首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In previous papers [5,6], an optical switch architecture was proposed to handle variable-length packets such as IP datagrams, based on an AWG device to route packets and equipped with a fiber delay-line stage as optical input buffer. Unfortunately, extensive simulations of optical networks built with switches of this type showed that considerable buffering capability would be required in order to achieve acceptable performance. In this work, therefore, we studied the effectiveness of packet deflection as a mean for solving packet contentions on outputs of optical switches. Optical transport networks were simulated, evaluating the performance of packet deflection routing, based on a traffic model adherent to real IP traffic measurements. Full-mesh and wheel network topologies have been considered, comparing results to assess deflection effectiveness. Our simulation results show that deflection routing leads to satisfying performance even using buffers with limited size. Furthermore, the average delivery delay does not suffer heavy penalty from packet deflection, even under heavy traffic conditions.  相似文献   

2.
With the increasing popularity of bandwidth-intensive applications, network traffic has been growing exponentially. Wavelength Division Multiplexing (WDM) is a technique that can harness the huge bandwidth available in an optical fiber to satisfy the network demand. Due to the multiplicity of the connections on any single link, fault tolerance is of utmost importance in such WDM networks. Active research on providing fault tolerance in WDM networks in recent times underscores its significance. In this study, a dynamic partitioning protection routing technique for routing a Fault Tolerant Path Set (FTPS) in a network is proposed. Wavelength assignment schemes to this FTPS with backup multiplexing technique for networks with no wavelength conversion and full wavelength conversion are discussed. Performance is measured in terms of blocking probability and time to recover the failed connections. Our simulations show that this protection technique performs better than other proposed techniques.  相似文献   

3.
Cloud computing and web emerging applications have created the need for more powerful data centers. These data centers need high bandwidth interconnects that can sustain the high interaction between the web-, application- and database-servers. Data center networks based on electronic packet switches will have to consume excessive power in order to satisfy the required communication bandwidth of future data centers. Optical interconnects have gained attention recently as a promising energy efficient solution offering high throughput, low latency and reduced energy consumption compared to current networks based on commodity switches. This paper presents a comparison on the power consumption of several optical interconnection schemes based on AWGRs, Wavelength Selective Switches (WSS) or Semiconductor Optical Amplifiers (SOAs). Based on a thorough analysis of each architecture, it is shown that optical interconnects can achieve at least an order of magnitude higher energy efficiency compared to current data center networks based on electrical packet based switches and they could contribute to greener IT network infrastructures.  相似文献   

4.
The deployment of wireless sensor networks for healthcare applications have been motivated and driven by the increasing demand for real-time monitoring of patients in hospital and large disaster response environments. A major challenge in developing such sensor networks is the need for coordinating a large number of randomly deployed sensor nodes. In this study, we propose a multi-parametric clustering scheme designed to aid in the coordination of sensor nodes within cognitive wireless sensor networks. In the proposed scheme, sensor nodes are clustered together based on similar network behaviour across multiple network parameters, such as channel availability, interference characteristics, and topological characteristics, followed by mechanisms for forming, joining and switching clusters. Extensive performance evaluation is conducted to study the impact on important factors such as clustering overhead, cluster joining estimation error, interference probability, as well as probability of reclustering. Results show that the proposed clustering scheme can be an excellent candidate for use in large scale cognitive wireless sensor network deployments with high dynamics.  相似文献   

5.
Carbon dots (CDs), as an attractive zero-dimensional carbon nanomaterial with unique photoluminescent merits, have recently exhibited significant application potential in gas sensing as a result of their excellent optical/electronic characteristics, high chemical/thermal stability, and tunable surface states. CDs exhibit strong light absorption in the ultraviolet range and tunable photoluminescence characteristics in the visible range, which makes CDs an effective tool for optical sensing applications. Optical gas sensor based on CDs have been investigated, which generally responds to the target gas by corresponding changes in optical absorption or fluorescence. Moreover, electrical gas sensor and quartz crystal microbalance sensor whose sensing layer involves CDs have also been designed. Electrical gas sensor exhibits an increase or a decrease in electrical current, capacitance, or conductance once exposed to the target gas. Quartz crystal microbalance sensor responds to the target gas with a frequency shift. CDs greatly promote the absorption of the target gas and improve the sensitivity of both sensors. In this review, we aim to summarize different types of gas sensors involving CDs, and sensing performances of these sensors for monitoring diverse gases or vapors, as well as the mechanisms of CDs in different types of sensors. Moreover, this review provides the prospect of the potential development of CDs based gas sensors.  相似文献   

6.
Vibrational optical activity (VOA) consisting of infrared vibrational circular dichroism (VCD) and vibrational Raman optical activity (ROA) was predicted, discovered, and confirmed between 1971 and 1975. My path to VOA was mentored by three pioneers of chirality and vibrational spectroscopy: Professors Albert Moscowitz, Warner L. Peticolas, and Philip J. Stephens, and while they are no longer alive today, the Chirality Medal, my award address, and this paper are dedicated to each of them. Since the discovery of VOA, a number of key advances have made possible the current era of widespread applications. The principal instrumental advances were Fourier-transform VCD (FT-VCD) and multichannel charge coupled detector (CCD) ROA. Computational advances include the first complete quantum chemistry formulation of VCD leading to the magnetic field perturbation (MFP) and the nuclear velocity perturbation (NVP) theories. The strength of VOA is the comparison between measured and calculated spectra that enables the determination of absolute configuration and solution-state conformations. More recently, VCD has uncovered supramolecular chirality in amyloid fibrils and ROA to high-order protein structure. Future challenges for VOA include describing the effects of weak intermolecular interactions, transfer of chirality, solvent effects, supramolecular chirality, and the generation of nuclear velocity electron current density.  相似文献   

7.
Electrical interconnects in Data Center Networks (DCNs) suffer from various problems which include high energy consumption, high latency, fixed throughput of links and limited reconfigurability. Introducing optical interconnects in DCNs help to reduce these problems to a large extent. Optical interconnects are the technology of the future. To implement optical switching in DCNs various optical components are used which include wavelength selective switch, tunable wavelength converter, arrayed waveguide grating, semiconductor optical amplifier based switch, wavelength division multiplexers and demultiplexers. All these optical components vary the shape, attenuate the optical signal and introduce time delay in bits. A comprehensive study of various architectures for optical interconnects in data center networks (DCN) is carried out. Performance of various architectures is investigated in terms of jitter, bit error rate (BER), receiver sensitivity and eye diagram opening. It is also investigated how different optical components used in optical interconnects in DCNs are effecting the signal degradation in different architectures. The paper concludes with the categorization of the signal degradation types in optical interconnects in DCNs and ways to reduce them. This enables the design of low BER optical interconnects in DCNs.  相似文献   

8.
The bacterial flagellar motor (BFM) is a molecular machine that rotates the helical filaments and propels the bacteria swimming toward favorable conditions. In our previous works, we built a stochastic conformational spread model to explain the dynamic and cooperative behavior of BFM switching. Here, we extended this model to test whether it can explain the latest experimental observations regarding CheY-P regulation and motor structural adaptivity. We show that our model predicts a strong correlation between rotational direction and the number of CheY-Ps bound to the switch complex, in agreement with the latest finding from Fukuoka et al. It also predicts that the switching sensitivity of the BFM can be fine-tuned by incorporating additional units into the switch complex, as recently demonstrated by Yuan et al., who showed that stoichiometry of FliM undergoes dynamic change to maintain ultrasensitivity in the motor switching response. In addition, by locking some rotor switching units on the switch complex into the stable clockwise-only conformation, our model has accurately simulated recent experiments expressing clockwise-locked FliG(ΔPAA) into the switch complex and reproduced the increased switching rate of the motor.  相似文献   

9.
Basic optical properties of bioinspired peptide nanostructures are deeply modified by thermally mediated refolding of peptide secondary structure from α‐helical to β‐sheet. This conformational transition is followed by the appearance in the β‐sheet structures of a wideband optical absorption and fluorescence in the visible region. We demonstrate that a new biophotonic effect of optical waveguiding recently observed in peptide/protein nanoensembles is a structure‐sensitive bimodal phenomenon. In the primary α‐helical structure input, light propagates via optical transmission window demonstrating conventional passive waveguiding, based on classical optics. In the β‐sheet structure, fluorescent (active) light waveguiding is revealed. The latter can be attributed to completely different physical mechanism of exciton‐polariton propagation, characterized by high effective refractive index, and can be observed in nanoscale fibers below diffraction limit. It has been shown that peptide material requirements for passive and active waveguiding are dissimilar. Original biocompatibility and biodegradability indicate high potential future applications of these bioinspired waveguiding materials in precise photobiomedicine towards advanced highly selective bioimaging, photon diagnostics, and optogenetics.  相似文献   

10.
A Holliday junction (HJ) consists of four DNA double helices, with a branch point discontinuity at the intersection of the component strands. At low ionic strength, the HJ adopts an open conformation, with four widely spaced arms, primarily due to strong electrostatic repulsion between the phosphate groups on the backbones. At high ionic strength, screening of this repulsion induces a switch to a more compact (closed) junction conformation. Fluorescent labelling with dyes placed on the HJ arms allows this conformational switch to be detected optically using fluorescence resonance energy transfer (FRET), producing a sensitive fluorescent output of the switch state. This paper presents a systematic and quantitative survey of the switch characteristics of such a labelled HJ. A short HJ (arm length 8 bp) is shown to be prone to dissociation at low switching ion concentration, whereas an HJ of arm length 12 bp is shown to be stable over all switching ion concentrations studied. The switching characteristics of this HJ have been systematically and quantitatively studied for a variety of switching ions, by measuring the required ion concentration, the sharpness of the switching transition and the fluorescent output intensity of the open and closed states. This stable HJ is shown to have favourable switch characteristics for a number of inorganic switching ions, making it a promising candidate for use in nanoscale biomolecular switch devices.  相似文献   

11.
Optical sensors of ultrasound are a promising alternative to piezoelectric techniques, as has been recently demonstrated in the field of optoacoustic imaging. In medical applications, one of the major limitations of optical sensing technology is its susceptibility to environmental conditions, e.g. changes in pressure and temperature, which may saturate the detection. Additionally, the clinical environment often imposes stringent limits on the size and robustness of the sensor. In this work, the combination of pulse interferometry and fiber-based optical sensing is demonstrated for ultrasound detection. Pulse interferometry enables robust performance of the readout system in the presence of rapid variations in the environmental conditions, whereas the use of all-fiber technology leads to a mechanically flexible sensing element compatible with highly demanding medical applications such as intravascular imaging. In order to achieve a short sensor length, a pi-phase-shifted fiber Bragg grating is used, which acts as a resonator trapping light over an effective length of 350 µm. To enable high bandwidth, the sensor is used for sideway detection of ultrasound, which is highly beneficial in circumferential imaging geometries such as intravascular imaging. An optoacoustic imaging setup is used to determine the response of the sensor for acoustic point sources at different positions.  相似文献   

12.
组织通透方法采用高折射率化学试剂对生物组织进行渗透,改变组织的光学均匀性,可以有效地改善光学成像的穿透深度,受到生物医学光学研究领域的重视。利用光学相干层析成像技术,测量通透过程中不同测量深度下组织的散射特征的变化。通过采用系统信号对数的梯度值近似地表征光学散射系数,研究了通透过程中组织的散射特征随渗透时间和测量深度的动态关系。实验证明了组织通透可以有效地增加光子的穿透深度,并改善成像质量。研究发现:不同测量深度处组织的散射系数及其变化幅度、变化过程和变化趋势等均存在一定的差异性,并与组织的微观结构、其通透效果,化学试剂在组织中的渗透行为等有密切关系,有助于组织通透过程的理解,并为组织通透机制提供可能的实验依据。  相似文献   

13.
All-optical plasmonic switches based on a novel coupled nano-disk cavity configuration containing nonlinear material are proposed and numerically investigated. The finite difference time domain simulation results reveal that the single-disk plasmonic structure can operate as an “on–off” switch with the presence/absence of pumping light. We also demonstrate that the proposed T-shaped plasmonic structure with two disk cavities can switch signal light from one port to another under an optical pumping light, functioning as a bidirectional switch. The proposed nano-disk cavity plasmonic switches have many advantages such as compact size, requirement of low pumping light intensity, and ultra-fast switching time at a femto-second scale, which are promising for future integrated plasmonic devices for applications such as communications, signal processing, and sensing.  相似文献   

14.
Vertical stacking of multiple optical banyan networks is a novel scheme for building banyan-based nonblocking optical switches. The resulting network, namely vertically stacked optical banyan (VSOB) network, preserves the properties of small depth and absolutely loss uniformity but loses the nice self-routing capability of banyan networks. To guarantee a high switching speed, routing in VSOB network needs special attentions so that paths can be established as fast as possible. The best known global routing algorithm for an N×N nonblocking VSOB network has the time complexity of O(NlogN), which will introduce an unacceptable long delay in path establishment for a large size optical switch. In this paper, we propose two fast routing algorithms for the VSOB network based on the idea of inputs grouping. The two algorithms, namely plane fixed routing (PFR) algorithm and partially random routing (PRR) algorithm, have the time complexities of O(logN) and O( ) respectively, and FR algorithm can actually turn a VSOB network into a self-routing one. Extensive simulation based on a network simulator indicates that for large VSOB networks our new algorithms can achieve a reasonably low blocking probability while guarantee a very high switching speed.  相似文献   

15.
光学相干断层成像(optical coherence tomography,OCT)技术在成像过程中具有极大的数据量和计算量,传统的基于中央处理器(central processing unit,CPU)的计算平台难以满足OCT实时成像的需求。图形处理器(graphics processing unit,GPU)在通用计算方面具有强大的并行处理能力和数值计算能力,可以突破OCT实时成像的瓶颈。本文对GPU做了简要介绍并阐述了GPU在OCT实时成像及功能成像中的应用及研究进展。  相似文献   

16.
活体动物体内光学成像技术的研究进展   总被引:7,自引:2,他引:7  
张怡  韩彧  赵春林 《生命科学》2006,18(1):25-30
生物发光和荧光成像作为近年来新兴的活体动物体内光学成像技术,以其操作简便及直观性成为研究小动物活体成像的一种理想方法,在生命科学研究中得以不断发展。利用这种成像技术,可以直接实时观察标记的基因及细胞在活体动物体内的活动及反应。利用光学标记的转基因动物模型可以研究疾病的发生发展过程,进行药物研究及筛选等。本文综述了现有活体动物体内光学成像技术的原理、应用领域及发展前景,比较了生物发光与几种荧光技术的不同特点和应用。  相似文献   

17.
Due to the increasing demand for optically active compounds, the development of methods supplying optically pure isomers is intensively progressing. Among these methods the chromatographic resolution on chiral stationary phases is very promising, although only a limited number of preparative applications have been reported so far. In this work, we demonstrate that especially cellulose triacetate I (CTA I) as a chiral phase presents a number of advantages for this purpose. The broad applicability and the high loading capacity of CTA I are particularly important features for preparative chromatography. Nevertheless, slight structural modifications of the racemates to be resolved can often strongly improve the resolution. This strategy has been applied to numerous practical problems and is illustrated in this work taking as examples some chiral building blocks and auxiliaries. Moreover, a systematic investigation of the influence of a substituent in the para-position of the phenyl ring for different series of aromatic compounds led to the conclusion that a large number of different interaction sites must be present in the chiral environment of CTA I.  相似文献   

18.
Liu C  Shi L  Xu X  Li H  Xing H  Liang D  Jiang K  Pang X  Song J  Chen S 《PloS one》2012,7(5):e35146
The DNA barcoding technology uses a standard region of DNA sequence for species identification and discovery. At present, "DNA barcode" actually refers to DNA sequences, which are not amenable to information storage, recognition, and retrieval. Our aim is to identify the best symbology that can represent DNA barcode sequences in practical applications. A comprehensive set of sequences for five DNA barcode markers ITS2, rbcL, matK, psbA-trnH, and CO1 was used as the test data. Fifty-three different types of one-dimensional and ten two-dimensional barcode symbologies were compared based on different criteria, such as coding capacity, compression efficiency, and error detection ability. The quick response (QR) code was found to have the largest coding capacity and relatively high compression ratio. To facilitate the further usage of QR code-based DNA barcodes, a web server was developed and is accessible at http://qrfordna.dnsalias.org. The web server allows users to retrieve the QR code for a species of interests, convert a DNA sequence to and from a QR code, and perform species identification based on local and global sequence similarities. In summary, the first comprehensive evaluation of various barcode symbologies has been carried out. The QR code has been found to be the most appropriate symbology for DNA barcode sequences. A web server has also been constructed to allow biologists to utilize QR codes in practical DNA barcoding applications.  相似文献   

19.
Photoswitchable fluorescent proteins have enabled new approaches for imaging cells, but their utility has been limited either because they cannot be switched repeatedly or because the wavelengths for switching and fluorescence imaging are strictly coupled. We report a bright, monomeric, reversibly photoswitchable variant of GFP, Dreiklang, whose fluorescence excitation spectrum is decoupled from that for optical switching. Reversible on-and-off switching in living cells is accomplished at illumination wavelengths of ~365 nm and ~405 nm, respectively, whereas fluorescence is elicited at ~515 nm. Mass spectrometry and high-resolution crystallographic analysis of the same protein crystal in the photoswitched on- and off-states demonstrate that switching is based on a reversible hydration/dehydration reaction that modifies the chromophore. The switching properties of Dreiklang enable far-field fluorescence nanoscopy in living mammalian cells using both a coordinate-targeted and a stochastic single molecule switching approach.  相似文献   

20.
Legionella pneumophila is the causative agent of a potentially fatal form of pneumonia named Legionnaires' disease. L. pneumophila survives and replicates inside macrophages by preventing phagosome-lysosome fusion. A large number of L. pneumophila genes, called dot or icm, have been identified that are required for intracellular growth. It has recently been shown that the dot/icm genes code for a putative large membrane complex that forms a type IV secretion system used to alter the endocytic pathway.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号