首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Genomic imprinting is an epigenetic phenomenon whereby genetically identical alleles are differentially expressed dependent on their parent-of-origin. Genomic imprinting has independently evolved in flowering plants and mammals. In both organism classes, imprinting occurs in embryo-nourishing tissues, the placenta and the endosperm, respectively, and it has been proposed that imprinted genes regulate the transfer of nutrients to the developing progeny. Many imprinted genes are located in the vicinity of DNA-methylated transposon or repeat sequences, implying that transposon insertions are associated with the evolution of imprinted loci. The antagonistic action of DNA methylation and Polycomb group-mediated histone methylation seems important for the regulation of many imprinted plant genes, whereby the position of such epigenetic modifications can determine whether a gene will be mainly expressed from either the maternally or paternally inherited alleles. Furthermore, long non-coding RNAs seem to play an as yet underappreciated role for the regulation of imprinted plant genes. Imprinted expression of a number of genes is conserved between monocots and dicots, suggesting that long-term selection can maintain imprinted expression at some loci.  相似文献   

3.
Epigenesis is the process whereby the daughters of a dividing cell retain a chromatin state determined before cell division. The best-studied cases involve the inheritance of heterochromatic chromosomal domains, and little is known about specific gene regulation by epigenetic mechanisms. Recent evidence shows that epigenesis pivots on methylation of nucleosomes at histone 3 lysines 4, 9 or 27. Bioinformatics indicates that mammals have several enzymes for each of these methylations, including at least six histone 3 lysine 4 methyltransferases. To look for evidence of gene-specific epigenetic regulation in mammalian development, we examined one of these six, Mll2, using a multipurpose allele in the mouse to ascertain the loss-of-function phenotype. Loss of Mll2 slowed growth, increased apoptosis and retarded development, leading to embryonic failure before E11.5. Using chimera experiments, we demonstrated that Mll2 is cell-autonomously required. Evidence for gene-specific regulation was also observed. Although Mox1 and Hoxb1 expression patterns were correctly established, they were not maintained in the absence of Mll2, whereas Wnt1 and Otx2 were. The Mll2 loss-of-function phenotype is different from that of its sister gene Mll, and they regulate different Hox complex genes during ES cell differentiation. Therefore, these two closely related epigenetic factors play different roles in development and maintain distinct gene expression patterns. This suggests that other epigenetic factors also regulate particular patterns and that development entails networks of epigenetic specificities.  相似文献   

4.
In order to exploit the exceptional potential of human embryonic stem cells (hESCs) incell-replacement therapies, the genetic and epigenetic factors controlling early humandevelopment must be better defined. Limitations in human embryonic material restrict thescale of studies that can be performed, and therefore an in vitro model in which to studyepigenetic regulation in human pre-implantation cell types would be desirable. HESCscould provide such a model, but since they are derived from a stage in mammaliandevelopment when the genome is undergoing global epigenetic remodelling, it is unclearwhether their epigenetic status would be stable or subject to variation. Herein, we discussrecent work that examines allele-specific imprinted gene expression and methylationpatterns, thereby demonstrating that hESCs maintain a substantial degree of epigeneticstability during culture. Therefore, we suggest that hESCs could provide a model forstudying epigenetic regulation during the early stages of human cellular pluripotency anddifferentiation. Furthermore, we propose specific experiments using such a model toaddress important questions pertaining to epigenetic mechanisms of certain humandisorders.  相似文献   

5.
Tackling the epigenome in the pluripotent stem cells   总被引:2,自引:0,他引:2  
Embryonic stem cells are unique in their abilities of self-renewal and to differentiate into many, if not all, cellular lineages. Transcrip- tional regulation, epigenetic modifications and chromatin structures are the key modulators in controlling such pluripotency nature of embryonic stem cell genomes, particularly in the developmental decisions and the maintenance of cell fates. Among them, epigenetic regulation of gene expression is mediated partly by covalent modifications of core histone proteins including methylation, phosphoryla- tion and acetylation. Moreover, the chromatins in stem cell genome appear as a highly organized structure containing distinct functional domains. Recent rapid progress of new technologies enables us to take a global, unbiased and comprehensive view of the epigenetic modifications and chromatin structures that contribute to gene expression regulation and cell identity during diverse developmental stages. Here, we summarized the latest advances made by high throughput approaches in profiling epigenetic modifications and chromatin con- formations, with an emphasis on genome-wide analysis of histone modifications and their implications in pluripotency nature of embry- onic stem cells.  相似文献   

6.
7.
Jingde Zhu 《遗传学报》2013,40(7):323-324
Epigenetics concerns non-DNA sequence dependent mechanisms through which cross-mitosis (and meiosis) transmission of committed gene expression pattern in high eukaryotes is achieved.The fact that cells with identical genome can have plentiful phenotypic choices suggests a decisive role of epigenetic regulation in selective gene expression and therefore the biological activities at a cell type-specific manner in multi-cellular organisms.  相似文献   

8.
9.
10.
Systems initially emerged for protecting genomes against insertions of transposable elements and represented by mechanisms of splicing regulation, RNA–interference, and epigenetic factors have played a key role in the evolution of animals. Many studies have shown inherited transpositions of mobile elements in embryogenesis and preservation of their activities in certain tissues of adult organisms. It was supposed that on the emergence of Metazoa the self–regulation mechanisms of transposons related with the gene networks controlling their activity could be involved in intercellular cell coordination in the cascade of successive divisions with differentiated gene expression for generation of tissues and organs. It was supposed that during evolution species–specific features of transposons in the genomes of eukaryotes could form the basis for creation of dynamically related complexes of systems for epigenetic regulation of gene expression. These complexes could be produced due to the influence of noncoding transposon–derived RNAs on DNA methylation, histone modifications, and processing of alternative splicing variants, whereas the mobile elements themselves could be directly involved in the regulation of gene expression in cis and in trans. Transposons are widely distributed in the genomes of eukaryotes; therefore, their activation can change the expression of specific genes. In turn, this can play an important role in cell differentiation during ontogenesis. It is supposed that transposons can form a species–specific pattern for control of gene expression, and that some variants of this pattern can be favorable for adaptation. The presented data indicate the possible influence of transposons in karyotype formation. It is supposed that transposon localization relative to one another and to protein–coding genes can influence the species–specific epigenetic regulation of ontogenesis.  相似文献   

11.
Germ cells and somatic cells have the identical genome. However, unlike the mortal fate of somatic cells, germ cells have the unique ability to differentiate into gametes that retain totipotency and produce an entire organism upon fertilization. The processes by which germ cells differentiate into gametes, and those by which gametes become embryos, involve dramatic cellular differentiation accompanied by drastic changes in gene expression, which are tightly regulated by genetic circuitries as well as epigenetic mechanisms. Epigenetic regulation refers to heritable changes in gene expression that are not due to changes in primary DNA sequence. The past decade has witnessed an ever-increasing understanding of epigenetic regulation in many different cell types/tissues during embryonic development and adult homeostasis. In this review, we focus on recent discoveries of epigenetic regulation of germ cell differentiation in various metazoan model organisms, including worms, flies, and mammals.  相似文献   

12.
13.
《Organogenesis》2013,9(1):37-47
The identity and functionality of eukaryotic cells is defined not just by their genomic sequence which remains constant between cell types, but by their gene expression profiles governed by epigenetic mechanisms. Epigenetic controls maintain and change the chromatin state throughout development, as exemplified by the setting up of cellular memory for the regulation and maintenance of homeotic genes in proliferating progenitors during embryonic development. Higher order chromatin structure in reversibly arrested adult stem cells also involves epigenetic regulation and in this review we highlight common trends governing chromatin states, focusing on quiescence and differentiation during myogenesis. Together, these diverse developmental modules reveal the dynamic nature of chromatin regulation providing fresh insights into the role of epigenetic mechanisms in potentiating development and differentiation.  相似文献   

14.
Embryonic stem (ES) cells hold immense promise for the treatment of human degenerative disease. Because ES cells are pluripotent, they can be directed to differentiate into a number of alternative cell-types with potential therapeutic value. Such attempts at "rationally-directed ES cell differentiation" constitute attempts to recapitulate aspects of normal development in vitro. All differentiated cells retain identical DNA content, yet gene expression varies widely from cell-type to cell-type. Therefore, a potent epigenetic system has evolved to coordinate and maintain tissue-specific patterns of gene expression. Recent advances show that mechanisms that govern epigenetic regulation of gene expression are rooted in the details of chromatin dynamics. As embryonic cells differentiate, certain genes are activated while others are silenced. These activation and silencing events are exquisitely coordinated with the allocation of cell lineages. Remodeling of the chromatin of developmentally-regulated genes occurs in conjunction with lineage commitment. Oocytes, early embryos, and ES cells contain potent chromatin-remodeling activities, an observation that suggests that chromatin dynamics may be especially important for early lineage decisions. Chromatin dynamics are also involved in the differentiation of adult stem cells, where the assembly of specialized chromatin upon tissue-specific genes has been studied in fine detail. The next few years will likely yield striking advances in the understanding of stem cell differentiation and developmental biology from the perspective of chromatin dynamics.  相似文献   

15.
16.
17.
Mouse primordial germ cells (PGCs) erase global DNA methylation (5mC) as part of the comprehensive epigenetic reprogramming that occurs during PGC development. 5mC plays an important role in maintaining stable gene silencing and repression of transposable elements (TE) but it is not clear how the extensive loss of DNA methylation impacts on gene expression and TE repression in developing PGCs. Using a novel epigenetic disruption and recovery screen and genetic analyses, we identified a core set of germline-specific genes that are dependent exclusively on promoter DNA methylation for initiation and maintenance of developmental silencing. These gene promoters appear to possess a specialised chromatin environment that does not acquire any of the repressive H3K27me3, H3K9me2, H3K9me3 or H4K20me3 histone modifications when silenced by DNA methylation. Intriguingly, this methylation-dependent subset is highly enriched in genes with roles in suppressing TE activity in germ cells. We show that the mechanism for developmental regulation of the germline genome-defence genes involves DNMT3B-dependent de novo DNA methylation. These genes are then activated by lineage-specific promoter demethylation during distinct global epigenetic reprogramming events in migratory (~E8.5) and post-migratory (E10.5-11.5) PGCs. We propose that genes involved in genome defence are developmentally regulated primarily by promoter DNA methylation as a sensory mechanism that is coupled to the potential for TE activation during global 5mC erasure, thereby acting as a failsafe to ensure TE suppression and maintain genomic integrity in the germline.  相似文献   

18.
19.
20.
Epigenetic information is characterized by its plasticity during development and differentiation as well as its stable transmission during mitotic cell divisions in somatic tissues. This duality contrasts to genetic information, which is essentially static and identical in every cell in an organism with only a few exceptions such as immunoglobulin genes in lymphocytes. Epigenetics is traditionally perceived as a means to regulate gene expression without a change in DNA sequence. This, however, does not exclude a potential role for genetic variations in providing differential backgrounds on which epigenetic modulations and their regulatory consequences are achieved. An effective approach to investigating the interplay between genetic variations and epigenetic variations is through allele-specific analysis of epigenetics and gene expression. Such studies have generated many new insights into functions of genetic variations, mechanisms of gene expression regulation, and the role of mutations and epigenetic alterations in human cancer. This article is part of a Special Issue entitled: Chromatin in time and space.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号