首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The colonizing behaviour and the pellicle formation of Bacillus subtilis strains producing different families of lipopeptides were evaluated under several cultural conditions. The pattern of lipopeptides produced determined the architecture of the colony on a swarming medium as well as the flotation and the thickness of the pellicle formed at the air/liquid interface. The overproduction of mycosubtilin, a lipopeptide of the iturin family, led to increased spreading but had no effect on pellicle formation. A physico-chemical approach was developed to gain an insight into the mode of action of the biosurfactants facilitating the colonization. A relationship between surface tension of the culture medium and spreading of a lipopeptide non-producing strain, B. subtilis 168, was established. Goniometry was used to highlight the modification of the in situ wettability in the area where spreading was enhanced. On a solid medium, co-cultures of a surfactin producing with other strains showed a diffusion ring of the surfactin around the colony. This ring characterized by a higher wettability favoured the propagation of other colonies.  相似文献   

2.
Bacillus subtilis B3 was found to produce lipopeptides iturins and fengycin that have activity against several plant pathogens such as Fusarium graminearum, Rhizoctonia solani, Rhizoctonia cerealis, and Pyricularia grisea. A 3642-bp genomic region of B. subtilis B3 comprising srfDB3, aspB3, lpaB3, and yczEB3 genes that resulted in biosynthesis of surfactin in B. subtilis 168 was cloned, sequenced, and characterized. Among them, the srfDB3 gene encodes thioesterase, which is required for biosynthesis of surfactin in B. subtilis; the aspB3 gene encodes a putative aspartate aminotransferase-like protein; the lpaB3 encodes phosphopantetheinyl transferase, which shows high identity to the product of lpa-14 gene regulating the biosynthesis of iturin A and surfactin in B. subtilis RB14; the yczEB3 encodes a YczE-like protein with significant similarities in signal peptide and part of the ABC transport system. The genetic regions between the srfD gene and lpa gene from B. subtilis B3 and B. subtilis A13, which produces iturin A, contain an approximate 1-kb nucleotide fragment encoding an aspartate aminotransferase-like protein; however, the relevant regions from B. subtilis 168 and B. subtilis ATCC21332 producing surfactin comprise an approximately 4-kb nucleotide fragment encoding four unknown proteins. There is 73% identity between the Lpa family and the Sfp family, although both are highly conserved.Received: 29 October 2002 / Accepted: 6 December 2002  相似文献   

3.
Surfactin and iturin A effects on Bacillus subtilis surface hydrophobicity   总被引:2,自引:0,他引:2  
The synthesis of extracellular molecules such as biosurfactants should have major consequences on bacterial adhesion. These molecules may be adsorbed on surfaces and modify their hydrophobicities. Certain strains of Bacillus subtilis synthesize the lipopeptides, which exhibit antibiotic and surface active properties. In this study the high-performance liquid chromatography (HPLC) analysis of the culture supernatants of the seven B. subtilis strains, showed that the lipopeptide profile varied greatly according to the strain. Among the three lipopeptide types, only iturin A was produced by all B. subtilis strains. Bacterial hydrophobicity, evaluated by the water contact angle measurements and the hydrophobic interaction chromatography, varied according to the strain. Two strains (ATCC 15476 and ATCC 15811) showing extreme behaviors in term of hydrophobicity were selected to study surfactin and iturin A effects on bacterial hydrophobicity. The two lipopeptides modified the B. subtilis surface hydrophobicity. Their effects varied according to the bacterial surface hydrophobic character, the lipopeptide type and the concentration. Lipopeptide adsorption increased the hydrophobicity of the hydrophilic strain but decreased that of the hydrophobic. Comparison of lipopeptide effects on B. subtilis surface hydrophobicity showed that surfactin was more effective than iturin A for the two strains tested.  相似文献   

4.
Summary Ultraviolet mutation of Bacillus subtilis ATCC 21332 yielded a stable mutant that produced over three times more of the biosurfactant, surfactin, than the parent strain. By protoplast fusing the mutant (Suf-1) with the marker strain, B. subtilis BGSC strain IA28, the mutation was located between argC4 and hisA1 on the genetic map.NRCC 30549  相似文献   

5.
Microbial production of two biosurfactants, fengycin and surfactin, by Bacillus subtilis ATCC 21332 in a rotating discs bioreactor was studied. Simultaneous production of these lipopeptides was performed by free and cells immobilized on the surfaces of rotating discs. The aeration applied on surface allowed a non-foaming fermentation process and an important production of lipopeptides for low microbial growth in the culture medium. It was demonstrated that the selectivity of lipopeptides synthesis could be modified varying operating conditions and that the cells immobilization improved greatly fengycin synthesis. The maximal concentration of fengycin and surfactin obtained were 838 mg L?1 and 212 mg L?1, respectively. The development of this bubble-less process could advance the scale-up of the fermenters for production of biosurfactants.  相似文献   

6.
Bacillus strains produce non-ribosomal lipopeptides that can be grouped into three families: surfactins or lichenysins, iturins and fengycins or plispastatins. These biosurfactants show a broad spectrum of biological activities. To detect strains able to produce these lipopeptides, a new polymerase chain reaction screening approach was developed using degenerated primers based on the intraoperon alignment of adenylation and thiolation nucleic acid domains of all enzymes implicated in the biosynthesis of each lipopeptide family. The comparative bioinformatics analyses of each operon led to the design of four primer pairs for the three families taking into account the differences between open reading frames of each synthetase gene. Tested on different Bacillus sp. strains, this technique was used successfully to detect not only the expected genes in the lipopeptide producing strains but also the presence of a plispastatin gene in Bacillus subtilis ATCC 21332 and a gene showing a high similarity with the polyketide synthase type I gene in the B. subtilis ATCC 6633 genome. It also led to the discovery of the presence of non-ribosomal peptide synthetase genes in Bacillus thuringiensis serovar berliner 1915 and in Bacillus cereus LMG 2098. In addition, this work highlighted the differences between the fengycin and plipastatin operon at DNA level.  相似文献   

7.
The surfactin production genetic locus (sfp) is responsible for the ability of Bacillus subtilis to produce the lipopeptide biosurfactant, surfactin. This report demonstrates the utility of using PCR of the sfp gene as a means of identifying Bacillus species that produce surfactin. We carried out a hemolysis zone assay, quantitative HPLC and NMR in parallel to ensure that the PCR provided correct results. PCR analyses were performed for the sfp gene on 15 standard strains and 20 field-collected Bacillus spp. isolates native to Taiwan. Among the 15 standard strains, surfactin was produced by seven strains of B. subtilis and two closely related species, B. amyloliquefaciens B128 and B. circulans ATCC 4513. Of the 20 field-collected Bacillus spp. isolates; 16 strains yielded surfactin- positive results with PCR and HPLC. A good correlation was observed. Within the 16 field isolates, B. amyloliquefaciens S13 (452.5 mg/L) and B. subtilis S15 (125.6 mg/L) had high productivity of surfactin. The technique is valuable for finding out potential good yields of surfactin-producing strains. The PCR method we used could also be used to find different species or genera containing homologous genes. This is the first report of the detection of surfactin production by B. amyloliquefaciens and B. circulans based on PCR screening.  相似文献   

8.
《Process Biochemistry》2010,45(11):1795-1799
Microbial production and isolation of biosurfactants was studied. The production of lipopeptides surfactin and fengycin was performed by free and immobilized aerobic cells of Bacillus subtilis ATCC 21332. After preliminary tests with 5 polymer materials, the particles of polypropylene foamed with powder activated carbon (PPch) were selected for lipopeptides production for their thermal and mechanical stability and for the high colonizing effect. To avoid foaming during biosurfactant production, biofilm grown on solid floating support was aerated by air injected over the surface of cultural medium. The synthesis of both lipopeptides and especially of the fengycin was greatly enhanced by the immobilization. The relationship between support wettability, colonization of the cells, and lipopeptide production was discussed. Extraction behaviour of the lipopeptides into alkanes was studied. The distribution ratio of surfactin was found to be higher than this of fengycin at the same conditions and the n-heptane was more efficient solvent for both lipopeptides. Kinetics of surfactin recovery from fermentation broth applying batch pertraction in a rotating discs contactor was studied. Lipopeptide was successfully extracted (more than 75% in the first hour) using n-heptane as liquid membrane and a 0.2 mol L−1 phosphate buffer solution (pH  7.3) as receiving solution. However, the stripping of the organic liquid and surfactin accumulation into the receiving phase were less efficient.  相似文献   

9.
The objective of the study was to identify the lipopetides associated with three Bacillus subtilis strains. The strains are antagonists of Gibberella zeae, and have been shown to be effective in reducing Fusarium head blight in wheat. The lipopeptide profile of three B. subtilis strains (AS43.3, AS43.4, and OH131.1) was determined using mass spectroscopy. Strains AS43.3 and AS43.4 produced the anti-fungal lipopeptides from the iturin and fengycin family during the stationary growth phase. All three strains produced the lipopeptide surfactin at different growth times. Strain OH131.1 only produced surfactin under these conditions. The antifungal activity of the culture supernatant and individual lipopeptides was determined by the inhibition of G. zeae. Cell-free supernatant from strains AS43.3 and AS43.4 demonstrated strong antibiosis of G. zeae, while strain OH131.1 had no antibiosis activity. These results suggest a different mechanism of antagonism for strain OH131.1, relative to AS43.3 and AS43.4.  相似文献   

10.
Surfactin and fengycin are lipopeptide biosurfactants produced by Bacillus subtilis. This work describes for the first time the use of bubbleless bioreactors for the production of these lipopeptides by B. subtilis ATCC 21332 with aeration by a hollow fiber membrane air–liquid contactor to prevent foam formation. Three different configurations were tested: external aeration module made from either polyethersulfone (reactor BB1) or polypropylene (reactor BB2) and a submerged module in polypropylene (reactor BB3). Bacterial growth, glucose consumption, lipopeptide production, and oxygen uptake rate were monitored during the culture in the bioreactors. For all the tested membranes, the bioreactors were of satisfactory bacterial growth and lipopeptide production. In the three configurations, surfactin production related to the culture volume was in the same range: 242, 230, and 188 mg l−1 for BB1, BB2, and BB3, respectively. Interestingly, high differences were observed for fengycin production: 47 mg l−1 for BB1, 207 mg l−1 for BB2, and 393 mg l−1 for BB3. A significant proportion of surfactin was adsorbed on the membranes and reduced the volumetric oxygen mass transfer coefficient. The degree of adsorption depended on both the material and the structure of the membrane and was higher with the submerged polypropylene membrane.  相似文献   

11.
Wu G  Ding J  Li H  Li L  Zhao R  Shen Z  Fan X  Xi T 《Current microbiology》2008,57(6):552-557
This study analyzes the in vitro effects of cations and pH on antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC21332. Thanatin and s-thanatin were synthesized by the solid-phase method using a model 432A synthesizer. The bacterial strains tested included two antibiotic-susceptible strains of Escherichia coli ATCC25922 and B. subtilis ATCC21332. Susceptibility determinations were carried out either in a variety of cation concentrations or in pH conditions from pH 5 to pH 8. NaCl or KCl was added to the media to final concentrations of 0, 10, 50, 100, 200, and 500 mM, whereas CaCl2 and MgCl2 were added to the media to final concentrations of 0, 1, 2, 5, 10, and 20 mM. The antimicrobial activity of thanatin and s-thanatin against Escherichia coli ATCC25922 and B. subtilis ATCC21332 decreased, as indicated by the increasing minimal inhibitory concentrations (MICs) of both peptides with increasing concentrations of Na+/K+/Ca2+/Mg2+. Both peptides lost their activities at 500 mM Na+/K+ but retained them at 20 mM Ca2+/Mg2+. Both peptides have MICs that are not significantly different at a variety of pH levels, with the antimicrobial activity slightly higher in neutral or slightly basic media than under acidic conditions. The antimicrobial peptides thanatin and s-thanatin, which have an anti-parallel β-sheet constrained by disulfide bonds, were salt sensitive against both Gram-positive and Gram-negative pathogens in vitro. Determining the reason why the thanatins are salt sensitive would be useful to provide an understanding of how thanatin and s-thanatin kill bacteria. Futher investigation of the antimicrobial properties of these peptides is warranted. G. Wu and J. Ding contributed equally to this article.  相似文献   

12.
Summary Bacillus subtilis ATCC 21332 produces an extracellular lipopeptide, called surfactin, a potent surfactant. Using a new technique for cell culturing, continuous phasing with feedback control, the effects of manganese on the growth, and the associated production of surfactin, were investigated. An intimate relationship was revealed between the availability of iron and manganese and the utilization of nitrogen. A critical proportionality of 920/7.7/1.0 (molar basis) of nitrogen to iron to manganese was identified. Increasing the manganese reduced the requirement for nitrogen and resulted in growth under iron limitation. The production of surfactin could be sustained for at least 30 consecutive generations growing under either an iron or nitrogen limitation, but only if manganese was available. The dynamic response of B. subtilis to changes in manganese concentration revealed a non-linear relationship that required several generations to stabilize. Offprint requests to: J. D. Sheppard  相似文献   

13.
Lipopeptides produced by Bacillus subtilis are known for their high antifungal activity. The aim of this paper is to show that at high concentration they can damage the surface ultra-structure of bacterial cells. A lipopeptide extract containing iturin and surfactin (5 mg mL−1) was prepared after isolation from B. subtilis (strain OG) by solid phase extraction. Analysis by atomic force microscope (AFM) showed that upon evaporation, lipopeptides form large aggregates (0.1–0.2 μm2) on the substrates silicon and mica. When the same solution is incubated with fungi and bacteria and the system is allowed to evaporate, dramatic changes are observed on the cells. AFM micrographs show disintegration of the hyphae of Phomopsis phaseoli and the cell walls of Xanthomonas campestris and X. axonopodis. Collapses to fungal and bacterial cells may be a result of formation of pores triggered by micelles and lamellar structures, which are formed above the critical micelar concentration of lipopeptides. As observed for P. phaseoli, the process involves binding, solubilization, and formation of novel structures in which cell wall components are solubilized within lipopeptide vesicles. This is the first report presenting evidences that vesicles of uncharged and negatively charged lipopeptides can alter the morphology of gram-negative bacteria.  相似文献   

14.
The antifungal activity of bacterial strains Bacillus subtilis EF 617317 and B. licheniformis EF 617325 was demonstrated against sapstaining fungal cultures Ophiostoma flexuosum, O. tetropii, O. polonicum, and O. ips in both in vitro and in vivo conditions. The crude active supernatant fractions of 7 days old B. subtilis and B. licheniformis cultures inhibited the growth of sapstaining fungi in laboratory experiments. Thermostability and pH stability of crude supernatants were determined by series of experiments. FT-IR analysis was performed to confirm the surface structural groups of lipoproteins present in the crude active supernatant. Partial purification of lipopeptides present in the crude supernatant was done by using Cellulose anion exchange chromatography and followed by Sephadex gel filtration chromatography. Partially purified compounds significantly inhibited the sapstaining fungal growth by in vitro analysis. The lipopeptides responsible for antifungal activity were identified by electrospray ionization mass spectrometry after partial purification by ion exchange and gel filtration chromatography. Four major ion peaks were identified as m/z 1023, 1038, 1060, and 1081 in B. licheniformis and 3 major ion peaks were identified as m/z 1036, 1058, and 1090 in B. subtilis. In conclusion, the partially purified lipopeptides may belong to surfactin and iturin family. In vivo analysis for antifungal activity of lipopeptides on wood was conducted in laboratory. In addition, the potential of extracts for fungal inhibition on surface and internal part of wood samples were analyzed by scanning electron microscopy.  相似文献   

15.
《Process Biochemistry》2007,42(1):40-45
In this work, optimizing trace element composition was attempted as a primary strategy to improve surfactin production from Bacillus subtilis ATCC 21332. Statistical experimental design (Taguchi method) was applied for the purpose of identifying optimal trace element composition in the medium. Of the five trace elements examined, Mg2+, K+, Mn2+, and Fe2+ were found to be more significant factors affecting surfactin production by the B. subtilis strain. In the absence of Mg2+ or K+, surfactin yield decreased to 0.4 g/l, which was only 25% of the value obtained from the control run. When Mn2+ and Fe2+ were both absent, the production yield also dropped to ca. 0.6 g/l, approximately one-third of the control value. However, when only one of the two metal ions (Fe2+ or Mn2+) was missing, the B. subtilis ATCC 21332 strain was able to remain over 80% of original surfactin productivity, suggesting that some interactive correlations among the selected metal ions may involve. Taguchi method was thus applied to reveal the interactive effects of Mg2+, K+, Mn2+, Fe2+ on surfactin production. The results show that interaction of Mg2+ and K+ reached significant level. By further optimizing Mg2+ and K+ concentrations in the medium, the surfactin production was boosted to 3.34 g/l, which nearly doubled the yield obtained from the original control.  相似文献   

16.
Cao G  Zhang X  Zhong L  Lu Z 《Biotechnology letters》2011,33(5):1047-1051
A modified electroporation method using trehalose is presented for the transformation of Bacillus subtilis. The new method improved the transformation efficiency of B. subtilis nearly 2,000-fold compared with the usual method, giving 4 × 105 transformants/μg DNA. Using this method, B. subtilis was engineered to improve production of antimicrobial lipopeptides and produced 1.8-fold more surfactin and 2.9-fold more fengycin.  相似文献   

17.
Bacillus subtilis fmbj can produce a lipopeptide antimicrobial substance, the main components of which are surfactin and fengycin. In this paper, the sensitivity of Bacillus cereus to antimicrobial lipopeptides from B. subtilis fmbj was observed, and the effect of the microstructure of antimicrobial lipopeptide on spores of B. cereus was investigated. At the same time, the optimization of the inactivation of antimicrobial lipopeptides to spores of B. cereus by a response surface methodology was studied. Results showed that B. cereus had high sensitivity to it, whose minimal inhibitory concentration was 156.25 μg/ml. It could result in the death of spores by destroying the structure of resting spores and sprouting spores, as was observed by transmission electron microscopy. The optimization result indicated that spores of B. cereus could be inactivated by 2 orders of magnitude when the temperature was 29.6°C, the action time was 7.6 h, and the concentration was 3.46 mg·ml−1.  相似文献   

18.
Expression of sfp gene and hydrocarbon degradation by Bacillus subtilis   总被引:5,自引:0,他引:5  
Bacillus subtilis C9 produces a lipopeptide-type biosurfactant, surfactin, and rapidly degrades alkanes up to a chain length of C19. The nucleotide sequence of the sfp gene cloned from B. subtilis C9 was determined and its deduced amino acid sequence showed 100% homology with the sfp gene reported before [Nakano et al. (1992) Mol. Gen. Genet. 232: 313–321]. To transform a non-surfactin producer, B. subtilis 168, to a surfactin producer, the sfp gene cloned from B. subtilis C9 was expressed in B. subtilis 168. The transformed B. subtilis SB103 derivative of the strain 168 was shown to produce surfactin measured by its decrease in surface tension, emulsification activity, and TLC analysis of the surface active compound isolated from the culture broth. Like B. subtilis C9, B. subtilis SB103 containing sfp gene readily degraded aliphatic hydrocarbons (C10–19), though its original strain did not. The addition of surfactin (0.5%, w/v) to the culture of B. subtilis 168 significantly stimulated the biodegradation of hydrocarbons of the chain lengths of 10–19; over 98% of the hydrocarbons tested were degraded within 24 h of incubation. These results indicate that the lipopeptide-type biosurfactant, surfactin produced from B. subtilis enhances the bioavailability of hydrophobic hydrocarbons.  相似文献   

19.
Ma T  Li G  Li J  Liang F  Liu R 《Biotechnology letters》2006,28(14):1095-1100
The desulfurization (dsz) genes from Rhodococcus erythropolis DS-3 were successfully integrated into the chromosomes of Bacillus subtilis ATCC 21332 and UV1 using an integration vector pDGSDN, yielding two recombinant strains, B. subtilis M29 and M28 in which the integrated dsz genes were expressed efficiently under the promoter, Pspac. The dibenzothiophene (DBT) desulfurization efficiency of M29 was 16.2 mg DBT l−1 h−1 at 36 h, significantly higher than that of R. erythropolis DS−3 and B. subtilis M28 and also showed no product inhibition. The interfacial tension of the supernatant fermented by M29 varied from 48 mN m−1 to 4.2 mN m−1, lower than that of the recombinant strain, M28, reveals that the biosurfactant secreted from M29 may have an important function in the DBT desulfurization process.  相似文献   

20.
Summary The lipopeptides, surfactin and iturin, are co-produced by B. subtilis. In this work, the three subunits of surfactin synthetase have been characterized by affinity chromatography on affigel columns where the ligand is one of the amino acid components of surfactin.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号