首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The objective of this study was to examine the effect of joint angle on the electromyogram (EMG) and mechanomyogram (MMG) during maximal voluntary contraction (MVC). Eight subjects performed maximal isometric plantar flexor torque productions at varying knee and/or ankle angles. Maximal voluntary torque, EMG, and MMG from the soleus (Sol), medial (MG) and lateral gastrocnemius (LG) muscles were measured at different joint angles. At varying knee angles, the root mean squared (rms) MMG amplitude of the MG and LG increased with knee joint extension from 60 degrees to 180 degrees (full extension) in steps of 30 degrees, whereas that of the Sol was constant. At varying ankle angles, the rms-MMG of all muscles (Sol, MG, and LG) decreased with torque as ankle joint extending from 80 degrees (10 degrees dorsiflexion position) to 120 degrees (30 degrees plantar flexion position) in steps of 10 degrees. In each case, changes in the rms-MMG of the three muscles were almost parallel to those in torque. In contrast, there were no significant differences in the rms-EMG of all muscles among all joint angles. Our data suggest that the MMG amplitudes recorded from individual muscles during MVCs can represent relative torque-angle relationships that cannot be represented by the EMG signals.  相似文献   

2.
It is not understood how the knee joint angle affects the relationship between electromyography (EMG) and force of four individual quadriceps femoris (QF) muscles. The purpose of this study was to examine the effect of the knee joint angle on the EMG–force relationship of the four individual QF muscles, particularly the vastus intermedius (VI), during isometric knee extensions. Eleven healthy men performed 20–100% of maximal voluntary contraction (MVC) at knee joint angles of 90°, 120° and 150°. Surface EMG of the four QF synergists was recorded and normalized by the root mean square during MVC. The normalized EMG of the four QF synergists at a knee joint angle of 150° was significantly lower than that at 90° and 120° (P < 0.05). Comparing the normalized EMG among the four QF synergists, a significantly lower normalized EMG was observed in the VI at 150° as compared with the other three QF muscles (P < 0.05). These results suggest that the EMG–force relationship of the four QF synergists shifted downward at an extended knee joint angle of 150°. Furthermore, the neuromuscular activation of the VI was the most sensitive to change in muscle length among the four QF synergistic muscles.  相似文献   

3.
This study tested the hypothesis that the effect of hip joint angle on concentric knee extension torque depends on knee joint angle during a single knee extension task. Twelve men performed concentric knee extensions in fully extended and 80° flexed hip positions with maximal effort. The angular velocities were set at 30° s−1 and 180° s−1. The peak torque and torques attained at 30°, 50°, 70° and 90° (anatomical position = 0°) of the knee joint were compared between the two hip positions. Muscle activations of the vastus lateralis, medialis, rectus femoris and biceps femoris were determined using surface electromyography. The peak torque was significantly greater in the flexed than in the extended hip position irrespective of angular velocity. The torques at 70° and 90° of the knee joint at both angular velocities and at 50° at 180° s−1 were significantly greater in the flexed than in the extended hip position, whereas corresponding differences were not found at 30° (at either angular velocity) and 50° (at 30° s−1) of the knee joint. No effect of hip position on muscle activation was observed in any muscle. These results supported our hypothesis and may be related to the force–length and force–velocity characteristics of the rectus femoris.  相似文献   

4.
The purpose of this study was to compare isokinetic peak torque and the patterns of responses for electromyographic (EMG) and mechanomyographic (MMG), amplitude (AMP) and mean power frequency (MPF) for bilateral (BL) versus unilateral (UL), maximal, isokinetic leg extensions. Eleven recreationally trained women (Mean ± SD: age 22.9 ± 0.9 yrs; body mass 60.5 ± 10.1 kg; height 167.2 ± 6.4 cm) performed 50 maximal, BL and UL isokinetic leg extensions at 60° s−1 on separate days. Electromyographic and MMG signals from the vastus lateralis of the nondominant leg were recorded. Five separate 2 (Condition [BL and UL]) × 10 (Repetitions [5–50]) repeated measures ANOVAs were performed to examine normalized EMG AMP, EMG MPF, MMG AMP, MMG MPF, and isokinetic torque. The results indicated no significant interactions or main effects for EMG AMP and MMG AMP. There were significant interactions for normalized isokinetic peak torque (p < 0.001, η2p = 0.493) and MMG MPF (p = 0.003, η2p = 0.234). For EMG MPF, there was no significant interaction, but significant main effects for Condition (p = 0.003, η2p = 0.607) and Repetitions (p < 0.001, η2p = 0.805). The current findings demonstrated greater performance fatigability for UL than BL leg extensions. Both modalities exhibited similar patterns of neuromuscular responses that were consistent with the Muscular Wisdom hypothesis.  相似文献   

5.
The purpose of this study was to examine the effects of moment of antagonistic muscle on the resultant joint moment during isokinetic eccentric and concentric efforts of the knee extensors. Ten males performed maximum eccentric and concentric knee extension and flexion efforts on a Biodex dynamometer at 0.52 rad · s−1 (30° · s−1). Electromyographic (EMG) activity of vastus medialis and biceps femoris (hamstrings) was also recorded. The antagonistic moment of the hamstrings was determined by recording the integrated EMG (iEMG)/moment relationship at different levels of muscle effort. The iEMG/moment curves were fitted using second-degree polynomials. The polynomials were then used to predict the antagonistic moment exerted by the hamstrings from the antagonist iEMG. The antagonistic moment had a maximum of 42.92 Nm and 28.97 Nm under concentric and eccentric conditions respectively; paired t-tests indicated that this was a significant difference (P < 0.05). These results indicate that the resultant joint moment of knee extensors is the result of both agonist and antagonist muscle activation. The greater antagonist muscle activity under concentric activation conditions may be partly responsible for the lower resultant joint concentric moment of knee extensors compared with the corresponding eccentric activation. The antagonist moment significantly affects comparisons between the isokinetic moments and agonist EMG and in vitro force measurements under different testing (muscle action and angular velocity) conditions. Accepted: 25 February 1997  相似文献   

6.
Hamstring strain rehabilitation programs with an eccentric bias are effective but have a low adherence rate. Post-stretch isometric (PS-ISO) contractions which incorporate a highly controlled eccentric contraction followed by an isometric contraction resulting in elevated torque during following stretch, compared with isometric contractions at the same joint angle. This study measured torque, activation and musculotendinous unit behaviour of the hamstrings during PS-ISO contractions of maximal and submaximal levels using two stretch amplitudes. Ten male participants (24.6 years ± 2.22 years) completed maximal and submaximal baseline isometric contractions at 90°, 120° and 150° knee flexion and PS-ISO contractions of maximal and submaximal intensity initiated at 90° and 120° incorporating active stretch of 30° and 60° at 60°·s−1. Torque and muscle activation of the knee flexors were simultaneously recorded. Musculotendinous unit behaviour of the biceps femoris long head was recorded via ultrasound during all PS-ISO contractions. Compared with baseline, torque was 8% and 39% greater in the maximal and submaximal PS-ISO conditions respectively with no change in muscle activation. The biceps femoris long head muscle lengthened during all PS-ISO contractions. PS-ISO contractions may be beneficial where the effects of highly controlled eccentric contractions and elevated isometric torque are desired, such as hamstring rehabilitation.  相似文献   

7.
The architectural properties of the triceps surae muscle were studied in vivo in groups of healthy subjects (eight men) and patients with locomotor function disorders (four men and four women) with the ankle joint positioned at a plantar flexion 0° and the knee set at 90° (neutral position). In this position, using ultrasonic scanning, longitudinal ultrasonic images of the medial gastrocnemius (MG), lateral gastrocnemius (LG), and soleus (Sol) muscles were obtained when the subject was relaxed (the passive state) or performed isometric plantar flexion (50% of the maximum voluntary contraction (MVC), the active state). The fascicle lengths, fascicle angles, and muscle thickness were determined. In the passive state, the fascicle lengths of the MG, LG, and Sol muscles in the group of healthy subjects were 33, 35, and 30 mm and the pennation angle, 25°, 19°, and 25°; in the group of patients with motor disorders, 38, 39, and 29 mm and 21°, 19°, and 24°, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects were 15, 13, and 12 mm, and in the group of patients with motor disorders, 14, 12, and 14 mm, respectively. In the active state (50% of the MVC), the MG, LG, and Sol fiber lengths in the group of healthy subjects shortened by 31, 24, and 18%; the fiber pennation angle increased by 60, 41, and 41%, respectively. In the group of patients with motor disorders, the fiber lengths shortened by 28, 14, and 18% and the fiber pennation angle decreased by 28, 26, and 36%, respectively. The MG, LG, and Sol thicknesses in the group of healthy subjects increased by 9, 22, and 18%, while in the group of patients with motor disorders the thickness decreased by 4% in the MG and increased by 11 and 4% in the LG and Sol muscles, respectively. Different fiber lengths and pennation angles and their changes upon contraction might be related to differences in the force-producing capabilities of the muscles and the viscoelastic properties of muscle tendons and aponeuroses.  相似文献   

8.
It has been suggested that a suppression of maximal voluntary contraction (MVC) induced by prolonged vibration is due to an attenuation of Ia afferent activity. The purpose of the present study was to test the hypothesis that aftereffects following prolonged vibration on muscle activity during MVC differ among plantar flexor synergists owing to a supposed difference in muscle fiber composition. The plantar flexion MVC torque and surface electromyogram (EMG) of the medial head of gastrocnemius (MG), the lateral head of gastrocnemius (LG), and the soleus (Sol) were recorded in 13 subjects before and after prolonged vibration applied to the Achilles tendon at 100 Hz for 30 min. The maximal H reflexes and M waves were also determined from the three muscles, and the ratio between H reflexes and M waves (H/Mmax) was calculated before and after the vibration. The MVC torque was decreased by 16.6 +/- 3.7% after the vibration (P < 0.05; ANOVA). The H/Mmax also decreased for all three muscles, indicating that Ia afferent activity was successfully attenuated by the vibration in all plantar flexors. However, a reduction of EMG during MVC was observed only in MG (12.7 +/- 4.0%) and LG (11.4 +/- 3.9%) (P < 0.05; ANOVA), not in Sol (3.4 +/- 3.0%). These results demonstrated that prolonged vibration-induced MVC suppression was attributable mainly to the reduction of muscle activity in MG and LG, both of which have a larger proportion of fast-twitch muscle fibers than Sol. This finding suggests that Ia-afferent activity that reinforces the recruitment of high-threshold motor units is necessary to enhance force exertion during MVC.  相似文献   

9.
Although the possibility that the vastus intermedius (VI) muscle contributes to flexion of the knee joint has been suggested previously, the detail of its functional role in knee flexion is not well understood. The purpose of this study was to examine the antagonist coactivation of VI during isometric knee flexion. Thirteen men performed 25–100% of maximal voluntary contraction (MVC) at 90°, 120°, and 150° knee joint angles. Surface electromyography (EMG) of the four individual muscles in the quadriceps femoris (QF) was recorded and normalized by the EMG signals during isometric knee extension at MVC. Cross-talk on VI EMG signal was assessed based on the median frequency response to selective cooling of hamstring muscles. Normalized EMG of the VI was significantly higher than that of the other synergistic QF muscles at each knee joint angle (all P < 0.05) with minimum cross-talk from the hamstrings to VI. There were significant correlations between the EMG signal of the hamstrings and VI (r = 0.55–0.85, P < 0.001). These results suggest that VI acts as a primary antagonistic muscle of QF during knee flexion, and that VI is presumably a main contributor to knee joint stabilization.  相似文献   

10.
The ankle flexor and extensor muscles are essential for pedal movements associated with car driving. Neuromuscular activation of lower leg muscles is influenced by the posture during a given task, such as the flexed knee joint angle during car driving. This study aimed to investigate the influence of flexion of the knee joint on recruitment threshold-dependent motor unit activity in lower leg muscles during isometric contraction. Twenty healthy participants performed plantar flexor and dorsiflexor isometric ramp contractions at 30 % of the maximal voluntary contraction (MVC) with extended (0°) and flexed (130°) knee joint angles. High-density surface electromyograms were recorded from medial gastrocnemius (MG), soleus (SOL), and tibialis anterior (TA) muscles and decomposed to extract individual motor units. The torque-dependent change (Δpps /Δ%MVC) of the motor unit activity of MG (recruited at 15 %MVC) and SOL (recruited at 5 %MVC) muscles was higher with a flexed compared with an extended knee joint (p < 0.05). The torque-dependent change of TA MU did not different between the knee joint angles. The motor units within certain limited recruitment thresholds recruited to exert plantar flexion torque can be excited to compensate for the loss of MG muscle torque output with a flexed knee joint.  相似文献   

11.
Anatomical studies have shown structural continuity between the lumbopelvic region and the lower limb. The present study aimed to verify how simultaneous changes on knee/hip positions modify the ankle’s resting position and passive torque. Thirty-seven subjects underwent an isokinetic assessment of ankle passive torque. The relationship between the absolute values of ankle passive resistance torque and the ankle angular position was used to calculate the dependent variables: ankle resting position (position in which the passive resistance torque is zero); and ankle passive torque at 0° (torque at the neutral position of the ankle in the sagittal plane). These measures were carried out under three test conditions: 0° at knee and 0° at hip (0°/0°); 90° at knee and 90° at hip (90°/90°); and, 135° at knee and 120° at hip (135°/120°). The results demonstrated that the ankle resting position shifted towards dorsiflexion when knee/hip position changed from 0°/0° to 90°/90° and shifted towards plantar flexion when knee/hip position changed from 90°/90° to 135°/120°, achieving values close to the ones at the position 0°/0°. Similarly, passive torque reduced when knee/hip position changed from 0°/0° to 90°/90°, but it increased when knee/hip position changed from 90°/90° to 135°/120°. The unexpected changes observed in ankle passive torque and resting position due to changes in knee and hip from 90°/90° to 135°/120°, cannot be explained exclusively by forces related to tissues crossing the knee and ankle. This result supports the existence of myofascial force transmission among lower limb joints.  相似文献   

12.
The objectives were to examine knee angle-, and gender-specific knee extensor torque output and quadriceps femoris (QF) muscle recruitment during maximal effort, voluntary contractions. Fourteen young adult men and 15 young adult women performed three isometric maximal voluntary contractions (MVC), in a random order, with the knee at 0 degrees (terminal extension), 10 degrees, 30 degrees, 50 degrees, 70 degrees, and 90 degrees flexion. Knee extensor peak torque (PT), and average torque (AT) were expressed in absolute (N m), relative (N m kg(-1)) and allometric-modeled (N m kg(-n)) units. Vastus medialis (VM), vastus lateralis (VL), and rectus femoris (RF) muscle EMG signals were full-wave rectified and integrated over the middle 3 s of each contraction, averaged over the three trials at each knee angle, and normalized to the activity recorded at 0 degrees. Muscle recruitment efficiency was calculated as the ratio of the normalized EMG of each muscle to the allometric-modeled average torque (normalized to the values at 0 degrees flexion), and expressed as a percent. Men generated significantly greater knee extensor PT and AT than women in absolute, relative and allometric-modeled units. Absolute and relative PT and AT were significantly highest at 70 degrees, while allometric-modeled values were observed to increase significantly across knee joint angles 10-90 degrees. VM EMG was significantly greater than the VL and RF muscles across all angles, and followed a similar pattern to absolute knee extensor torque. Recruitment efficiency improved across knee joint angles 10-90 degrees and was highest for the VL muscle. VM recruitment efficiency improved more than the VL and RF muscles across 70-90 degrees flexion. The findings demonstrate angle-, and gender-specific responses of knee extensor torque to maximal-effort contractions, while superficial QF muscle recruitment was most efficient at 90 degrees, and less dependent on gender.  相似文献   

13.
Jakobi, J. M., and E. Cafarelli. Neuromuscular driveand force production are not altered during bilateral contractions. J. Appl. Physiol. 84(1): 200-206, 1998.Several investigators have studied the deficit in maximalvoluntary force that is said to occur when bilateral muscle groupscontract simultaneously. A true bilateral deficit (BLD) would suggest asignificant limitation of neuromuscular control; however, some of thedata from studies in the literature are equivocal. Our purpose was todetermine whether there is a BLD in the knee extensors of untrainedyoung male subjects during isometric contractions and whether thisdeficit is associated with a decreased activation of the quadriceps,increased activation of the antagonist muscle, or an alteration inmotor unit firing rates. Twenty subjects performed unilateral (UL) and bilateral (BL) isometric knee extensions at 25, 50, 75, and 100% maximal voluntary contraction. Total UL and BL force (3%) and maximal rate of force generation (2.5%) were not significantly different. Total UL and BL maximal vastus lateralis electromyographic activity (EMG; 2.7 ± 0.28 vs. 2.6 ± 0.24 mV) andcoactivation (0.17 ± 0.02 vs. 0.20 ± 0.02 mV) were also notdifferent. Similarly, the ratio of force to EMG during submaximal ULand BL contractions was not different. Analysis of force production byeach leg in UL and BL conditions showed no differences in force, rateof force generation, EMG, motor unit firing rates, and coactivation.Finally, assessment of quadriceps activity with the twitchinterpolation technique indicated no differences in the degree ofvoluntary muscle activation (UL: 93.6 ± 2.51 Hz, BL: 90.1 ± 2.43 Hz). These results provide no evidence of a significant limitationin neuromuscular control between BL and UL isometric contractions ofthe knee extensor muscles in young male subjects.

  相似文献   

14.
This study analyses the relative contribution of the triceps surae and tibialis anterior (TA) muscles to tension development with reference to voluntary plantarflexion at two articular positions of the knee joint (extended and flexed at 90°) for various inertial loads. Subjects were instructed to perform plantarflexions at various sub-maximal and maximal velocities with no intention of stopping the movement. Whereas in one series of experiments the subjects were informed of the load countering the movement, in the other they were not. The average electromyographic (EMG) activity of the different muscles was recorded. The main results were that with loading: (a) greater maximal plantarflexion velocities were recorded in flexed as compared to extended-knee positions; (b) greater durations and amplitudes of agonist and antagonist EMG bursts were recorded; (c) the co-activation of the TA and triceps surae muscles was enhanced; (d) unexpected sub-maximal loads induced greater EMG activity and speed of movement. It is concluded that increasing the load during plantarflexion in humans brings about changes in neuromuscular strategies that contribute to the efficiency of contractile activity during rapid movements. The results also indicate that unexpected sub-maximal loading induces a potentiated neuromuscular activity which increases the speed of movement.  相似文献   

15.
This work examines the relative contribution of the triceps surae heads and the tibialis anterior (TA) to tension development with reference to voluntary plantarflexion at various velocities and at two articular positions of the knee joint (extended and flexed at 90 °). Subjects were instructed to perform plantarflexion at various submaximal and maximal velocities with no intention of stopping the movement. Voluntary electromyographic (EMG) activity was recorded and the amplitude, duration and integral were analysed. Integrated EMG (IEMG) was normalized with respect to duration. The maximal M wave and the Hoffmann (H) reflex elicited by electrical stimulation of the tibial nerve were recorded in the triceps surae to estimate the effects in gastrocnemii (G) length and motoneuron excitability differences, respectively, in the two knee positions. The results indicate that: (a) although the largest EMG activity was recorded in the extended limb, the greatest maximal velocities were performed in the flexed knee position; (b) with increasing velocity of movement, all triceps surae muscles showed enhanced IEMG activities; (c) at a low velocity of movement the soleus (So1)/G IEMG ratio was larger in the flexed compared to the extended knee; and (d) with increasing velocity, co-activation of agonist and antagonist muscles appeared. It is concluded that the larger maximal velocity of movement observed in the flexed compared to the extended knee was not primarily related to the neural command of the different triceps surae components, but rather to their mechanical properties. Furthermore, co-activation of agonist and antagonist muscles may contribute to the performance of the contractile strategy during rapid movements.  相似文献   

16.
This study investigated the effects of dynamic knee extension and flexion fatiguing task on torque and neuromuscular responses in young and older individuals. Eighteen young (8 males; 25.1 ± 3.2 years) and 17 older (8 males; 69.7 ± 3.7 years) volunteered. Following a maximal voluntary isometric contraction test, participants performed a fatiguing task involving 22 maximal isokinetic (concentric) knee extension and flexion contractions at 60°/s, while surface EMG was recorded simultaneously from the knee extensors (KE) and flexors (KF). Fatigue-induced relative torque reductions were similar between age groups for KE (peak torque decrease: 25.15% vs 26.81%); however, KF torque was less affected in older individuals (young vs older peak torque decrease: 27.6% vs 11.5%; p < 0.001) and this was associated with greater increase in hamstring EMG amplitude (p < 0.001) and hamstrings/quadriceps peak torque ratio (p < 0.01). Furthermore, KE was more fatigable than KF only among older individuals (peak torque decrease: 26.8% vs 11.5%; p < 0.001). These findings showed that the age-related fatigue induced by a dynamic task was greater for the KE, with greater age-related decline in KE compared to KF.  相似文献   

17.
Effects of 9-week hindlimb suspension and 8-week recovery on locomotor performance and electromyogram (EMG) activities of soleus (Sol), plantaris (Pl), lateral gastrocnemius (LG), and tibialis anterior (TA), were studied in adult rats. Hyperextension of knee and ankle joints, noted after nine weeks of suspension, did not recover during 8-week ambulation. Growth of Sol was fully inhibited by suspension and did not recover completely within 8 weeks of ambulation. The EMG levels in Sol, Pl, and LG 1 day after suspension were 52-76% less than the pre-suspension level (resting on the floor). These activities were recovered to or near the pre-suspension level around 1 week, but decreased again to 10-29% of controls from 7 to 9 weeks. The integrated EMG of TA was elevated during the first week of suspension but then gradually declined to control levels within four weeks. At the end of suspension, the Sol and Pl, not the LG, EMGs remained reduced and the TA EMG remained hyperactive. Co-activation of dorsi- and plantar- flexors occurred often during quadripedal walking following suspension. Such a phenomenon was not observed in the control rats. These phenomena were recovered within 1 week. It is suggested that the unloading-related alterations of neuromuscular activities and/or locomotion, but not the hyperextension of knee and ankle joints, in rats are reversible.  相似文献   

18.
19.
Bilateral deficit (BLD) describes the phenomenon of a reduction in performance during synchronous bilateral (BL) movements when compared to the sum of identical unilateral (UL) movements. Despite a large body of research investigating BLD of maximal voluntary force (MVF) there exist a paucity of research examining the BLD for explosive strength. Therefore, this study investigated the BLD in voluntary and electrically-evoked explosive isometric contractions of the knee extensors and assessed agonist and antagonist neuromuscular activation and measurement artefacts as potential mechanisms. Thirteen healthy untrained males performed a series of maximum and explosive voluntary contractions bilaterally (BL) and unilaterally (UL). UL and BL evoked twitch and octet contractions were also elicited. Two separate load cells were used to measure MVF and explosive force at 50, 100 and 150 ms after force onset. Surface EMG amplitude was measured from three superficial agonists and an antagonist. Rate of force development (RFD) and EMG were reported over consecutive 50 ms periods (0–50, 50–100 and 100–150 ms). Performance during UL contractions was compared to combined BL performance to measure BLD. Single limb performance during the BL contractions was assessed and potential measurement artefacts, including synchronisation of force onset from the two limbs, controlled for. MVF showed no BLD (P = 0.551), but there was a BLD for explosive force at 100 ms (11.2%, P = 0.007). There was a BLD in RFD 50–100 ms (14.9%, P = 0.004), but not for the other periods. Interestingly, there was a BLD in evoked force measures (6.3–9.0%, P<0.001). There was no difference in agonist or antagonist EMG for any condition (P≥0.233). Measurement artefacts contributed minimally to the observed BLD. The BLD in volitional explosive force found here could not be explained by measurement issues, or agonist and antagonist neuromuscular activation. The BLD in voluntary and evoked explosive force might indicate insufficient stabiliser muscle activation during BL explosive contractions.  相似文献   

20.
The aim of this study was to quantitatively describe the relationships between joint angles and muscle architecture (lengths (Lf) and angles (Θf) of fascicles) of human triceps surae [medial (MG) and lateral (LG) gastrocnemius and soleus (SOL) muscles] in vivo for three men-cosmonaut after long-duration spaceflight. Sagittal sonographs of MG, LG, SOL were taken at ankle was positioned at 15° (dorsiflexion), 0° (neutral position), +15°, and +30° (plantarflexion), with the knee at 90° at rest and after a long-duration spaceflight. At each position, longitudinal ultrasonic images of the MG and LG and SOL were obtained while the cosmonauts was relaxed from which fascicle lengths and angles with respect to the aponeuroses were determined. After space flight plantarflexor force declined significantly (26%; p < 0.001). The internal architecture of the GM, and LG, and SOL muscle was significantly altered. In the passive condition, Lf changed from 45, 53, and 39 mm (knee, 0°, ankle, −15°) to 26, 33, and 28 mm (knee, 90° ankle, 30°) for MG, LG, and SOL, respectively. Different lengths and angles of fascicles, and their changes by contraction, might be related to differences in force-producing capabilities of the muscles and elastic characteristics of tendons and aponeuroses. The three heads of the triceps surae muscle substantially differ in architecture, which probably reflects their functional roles. Differences in fiber length and pennation angle that were observed among the muscles and could be associated with differences in force production and in elastic properties of musculo-tendinous complex and aponeuroses.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号