首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cold-induced vasodilation (CIVD) is a cyclic oscillation in blood flow that occurs in the extremities on cold exposure and that is likely associated with reduced risk of cold injury (e.g., frostbite) as well as improved manual dexterity and less pain while working in the cold. The CIVD response varies between individuals, but the within-subject reproducibility has not been adequately described. The purpose of this study was to quantify the within-subject variability in the CIVD response under standardized conditions. Twenty-one volunteers resting in a controlled environment (27 degrees C) immersed the middle finger in warm water (42 degrees C) for 15 min to standardize initial finger temperature and then in cold water (4 degrees C; CWI) for 30 min, on five separate occasions. Skin temperature (Tf) and blood flow (laser-Doppler; expressed as percent change from warm-water peak) responses that describe CIVD were identified, including initial nadir reached during CWI, onset time of CIVD, initial apex during CIVD, time of that apex, and overall mean during CWI. Within-subject coefficient of variation for Tf across the five tests for the nail bed and pad, respectively, were as follows: nadir, 9 and 21%; onset, 18 and 19%; apex, 12 and 17%; apex time, 23 and 24%; mean 10 and 15%. For blood flow, these values were as follows: nadir 52 and 64%; onset, 6 and 5%; apex, 33 and 31%; apex time 9 and 8%; and mean 43 and 34%. Greater variability was found in the temperature response of the finger pad than the nail bed, but for blood flow the variability was similar between locations. Variability in onset and apex time between sites was similar for both temperature and blood flow responses. The reproducibility of the time course of CIVD suggests this methodology may be of value for further studies examining the mechanism of the response.  相似文献   

2.
While heat acclimatization reflects the development of heat tolerance, it may weaken an ability to tolerate cold. The purpose of this study was to explore cold-induced vasodilation (CIVD) responses in the finger of tropical indigenes during finger cold immersion, along with temperate indigenes. Thirteen tropical male indigenes (subjects born and raised in the tropics) and 11 temperate male indigenes (subjects born and raised in Japan and China) participated. Subjects immersed their middle finger at 4.3±0.8 °C water for 30 min. Rectal temperature, skin temperatures, finger skin blood flow, blood pressure and subjective sensations were recorded during the test. The results showed that: (1) the tropical group demonstrated a lower minimum (Tmin), maximum (Tmax) and mean finger temperature (Tmean) compared to those of the temperate group (P<0.05); (2) seven tropical indigenes demonstrated a late-plateau type of CIVD pattern, which is characterized by a pronounced 1st vasoconstriction and a single CIVD with a faint and weak 2nd vasoconstriction, whereas no temperate indigene demonstrated the late-plateau type; and (3) the hand temperature at the end of finger immersion was 3 °C lower in the tropical than the temperate group (P<0.05). These results indicate that tropical indigenes have less active responses of arterio-venous anastomoses in the finger and weaker vasoconstrictions after the first CIVD response during finger cold immersion, which can be considered as being more vulnerable to cold injury of the periphery in severe cold.  相似文献   

3.
During exercise-heat stress, ad libitum drinking frequently fails to match sweat output, resulting in deleterious changes in hormonal, circulatory, thermoregulatory, and psychological status. This condition, known as voluntary dehydration, is largely based on perceived thirst. To examine the role of preexercise dehydration on thirst and drinking during exercise-heat stress, 10 healthy men (21 +/- 1 yr, 57 +/- 1 ml x kg(-1) x min(-1) maximal aerobic power) performed four randomized walking trials (90 min, 5.6 km/h, 5% grade) in the heat (33 degrees C, 56% relative humidity). Trials differed in preexercise hydration status [euhydrated (Eu) or hypohydrated to -3.8 +/- 0.2% baseline body weight (Hy)] and water intake during exercise [no water (NW) or water ad libitum (W)]. Blood samples taken preexercise and immediately postexercise were analyzed for hematocrit, hemoglobin, serum aldosterone, plasma osmolality (P(osm)), plasma vasopressin (P(AVP)), and plasma renin activity (PRA). Thirst was evaluated at similar times using a subjective nine-point scale. Subjects were thirstier before (6.65 +/- 0.65) and drank more during Hy+W (1.65 +/- 0.18 liters) than Eu+W (1.59 +/- 0.41 and 0.31 +/- 0.11 liters, respectively). Postexercise measures of P(osm) and P(AVP) were significantly greater during Hy+NW and plasma volume lower [Hy+NW = -5.5 +/- 1.4% vs. Hy+W = +1.0 +/- 2.5% (P = 0.059), Eu+NW = -0.7 +/- 0.6% (P < 0.05), Eu+W = +0.5 +/- 1.6% (P < 0.05)] than all other trials. Except for thirst and drinking, however, no Hy+W values differed from Eu+NW or Eu+W values. In conclusion, dehydration preceding low-intensity exercise in the heat magnifies thirst-driven drinking during exercise-heat stress. Such changes result in similar fluid regulatory hormonal responses and comparable modifications in plasma volume regardless of preexercise hydration state.  相似文献   

4.
The purpose of the present experiment was to examine the relationship between rate of body heat storage (S), change in body heat content (DeltaH(b)), extremity temperatures, and finger dexterity. S, DeltaH(b), finger skin temperature (T(fing)), toe skin temperature, finger dexterity, and rectal temperature were measured during active torso heating while the subjects sat in a chair and were exposed to -25 degrees C air. S and DeltaH(b) were measured using partitional calorimetry, rather than thermometry, which was used in the majority of previous studies. Eight men were exposed to four conditions in which the clothing covering the body or the level of torso heating was modified. After 3 h, T(fing) was 34.9 +/- 0.4, 31.2 +/- 1.2, 18.3 +/- 3.1, and 12.1 +/- 0.5 degrees C for the four conditions, whereas finger dexterity decreased by 0, 0, 26, and 39%, respectively. In contrast to some past studies, extremity comfort can be maintained, despite S that is slightly negative. This study also found a direct linear relationship between DeltaH(b) and T(fing) and toe skin temperature at a negative DeltaH(b). In addition, DeltaH(b) was a better indicator of the relative changes in extremity temperatures and finger dexterity over time than S.  相似文献   

5.
Cutaneous vascular responses to isometric handgrip exercise   总被引:9,自引:0,他引:9  
Cutaneous vascular responses to dynamic exercise have been well characterized, but it is not known whether that response pattern applies to isometric handgrip exercise. We examined cutaneous vascular responses to isometric handgrip and dynamic leg exercise in five supine men. Skin blood flow was measured by laser-Doppler velocimetry and expressed as laser-Doppler flow (LDF). Arterial blood pressure was measured noninvasively once each minute. Cutaneous vascular conductance (CVC) was calculated as LDF/mean arterial pressure. LDF and CVC responses were measured at the forearm and chest during two 3-min periods of isometric handgrip at 30% of maximum voluntary contraction and expressed as percent changes from the preexercise levels. The skin was normothermic (32 degrees C) for the first period of handgrip and was locally warmed to 39 degrees C for the second handgrip. Finally, responses were observed during 5 min of dynamic two-leg bicycle exercise (150-175 W) at a local skin temperature of 39 degrees C. Arm LDF increased 24.5 +/- 18.9% during isometric handgrip in normothermia and 64.8 +/- 14.1% during isometric handgrip at 39 degrees C (P less than 0.05). Arm CVC did not significantly change at 32 degrees C but significantly increased 18.1 +/- 6.5% during isometric handgrip at 39 degrees C (P less than 0.05). Arm LDF decreased 12.2 +/- 7.9% during dynamic exercise at 39 degrees C, whereas arm CVC fell by 35.3 +/- 4.6% (in each case P less than 0.05). Chest LDF and CVC showed similar responses.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
The primary purpose of the present study was to compare the effectiveness of two forms of hand heating and to discuss specific trends that relate finger dexterity performance to variables such as finger skin temperature (T(fing)), finger blood flow (Q(fing)), forearm skin temperature (T(fsk)), forearm muscle temperature (Tfmus), mean weighted body skin temperature (Tsk), and change in body heat content (DeltaH(b)). These variables along with rate of body heat storage, toe skin temperature, and change in rectal temperature were measured during direct and indirect hand heating. Direct hand heating involved the use of electrically heated gloves to keep the fingers warm (heated gloves condition), whereas indirect hand heating involved warming the fingers indirectly by actively heating the torso with an electrically heated vest (heated vest condition). Seven men (age 35.6 +/- 5.6 yr) were subjected to each method of hand heating while they sat in a chair for 3 h during exposure to -25 degrees C air. Q(fing) was significantly (P < 0.05) higher during the heated vest condition compared with the heated gloves condition (234 +/- 28 and 33 +/- 4 perfusion units, respectively), despite a similar T(fing) (which ranged between 28 and 35 degrees C during the 3-h exposure). Despite the difference in Q(fing), there was no significant difference in finger dexterity performance. Therefore, finger dexterity can be maintained with direct hand heating despite a low Q(fing). DeltaH(b), Tsk, and T(fmus) reached a low of -472 +/- 18 kJ, 28.5 +/- 0.3 degrees C, and 29.8 +/- 0.5 degrees C, respectively, during the heated gloves condition, but the values were not low enough to affect finger dexterity.  相似文献   

7.
Finger blood flow (BF) was measured by venous occlusion plethysmography using mercury-in-Silastic strain gauges during immersion of one hand in hot water (raised by steps of 2 degrees C every 10 min from 35 to 43 degrees C), the other being a control (kept immersed in water at 35 degrees C). The measurements were made in three different thermal states on separate days: 1) cool-25 degrees C, 40% rh, esophageal temperature (Tes) = 36.64 +/- 0.10 degrees C; 2) warm-35 degrees C, 40% rh, Tes = 36.71 +/- 0.11 degrees C; and 3) hot-35 degrees C, 80% rh with the legs immersed in water at 42 degrees C, Tes = 37.26 +/- 0.11 degrees C. When water temperature was raised at 42 degrees C, Tes = 37.26 +/- 0.11 When water temperature was raised to 39-41 degrees C in the warm state, finger BF in the hand heated locally (BFw) decreased. When water temperature was raised to 43 degrees C, however, BFw returned to the control value. In the hot state, Tes rose steadily, reaching 37.90 +/- 0.12 degrees C at the end of the 50-min sessions. BF in the control finger also increased gradually during the session. BFw showed a tendency to decrease when water temperature was raised to 39 degrees C, but the change was not greater than that observed in the warm state. In the cool state, no such reduction in BFw was observed when water temperature was raised to 39-41 degrees C. On the contrary, BFw increased at water temperatures of 41-43 degrees C.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

8.
The present study compared the thermal responses of the finger to 0 and 8°C water immersion, two commonly used temperatures for cold-induced vasodilation (CIVD) research. On two separate and counterbalanced occasions 15 male and 15 female participants immersed their index finger in 20°C water for 5 min followed by either 0 or 8°C water for 30 min. Skin temperature, cardiovascular and perceptual data were recorded. Secondary analyses were performed between sexes and comparing 0.5, 1 and 4°C CIVD amplitude thresholds. With a 0.5°C threshold, CIVD waves were more prevalent in 8°C (2 (1 – 3) than in 0°C (1.5 (0 – 3)), but the amplitude was lower (4.0 ± 2.3 v 9.2 ± 4.0°C). Mean, minimum and maximum finger temperatures were lower in 0°C during the 30 min immersion, and CIVD onset and peak time occurred later in 0°C. Thermal sensation was lower and pain sensation was higher in 0°C. There were no differences between males and females in any of the physiological or CIVD data with the exception of SBP, which was higher in males. Females reported feeling higher thermal sensations in 8°C and lower pain sensations in 0°C and 8°C compared to males. Fewer CIVD responses were observed when using a 4°C (1 (0 – 3)) threshold to quantify a CIVD wave compared to using a 1°C (2 (0 – 3)) or 0.5°C (2 (0 – 3)) amplitude. In conclusion, both 0 and 8 °C can elicit CIVD but 8°C may be more suitable when looking to optimise the number of CIVD waves while minimising participant discomfort. The CIVD response to water immersion does not appear to be influenced by sex. Researchers should consider the amplitude threshold that was used to determine a CIVD wave when interpreting previous data.  相似文献   

9.
We evaluated the cooling rate of hyperthermic subjects, as measured by rectal temperature (T(re)), during immersion in a range of water temperatures. On 4 separate days, seven subjects (4 men, 3 women) exercised at 65% maximal oxygen consumption at an ambient temperature of 39 degrees C until T(re) increased to 40 degrees C (45.4 +/- 4.1 min). After exercise, the subjects were immersed in a circulated water bath controlled at 2, 8, 14, or 20 degrees C until T(re) returned to 37.5 degrees C. No difference in cooling rate was observed between the immersions at 8, 14, and 20 degrees C despite the differences in the skin surface-to-water temperature gradient, possibly because of the presence of shivering at 8 and 14 degrees C. Compared with the other conditions, however, the rate of cooling (0.35 +/- 0.14 degrees C/min) was significantly greater during the 2 degrees C water immersion, in which shivering was seldom observed. This rate was almost twice as much as the other conditions (P < 0.05). Our results suggest that 2 degrees C water is the most effective immersion treatment for exercise-induced hyperthermia.  相似文献   

10.
To assess the presence and magnitude of the effect of skin blood flow on finger skin cooling on contact with cold objects against the background of circulatory disorder risks in occupational exposures, this study investigates the effect of zero vs. close-to-maximal hand blood flow on short-term (< or =180 s) skin contact cooling response at a contact pressure that allows capillary perfusion of the distal pulp of the fingertip. Six male volunteers touched a block of aluminium with a finger contact force of 0.5 N at a temperature of -2 degrees C under a vasodilated and an occluded condition. Before both conditions, participants were required to exercise in a hot room for > or = 30 min for cutaneous vasodilation to occur (increase in rectal temperature of 1 degrees C). Under the vasodilated condition, forearm blood flow rate rose as high as 16.8 ml.100 ml(-1).min(-1). Under the occluded condition, the arm was exsanguinated, after which a blood pressure cuff was secured on the wrist inducing arterial occlusion. Contact temperature of the finger pad during the subsequent cold contact exposure was measured. No significant difference was found between the starting skin temperatures for the two blood flow conditions, but a distinct difference in shape of the contact cooling curve was apparent between the two blood flow conditions, with Newtonian cooling observed under the occluded condition, whereas a rewarming of the finger skin toward the end of the exposure occurred for the vasodilated condition. Blood flow was found to significantly increase contact temperature from 40 s onward (P < 0.01). It is concluded that, at a finger contact force compatible with capillary perfusion of the finger pad ( approximately 0.5 N), circulating blood provides a heat input source that significantly affects finger skin contact cooling during a vasodilated state.  相似文献   

11.
Hot-water immersions were tested for control of mealybug Planococcus ficus (Signoret), on dormant grape cuttings used for nursery stock. A range of hot-water temperatures (47-58 degrees C) were evaluated at immersion periods of 2, 5, 10, or 20 min, by using a total of 353,720 mealybugs across all treatments. A 5-min immersion at 51 degrees C is effective in killing > 99% of P. ficus. At or above this immersion period and temperature, there was no difference in mealybug stage mortality. We evaluated a commercial operation, which used a 5-min immersion in each of three water tanks: preheating (30.0 +/- 3 degrees C), hot-water (52.8 +/- 0.3 degrees C), and cooling (23 +/- 3 degrees C). The commercial procedure provided 99.8-100% mealybug control in each of three separate trials.  相似文献   

12.
To determine whether there is a direct correlation between endurance capacity and cold tolerance, maximal oxygen consumption (VO2max), and cold-induced vasodilatation (CIVD), we measured these factors in 14 young female athletes born in Hokkaido, Japan's northernmost island. We determined the VO2max by a standard incremental test on a cycle ergometer and measured the oxygen consumption (VO2) by means of the Douglas-bag method. We determined the CIVD reaction by measuring the skin temperature of the left middle finger during immersion in cold water at 0°C for 20 min. The athletes showed significant positive correlations between VO2max, expressed as l/min, and CIVD as well as other peripheral cold tolerance indexes (resistance index against frostbite and CIVD index). The body weight VO2max (VO2max/kg body weight) failed to correlate significantly with either the CIVD or with other cold tolerance indexes. These results suggest that CIVD in females may depend on factors other than those determined in this study, in addition to the functional spread of the vascular beds in peripheral tissues, including striated muscle; it is known that the size and the vascular bed in this tissue are affected by exercise training and that this results in the elevation of VO2max and VO2max/kg body weight.  相似文献   

13.
To study the physiological responses induced by immersing in cold water various areas of the upper limb, 20 subjects immersed either the index finger (T1), hand (T2) or forearm and hand (T3) for 30 min in 5°C water followed by a 15-min recovery period. Skin temperature of the index finger, skin blood flow (Qsk) measured by laser Doppler flowmetry, as well as heart rate (HR) and mean arterial blood pressure (ˉBPa) were all monitored during the test. Cutaneous vascular conductance (CVC) was calculated as Qsk / ˉBPa. Cold induced vasodilatation (CIVD) indices were calculated from index finger skin temperature and CVC time courses. The results showed that no differences in temperature, CVC or cardiovascular changes were observed between T2 and T3. During T1, CIVD appeared earlier compared to T2 and T3 [5.90 (SEM 0.32) min in T1 vs 7.95 (SEM 0.86) min in T2 and 9.26 (SEM 0.78) min in T3, P < 0.01]. The HR was unchanged in T1 whereas it increased significantly at the beginning of T2 and T3 [+13 (SEM 2) beats · min−1 in T2 and +15 (SEM 3) beats · min−1 in T3, P < 0.01] and then decreased at the end of the immersion [−12 (SEM 3) beats · min−1 in T2, and −15 (SEM 3) beats · min−1 in T3, P < 0.01]. Moreover, ˉBPaincreased at the beginning of T1 but was lower than in T2 and T3 [+9.3 (SEM 2.5) mmHg in T1, P < 0.05;  +20.6 (SEM 2.6) mmHg and 26.5 (SEM 2.8) mmHg in T2 and T3, respectively, P < 0.01]. The rewarming during recovery was faster and higher in T1 compared to T2 and T3. These results showed that general and local physiological responses observed during an upper limb cold water test differed according to the area immersed. Index finger cooling led to earlier and faster CIVD without significant cardiovascular changes, whereas hand or forearm immersion led to a delayed and slower CIVD with a bradycardia at the end of the test. Accepted: 26 November 1996  相似文献   

14.
Effects on skin blood perfusion of permanent ceramic magnets [0.1 T (1000 G) surface field], individually (disk shaped, 4 cm diameter x 1 cm thick) or in the form of a 11 x 7 in pad ( approximately 28 x 17.8 cm) with an array of 16 rectangular magnets (4.5 x 2.2 cm), were investigated in 16 female volunteers (27.4 +/- 1.7 years, range 21-48 years) using three separate protocols. In protocol A, a disk magnet was placed on the palmar surface of the hand in contact with the thenar eminence (n = 5). In protocol B, the magnet was placed on the hand dorsum overlying the thenar eminence (n = 5). In protocol C, the entire palm and fingers rested on the magnetic pad (n = 6). Magnets were in place for 36 min on one hand, and a sham was in place on the other hand. Blood perfusion was measured on the middle finger dorsum by laser Doppler flowmetry (LDF) and on the index finger by laser Doppler imaging (LDI). Perfusion measurements were simultaneously taken in sham and magnet exposed hands, before and during the entire magnet exposure interval. Magnetic field effects were tested by comparing skin blood perfusion sequences in magnet and sham exposed regions. Results showed no significant changes in either LDF or LDI perfusion at magnet or sham sites during exposure, nor were there any significant differences between sham and magnet sites for any protocol. Measurements of skin temperature at the LDF measurement sites also showed no significant change. It is concluded that in the healthy subjects studied with normal, unstressed circulation, magnets of the type and for the duration used, showed no detectible effect on skin blood perfusion in the anatomical area studied.  相似文献   

15.
Forearm skin blood flow was measured in six male subjects by laser-Doppler flowmetry (LDF) and venous occlusion plethysmography (VOP) during constant-load (125-200 W) upright bicycle exercise in a warm environment (X + SD, ta 34.6 +/- 0.2 degrees C) and during a 15 min sauna bath (ta 69.0 +/- 2.8 degrees C). During the sauna test the LDF values correlated well with the VOP measurements in the initial phase of active cutaneous vasodilation, after which the LDF values almost leveled off in spite of a steady increase in VOP measurements. During the exercise the mean VOP and LDF values rose in parallel with each other to steady state levels. The relationship between the results of the two methods proved to be nonlinear. It was concluded that different parameters were measured by VOP and LDF. The latter measured mainly the integrated velocity of blood flow in the outermost cutaneous tissue, and this velocity seemed to be partly dependent on the level of the arterial inflow (VOP), but also on the prevailing pressure-flow and pressure-volume relations in the cutaneous vascular bed.  相似文献   

16.
We examined the influence of 1) prior increase [preheating (PHT)], 2) increase throughout [heating (HT)], and 3) no increase [control (Con)] of body heat content (H(b)) on neuromuscular function and manual dexterity of the hands during a 130-min exposure to -20 degrees C (coldEx). Ten volunteers randomly underwent three passive coldEx, incorporating a 10-min moderate-exercise period at the 65th min while wearing a liquid conditioning garment (LCG) and military arctic clothing. In PHT, 50 degrees C water was circulated in the LCG before coldEx until core temperature was increased by 0.5 degrees C. In HT, participants regulated the inlet LCG water temperature throughout coldEx to subjective comfort, while the LCG was not operating in Con. Thermal comfort, rectal temperature, mean skin temperature, mean finger temperature (T(fing)), change in H(b) (DeltaH(b)), rate of body heat storage, Purdue pegboard test, finger tapping, handgrip, maximum voluntary contraction, and evoked twitch force of the first dorsal interosseus muscle were recorded. Results demonstrated that, unlike in HT and PHT, thermal comfort, rectal temperature, mean skin temperature, twitch force, maximum voluntary contraction, and finger tapping declined significantly in Con. In contrast, T(fing) and Purdue pegboard test remained constant only in HT. Generalized estimating equations demonstrated that DeltaH(b) and T(fing) were associated over time with hand function, whereas no significant association was detected for rate of body heat storage. It is concluded that increasing H(b) not only throughout but also before a coldEx is effective in maintaining hand function. In addition, we found that the best indicator of hand function is DeltaH(b) followed by T(fing).  相似文献   

17.
An integration-type laser-Doppler flowmeter, equipped with a temperature-load instrument, for measuring skin blood flow (ILD-T), and analytical parameters developed in a previous study were used to compare changes in the skin blood flow in the forehead and cheek in elderly subjects (in their 60s and 70s) with those in younger subjects (in their teens to 50s). Age-related differences in skin blood flow in the forehead and cheek in response to cooling were evaluated in 90 healthy women in their teens to 70s (mean age: 17.2 +/- 0.33 years for teenagers; 24.3 +/- 0.76 years for those aged 20-29 years; 34.8 +/- 1.12 years for those aged 30-39 years; 43.3 +/- 0.78 years for those aged 40-49 years; 53.8 +/- 1.13 years for those aged 50-59 years; 63.5 +/- 0.55 years for those aged 60-69 years; 72.2 +/- 0.70 years for those aged 70-79 years). The measurement was performed continuously for 5 min: for 1 min at a sensor temperature of 30 degrees C, for 2 min after the setting of the sensor temperature had been changed to 10 degrees C, and for 2 min after the temperature setting had been cancelled. The parameters analyzed were (1) skin temperature in a resting state before measurement ( T(rest)), (2) mean skin blood flow in 1 min at a sensor temperature of 30 degrees C ( F(30 degrees C)), (3) minimum skin blood flow at a sensor temperature of 10 degrees C ( F(min)), (4) slope of the blood flow plot during the period from the beginning of cooling at 10 degrees C to F(min) ( S(fall)), (5) time required for the sensor temperature to reach 10 degrees C (Delta t(s)), (6) maximum skin blood flow during the period from the end of cooling to the end of measurement ( F(max)), (7) slope of the blood flow plot during the period from F(min) to F(max) ( S(rise)), (8) rate of decrease of the skin blood flow during cooling: FDR = ( F(min)/ F(30 degrees C))x100, (9) recovery rate of the skin blood flow after the end of cooling: FRR = ( F(max)/ F(30 degrees C))x100. When correlations among the above nine parameters were evaluated by combining all age groups, significant correlations ( P < 0.01) were observed between F(30 degrees C) and F(min), F(30 degrees C) and F(max), F(30 degrees C) and S(fall), F(min) and F(max), and F(max) and S(rise) in the forehead. In the cheek, significant correlations ( P < 0.01) were observed in all these combinations except between F(max) and S(rise). When these analytical parameters were compared among the age groups, F(30 degrees C), T(rest), F(max), and S(rise) decreased significantly ( P < 0.02 for F(30 degrees C) and T(rest), P < 0.01 for F(max) and S(rise)) and S(fall) increased significantly ( P < 0.03) in the forehead with aging. However, no significant change with aging was observed in FDR, Delta t(s), F(min), and FRR. In the cheek, FDR increased significantly ( P < 0.03), and S(rise) decreased significantly ( P < 0.01) with aging. However, no significant change with aging was observed in F(30 degrees C), T(rest), F(max), S(fall), Delta t(s), F(min), and FRR. Thus, the decrease in the skin blood flow during cooling showed no marked quantitative change with age, but, with aging, the rate of this decrease was clearly reduced in the forehead. In the cheek, on the other hand, the skin blood flow decreased markedly with aging, but no clear change was observed in the rate of this decrease. By using ILD-T and examining various parameters obtained, the skin hemodynamics in the forehead and cheek during cooling from 30 degrees C to 10 degrees C could be analyzed, and differences in the hemodynamics between the forehead and cheek and between elderly and younger individuals were clarified. This instrument is expected to be clinically useful.  相似文献   

18.
Recent studies using inanimate and animal models suggest that the afterdrop observed upon rewarming from hypothermia is based entirely on physical laws of heat flow without involvement of the returning cooled blood from the limbs. During the investigation of thermoregulatory responses to cold water immersion (15 degrees C), blood flow to the limbs (minimized by the effects of hydrostatic pressure and vasoconstriction) was occluded in 17 male subjects (age, 29.0 +/- 3.3 yr). Comparisons of rectal (Tre) and esophageal temperature (Tes) responses were made during the 5 min before occlusion, during the 10-min occlusion period, and for 5 min immediately after the release of the cuffs (postocclusion). In the preocclusion phase, Tre and Tes showed similar cooling rates. The occlusion of blood flow to the extremities significantly arrested the cooling of Tes (P less than 0.05) with little effect on Tre. Upon release of the pressure cuffs, the returning extremity blood flow resulted in an increased rate of cooling, that was three times greater at the esophageal site (-0:149 +/- 0.052 vs. -0.050 +/- 0.026 degrees C.min-1). These results suggest that the cooled peripheral circulation, minimized during cold water immersion, may dramatically affect esophageal temperature and the complete neglect of the circulatory component to the afterdrop phenomenon is not warranted.  相似文献   

19.
This study examined how time of day affects thermoregulation during cold-water immersion (CWI). It was hypothesized that the shivering and vasoconstrictor responses to CWI would differ at 0700 vs. 1500 because of lower initial core temperatures (T(core)) at 0700. Nine men were immersed (20 degrees C, 2 h) at 0700 and 1500 on 2 days. No differences (P > 0.05) between times were observed for metabolic heat production (M, 150 W. m(-2)), heat flow (250 W. m(-2)), mean skin temperature (T(sk), 21 degrees C), and the mean body temperature-change in M (DeltaM) relationship. Rectal temperature (T(re)) was higher (P < 0.05) before (Delta = 0.4 degrees C) and throughout CWI during 1500. The change in T(re) was greater (P < 0. 05) at 1500 (-1.4 degrees C) vs. 0700 (-1.2 degrees C), likely because of the higher T(re)-T(sk) gradient (0.3 degrees C) at 1500. These data indicate that shivering and vasoconstriction are not affected by time of day. These observations raise the possibility that CWI may increase the risk of hypothermia in the early morning because of a lower initial T(core).  相似文献   

20.
The purpose of this study was to identify whether baroreceptor unloading was responsible for less efficient heat loss responses (i.e., skin blood flow and sweat rate) previously reported during inactive compared with active recovery after upright cycle exercise (Carter R III, Wilson TE, Watenpaugh DE, Smith ML, and Crandall CG. J Appl Physiol 93: 1918-1929, 2002). Eight healthy adults performed two 15-min bouts of supine cycle exercise followed by inactive or active (no-load pedaling) supine recovery. Core temperature (T(core)), mean skin temperature (T(sk)), heart rate, mean arterial blood pressure (MAP), thoracic impedance, central venous pressure (n = 4), cutaneous vascular conductance (CVC; laser-Doppler flux/MAP expressed as percentage of maximal vasodilation), and sweat rate were measured throughout exercise and during 5 min of recovery. Exercise bouts were similar in power output, heart rate, T(core), and T(sk). Baroreceptor loading and thermal status were similar during trials because MAP (90 +/- 4, 88 +/- 4 mmHg), thoracic impedance (29 +/- 1, 28 +/- 2 Omega), central venous pressure (5 +/- 1, 4 +/- 1 mmHg), T(core) (37.5 +/- 0.1, 37.5 +/- 0.1 degrees C), and T(sk) (34.1 +/- 0.3, 34.2 +/- 0.2 degrees C) were not significantly different at 3 min of recovery between active and inactive recoveries, respectively; all P > 0.05. At 3 min of recovery, chest CVC was not significantly different between active (25 +/- 6% of maximum) and inactive (28 +/- 6% of maximum; P > 0.05) recovery. In contrast, at this time point, chest sweat rate was higher during active (0.45 +/- 0.16 mg.cm(-2).min(-1)) compared with inactive (0.34 +/- 0.19 mg.cm(-2).min(-1); P < 0.05) recovery. After exercise CVC and sweat rate are differentially controlled, with CVC being primarily influenced by baroreceptor loading status while sweat rate is influenced by other factors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号