷宫测其学习能力,高效液相色谱法检测脑不同部位的神经递质含量。与假照射组(对照组)相比,照后三天内各测定组大鼠学习能力降低(P<0.05),其中照射后第1天组的海马内5-羟色胺(5-HT)和多巴酸(DOPAC)含量升高(P<0.05),下丘脑多巴胺(Dopamine)含量升高(P<0.05),肾上腺素(Adr)含量降低;照后2天组海马Adr含量降低(P<0.05),海马5-HT含量升高(P<0.05);照后3天组海马内Adr含量降低(P<0.05)。EMP能够改变大鼠不同脑区神经递质的含量,降低大鼠学习能力  相似文献   

7.
为探讨八肽胆囊收缩素(CCK-8)和阿片肽相互作用的分子机理,利用抗体免疫沉淀技术研究了CCK-8与NDAP(κ阿片受体激动剂)对大鼠脑(去皮层和小脑)和脊髓背柱组织Fos蛋白的影响。结果表明,0.1μmol/L CCK-8可显著刺激脑和脊髓组织中Fos蛋白增加(分别是对照组的3.8倍和3.6倍)。相同浓度的NDAP对Fos蛋白的生成亦有一定的诱导作用,分别是对照组的2.7倍和2.6倍。CCK-8  相似文献   

8.
海马内NA能神经损毁对抗急性低氧诱发皮质酮分泌   总被引:1,自引:0,他引:1  
Zhu XM  Zhu ZT  Wen CJ  Zhou YQ 《生理学报》1999,51(3):356-360
本工作观察了6羟多巴胺(6hydroxydopamine,6OHDA)损毁大鼠腹侧海马去甲肾上腺素能神经对急性低氧诱发皮质酮分泌的影响。结果显示,吸入104%O230min后血浆皮质酮水平显著升高,6OHDA注入腹侧海马致使海马内去甲肾上腺素(NA)含量降低(-385%);血浆皮质酮水平也较未损毁组为低(-332%)。吸入104%O2后,皮质酮对低氧刺激的反应性升高现象消失。结果提示:海马内NA可能参与急性低氧应激引发血浆皮质酮分泌的调节活动。  相似文献   

9.
记忆增强肽促进大鼠海马内CREB磷酸化   总被引:3,自引:0,他引:3  
五肽ZNC(CPR(pBGlu-Asn-Cyt-Pro-Arg-OH)是精氨酸加压素(AVP)在脑内的天然酶解产物,具有促进学习记忆的中枢效应。为了进一步阐明其作用的分子机制,以整体大鼠海马及离体大鼠海马切片为对象,研究了ZNC(C)PR对cAMP反应元件结合蛋白(CREB)磷酸化的作用。发现ZNC(C)PR及其类似物NLPR能诱导大鼠海马内CREB磷酸2化,该作用能被其拮抗剂ZDC(C)PR、G  相似文献   

10.
本文对10例成年Wistar大鼠海马,应用过氧化物酶二氨基联苯胺(DAB)法、碱性磷酸酶(AIP)、镁离子激活的三磷酸腺苷酶(Mg(2+)-ATPase)、钙离子激活的三磷酸腺昔酶(Ca(2+)-ATPase)和5’-核苷酸酶(5’-Nase)等酶组织化学方法显示其微血管,并应用体视学方法测算,比较上述方法显示微血管的效果,结果表明:DAB法显示微血管的效果最好,AIP法次之,Mg(2+)-AT-Pase法再次之。大鼠海马微血管Ca(2+)-ATPase呈弱阳性,5‘-Nase呈阴性。DAB法和Mg(2+)-ATPase法分别适宜作微血管长度密度和血管直径的定量分析。  相似文献   

11.
After the intraventricular injection of 6-hydroxydopamine (6-OHDA), there was a long lasting reduction in the brain concentrations of noradrenaline (NA) and dopamine (DA). The brain concentration of NA was affected by lower doses of 6-OHDA than were required to deplete DA. A high dose of 6-OHDA which depleted the brain of NA and DA by 81 per cent and 66 per cent respectively, had no significant effect on brain concentrations of 5-hydroxytryptamine (5-HT) or γ-aminobutyric acid (GABA). The fall in catecholamines was accompanied by a long lasting reduction in the activities of tyrosine hydroxylase and DOPA decarboxylase in the hypothalamus and striatum, areas in the brain which are rich in catecholamine containing nerve endings. There was, however, no consistent effect on catechol-O-methyl transferase or monamine oxidase activity in these brain regions. The initial accumulation of [3H]NA into slices of the hypothalamus and striatum was markedly reduced 22–30 days after 6-OHDA treatment. These results are consistent with the evidence in the peripheral sympathetic nervous system that 6-OHDA causes a selective destruction of adrenergic nerve endings and suggest that this compound may have a similar destructive effect on catecholamine neurones in the CNS.  相似文献   

12.
Noradrenaline (NA) and dopamine (DA) contents in various brain regions and their dependence on genotype, determining predisposition to domination, were studied during 7 days after the formation of artificial micropopulations consisting of 6 male mice of different genotypes. Significant changes of NA level were found in the olfactory bulbs and in the medulla oblongata and of DA in the hypothalamus and the hippocampus. Genotypic differences in NA levels were found in the hypothalamus and in DA levels--in the hippocampus. Reactions of RT males predisposed to domination differed both in noradrenaline and DA systems of the brain from the reactions of the males genetically predisposed to subordinate type of behaviour. Interconnection between the amines content both inside and between catecholamine systems was revealed.  相似文献   

13.
The concentrations of catecholamine and indoleamine metabolites were measured in intact and adrenalectomized mice to determine whether adrenal hormones mediate or modulate the stress-induced responses. Thirty minutes of footshock resulted in significant increases of the ratios of the dopamine (DA) catabolite, dihydroxyphenylacetic acid (DOPAC), to DA in prefrontal cortex, nucleus accumbens, striatum, hypothalamus, and brainstem, and of homovanillic (HVA)/DA ratios in nucleus accumbens, striatum, amygdala, and hypothalamus. Ratios of 3-methoxy-4-hydroxyphenylethyleneglycol to norepinephrine (NE) were also increased in prefrontal cortex, nucleus accumbens, septum, amygdala, hypothalamus, hippocampus, and brainstem. The concentration of NE was decreased in amygdala. 5-Hydroxyindoleacetic acid (5-HIAA)/5-hydroxytryptamine (5-HT, serotonin) ratios and free tryptophan were also increased in every brain region. Very similar data were obtained from mice restrained for 30 min. Adrenalectomy resulted in increased HVA/DA ratios in prefrontal cortex and striatum, and 5-HIAA/5-HT in septum. The stress-related changes were largely similar in adrenalectomized mice. Significant interactions between adrenalectomy and footshock treatment occurred in prefrontal cortical DOPAC/DA and hypothalamic NE which was depleted only in adrenalectomized mice, suggesting tendencies for these measures to be more responsive in adrenalectomized mice. Corticosterone administration (0.5-2.0 mg/kg s.c.) which resulted in plasma concentrations in the physiological range did not alter the concentrations of the cerebral metabolites measured in any region. We conclude that adrenal hormones do not mediate cerebral catecholamine or indoleamine metabolism in stress, although adrenalectomy may affect HVA and 5-HIAA metabolism, and there was a tendency for catecholamines to be more sensitive to stress in adrenalectomized animals.  相似文献   

14.
Previous findings have shown that some of the neurons in the median preoptic nucleus (MnPO) receive both catecholaminergic inputs from the brainstem and angiotensinergic inputs from the subfornical organ (SFO), and that alterations in the function of the brain renin-ANG system are implicated in hypertension, especially in spontaneous hypertensive rats (SHR). In an attempt to clarify the action of these inputs on MnPO neurons and to find the difference in the action between normotensive Wistar-Kyoto (WKY) rats and SHR, we used microdialysis to investigate the effects of injections of saralasin (Sar), an angiotensin II (ANG II) antagonist, into the third ventricle (3V) on monoamine release in the MnPO area of awake WKY and SHR. The content of noradrenaline (NA) in the MnPO area was significantly higher in SHR. No significant differences were observed between WKY and SHR in the concentrations of dopamine (DA) and of its two metabolites, 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA). In both WKY and SHR, Sar (Sar, 5 microg in 1 microl, three injections at 2-h intervals) injected into the 3V significantly decreased the extracellular concentrations of NA, DOPAC and HVA in the MnPO area. The decreases were much greater in SHR than in WKY rats. Similar injections of saline vehicle had no significant effect on the extracellular levels of NA, DA and the metabolites. These results suggest that central angiotensinergic circuits may serve to increase NA and DA release in the MnPO area, and support that a disorder in the ANG system may contribute, in part, to the elevated blood pressure of SHR.  相似文献   

15.
Active immunization with dopamine conjugated with bovine serum albumin (DA-BSA) or BSA with complete Freund's adjuvant (CFA) partly suppressed the development of the MPTP-induced depressive syndrome in rats preventing the appearance of "behavioral despair" symptoms: increase in immobility time and higher index of depression in forced-swim test. In DA-BSA-immunized rats the content of DOPA, DA, HVA, NA, and 5-HN in caudate putamen and that of NA in the frontal cortex was increased, while in BSA-immunized rats the content of 5-HT in both brain areas and that of DOPAC in the frontal cortex was decreased both in rats with reduced depressive syndrome and in saline control as compared with intact animals a day after the last drug injection. In DA-BSA-immunized rats with reduced depressive syndrome the increase in DA and 5-HT content in caudate putamen was less expressed and DOPAC content was lower than in saline control. In BSA-immunized depressive rats DA content in the frontal cortex was also reduced as compared to control.  相似文献   

16.
Several studies have shown anatomical and functional interconnections between catecholaminergic and somatostatinergic systems. To assess whether somatostatin (SS) may act presynaptically on catecholamine neurons, SS receptors were measured using radioligand test-tube binding assays on synaptosomes from hippocampus and frontoparietal cortex--areas that are innervated by catecholaminergic neurons with different densities and that have a high number of SS receptors--from control and 6-hydroxydopamine (6-OHDA)-treated rats. Intracerebroventricular (i.c.v.) injection of the catecholamine neurotoxin 6-OHDA (0.78 mg free base/kg of body weight in saline with 0.1% ascorbic acid) lowered hippocampal and frontoparietal cortical noradrenaline (NA) and dopamine (DA) levels at 1 week following the injection. Pretreatment of rats with desmethylimipramine (DMI) (40 mg/kg, intraperitoneal) prevented the drop in NA levels, but was not effective in attenuating DA depletion in the two brain areas studied. Treatment with 6-OHDA lowered the number of 125I-Tyr11-SS receptors in the hippocampus (130 +/- 19 vs. 266 +/- 16 fmol/mg protein, P < 0.001), whereas in the frontoparietal cortex a non significant 20% reduction in receptor number was found. The dissociation constants of 125I-Tyr11-SS binding to synaptosomes from frontoparietal cortex (0.65 +/- 0.06 vs. 0.60 +/- 0.04, P not significant) and hippocampus (0.44 +/- 0.04 vs. 0.63 +/- 0.14, P not significant) were similar in control and treated groups. Pretreatment with DMI reversed up to 80% of the effect of 6-OHDA on hippocampus SS receptors. DMI alone had no observable effect on the number and affinity of SS receptors. The 6-OHDA and the DMI treatment did not affect SLI levels in the brain areas studied. These results suggest that a portion of the hippocampal SS receptors may be localized presynaptically on the noradrenergic and dopaminergic nerve terminals.  相似文献   

17.
The effect of naloxone-precipitated withdrawal after acute morphine was studied on the concentrations of noradrenaline (NA), 4-hydroxy-3-methoxyphenylethyleneglycol (MHPG), dopamine (DA), 3,4-dihydroxyphenylacetic acid (DOPAC) and homovanillic acid (HVA), and on the metabolite/parent amine ratios MHPG/NA, DOPAC/DA and HVA/DA, in eight regions of the guineapig brain. Guinea-pigs were treated with a single dose of morphine sulphate (15 mg/kg s.c.) or saline (control) and 2h later with naloxone hydrochloride (15 mg/kg s.c.) to precipitate withdrawal. The animals were decapitated at 0.5 h or 1 h after naloxone injections and their brains analysed for monoamine concentrations by HPLC-ECD. At 0.5 h after naloxone-precipitated withdrawal NA and MHPG levels, and the MHPG/NA ratio, were increased in the hypothalamus, and the NA levels were increased in the hypothalamus, medulla/pons and cortex 1 h after naloxone. Naloxoneprecipitated withdrawal also produced increased DA metabolism in the cortex, midbrain and medulla 0.5 h later, and in the cortex, hypothalamus and striatum 1 h later. Hence naloxone-precipitated withdrawal from acute morphine treatment produced a complex pattern of increased synthesis and metabolism of NA and DA which varied over time and with the brain region examined.  相似文献   

18.
Previous studies from our laboratory showed that subchronic exposure to low levels of Pb resulted in significant decrease in dopamine (DA) content, attenuation of stimulus-induced release of DA in the dopaminergic projection area of nucleus accumbens (NA), and alterations in tyrosine hydroxylase (TH) activity in rat whole brain homogenates. The present study reported here was conducted to assess the functional integrity of DA synthesis in different brain regions of rats subchronically (90-days) exposed to 50 ppm Pb by measuring the activity of the rate limiting enzyme, tyrosine hydroxylase, in seven brain regions. In Pb-exposed rats, TH activity was reduced in two of the seven brain regions investigated, i.e., nucleus accumbens (42% reduction) and frontal cortex (61% reduction) when compared to controls. In contrast, Pb exposure did not affect the TH activity in cerebellum, brainstem, hippocampus, hypothalamus and striatum. The changes in TH activity in nucleus accumbens (NA) and frontal cortex (FC) in Pb-exposed rats were further confirmed by Western blot analysis using TH polyclonal antibody. Collectively, these results indicate that low level subchronic Pb exposure may affect TH protein in these brain regions.  相似文献   

19.
Systemic administration of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) caused a rapid and long-lasting reduction of both 3,4-dihydroxyphenylalanine (dopamine, DA) and noradrenaline (NA) in mouse brain, as observed histo- and neurochemically. The depleting effects were more pronounced after repeated MPTP administration and the most marked reductions were observed after 2 X 50 mg MPTP/kg s.c., when DA in striatum and NA in frontal cortex were reduced by greater than 90% 1 week after MPTP. Mice with such catecholamine depletions were markedly sedated and almost completely immobilized. The behavioural syndrome after MPTP resembled that seen after reserpine, a monoamine-depleting drug. MPTP also caused a long-lasting reduction of catecholamine uptake in striatal DA and cortical NA nerve terminals and reduced tyrosine hydroxylase activity in these regions. There was no evidence that MPTP caused any marked DA and NA cell body death. MPTP given acutely transiently elevated serotonin levels. The results are compatible with a neurotoxic action of MPTP on both DA and NA nerve terminals. The nigro-striatal DA and the locus coeruleus NA neurone systems appeared to be most susceptible. Synthesis and utilization of residual striatal DA and cortical NA were increased, as often observed in partially denervated monoamine-innervated brain regions. Both DA and NA showed a gradual recovery, which took months to become complete and may have been related to a regrowth of catecholamine nerve terminals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号