首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
The adverse health effects of inhaled particulate matter from the environment depend on its dispersion, transport, and deposition in the human airways. Similarly, precise targeting of deposition sites by pulmonary drug delivery systems also relies on characterizing the dispersion and transport of therapeutic aerosols in the respiratory tract. A variety of mechanisms may contribute to convective dispersion in the lung; simple axial streaming, augmented dispersion, and steady streaming are investigated in this effort. Flow visualization of a bolus during inhalation and exhalation, and dispersion measurements were conducted during steady flow in a three-generational, anatomically accurate in vitro model of the conducting airways to support this goal. Control variables included Reynolds number, flow direction, generation, and branch. Experiments illustrate transport patterns in the lumen cross section and map their relation to dispersion metrics. These results indicate that simple axial streaming, rather than augmented dispersion, is the dominant steady convective dispersion mechanism in symmetric Weibel generations 7-13 during normal respiration. Experimental evidence supports the branching nature of the airways as a possible contributor to steady streaming in the lung.  相似文献   

2.
Morphology of distal airways in the human lung   总被引:2,自引:0,他引:2  
  相似文献   

3.
Gaseous diffusion between airways and alveoli in the human lung   总被引:1,自引:0,他引:1  
  相似文献   

4.
Precipitation of charged particles in a tube by their own space charge is investigated theoretically, when the number density of the particles is large enough so that the potential is a smooth function given by Poisson’s equation, and when the number density is small so that only the image force is important. These two approaches have been applied to the data given by Weibel for the human lung, to determine the deposition probabibilities at different generations for submicron particles when the particle density is 1×105 particles/cm3. The results indicate that the electrostatic dispersion can only lead to a small effect on the lung deposition, the predominant effect is due to the image force exerted on the particles.  相似文献   

5.
A method of calculating the volume of a tree distal to a cut at the origin of a branch, using branching, diameter and length ratios, has been developed. The method was applied to bronchial tree casts from human, dog, sheep, hamster, and rat lungs. It was found that the exponenta in the equation weight=k×diameter a is approximately equal to 3.0 in sheep lung casts, as found by Hooper (1977), but it is greater than 3.0 in casts from the other four species.  相似文献   

6.
In conventional one-dimensional single-path models, radially averaged concentration is calculated as a function of time and longitudinal position in the lungs, and coupled convection and diffusion are accounted for with a dispersion coefficient. The axisymmetric single-path model developed in this paper is a two-dimensional model that incorporates convective-diffusion processes in a more fundamental manner by simultaneously solving the Navier-Stokes and continuity equations with the convection-diffusion equation. A single airway path was represented by a series of straight tube segments interconnected by leaky transition regions that provide for flow loss at the airway bifurcations. As a sample application, the model equations were solved by a finite element method to predict the unsteady state dispersion of an inhaled pulse of inert gas along an airway path having dimensions consistent with Weibel's symmetric airway geometry. Assuming steady, incompressible, and laminar flow, a finite element analysis was used to solve for the axisymmetric pressure, velocity and concentration fields. The dispersion calculated from these numerical solutions exhibited good qualitative agreement with the experimental values, but quantitatively was in error by 20%-30% due to the assumption of axial symmetry and the inability of the model to capture the complex recirculatory flows near bifurcations.  相似文献   

7.
Chronic obstructive lung diseases are characterized by the inability to prevent bacterial infection and a gradual loss of lung function caused by recurrent inflammatory responses. In the past decade, numerous studies have demonstrated the importance of nucleotide-mediated bacterial clearance. Their interaction with P2 receptors on airway epithelia provides a rapid ‘on-and-off’ signal stimulating mucus secretion, cilia beating activity and surface hydration. On the other hand, abnormally high ATP levels resulting from damaged epithelia and bacterial lysis may cause lung edema and exacerbate inflammatory responses. Airway ATP concentrations are regulated by ecto nucleoside triphosphate diphosphohydrolases (E-NTPDases) which are expressed on the mucosal surface and catalyze the sequential dephosphorylation of nucleoside triphosphates to nucleoside monophosphates (ATP → ADP → AMP). The common bacterial product, Pseudomonas aeruginosa lipopolysaccharide (LPS), induces an acute reduction in azide-sensitive E-NTPDase activities, followed by a sustained increase in activity as well as NTPDase 1 and NTPDase 3 expression. Accordingly, chronic lung diseases, including cystic fibrosis (CF) and primary ciliary dyskinesia, are characterized by higher rates of nucleotide elimination, azide-sensitive E-NTPDase activities and expression. This review integrates the biphasic regulation of airway E-NTPDases with the function of purine signaling in lung diseases. During acute insults, a transient reduction in E-NTPDase activities may be beneficial to stimulate ATP-mediated bacterial clearance. In chronic lung diseases, elevating E-NTPDase activities may represent an attempt to prevent P2 receptor desensitization and nucleotide-mediated lung damage.  相似文献   

8.
Models of the human respiratory tract were developed based on detailed morphometric measurements of a silicone rubber cast of the human tracheobronchial airways. Emphasis was placed on the “Typical Path Lung Model” which used one typical pathway to represent a portion of the lung, such as a lobe, or to represent the whole lung. The models contain geometrical parameters, including airway segment diameters, lengths, branching angles and angles of inclination to gravity, which are needed for estimating inhaled particle deposition. Aerosol depositions for various breathing patterns and particle sizes were calculated using these lung models and the modified Findeisen-Landahl computational scheme. The results agree reasonably well with recent experimental data. Regional deposition, including lobar deposition fractions, are also calculated and compared with results based on the ICRP lung deposition model.  相似文献   

9.
To model the competition between capillary and elastic forces in controlling the shape of a small lung airway and its interior liquid lining, we compute the equilibrium configurations of a liquid-lined, externally pressurized, buckled elastic tube. We impose axial uniformity and assume that the liquid wets the tube wall with zero contact angle. Non-zero surface tension has a profound effect on the tube's quasi-steady inflation-deflation characteristics. At low liquid volumes, hysteresis arises through two distinct mechanisms, depending on the buckling wavenumber. Sufficient compression always leads to abrupt and irreversible collapse and flooding of the tube; flooding is promoted by increasing liquid volumes or surface tension. The model captures mechanisms whereby capillary-elastic instabilities can lead to airway closure.  相似文献   

10.
11.
12.
Anaerobes comprise most of the endogenous oropharyngeal microflora, and can cause infections of airways in lung cancer patients who are at high risk for respiratory tract infections. The aim of this study was to determine the frequency and species diversity of anaerobes in specimens from the lower airways of lung cancer patients. Sensitivity of the isolates to conventional antimicrobial agents used in anaerobe therapy was assessed. Respiratory secretions obtained by bronchoscopy from 30 lung cancer patients were cultured onto Wilkins-Chalgren agar in anaerobic conditions at 37°C for 72-96 hours. The isolates were identified using microtest Api 20A. The minimal inhibitory concentrations for penicillin G, amoxicillin/clavulanate, piperacillin/tazobactam, cefoxitin, imipenem, clindamycin, and metronidazole were determined by E-test. A total of 47 isolates of anaerobic bacteria were detected in 22 (73.3%) specimens. More than one species of anaerobe was found in 16 (53.3%) samples. The most frequently isolated were Actinomyces spp. and Peptostreptococcus spp., followed by Eubacterium lentum, Veillonella parvula, Prevotella spp., Bacteroides spp., Lactobacillus jensenii. Among antibiotics used in the study amoxicillin/clavulanate and imipenem were the most active in vitro (0% and 2% resistant strains, respectively). The highest resistance rate was found for penicillin G and metronidazole (36% and 38% resistant strains, respectively). The results obtained confirm the need to conduct analyses of anaerobic microflora colonizing the lower respiratory tract in patients with lung cancer to monitor potential etiologic factors of airways infections, as well as to propose efficient, empirical therapy.  相似文献   

13.
In immature dogs after pneumonectomy (PNX), pulmonary viscous resistance is persistently elevated predominantly as a result of a high airway resistance (Raw). We examined the anatomical basis for this observation by using computerized tomography scans obtained from foxhounds 4-10 mo after right PNX. Airways of the left lower lobe were followed from generations z = 0 (trachea) to z = 12. By 4 mo post-PNX, airway length increased significantly relative to sham-operated dogs, but airway cross-sectional area (CSA) did not. By 10 mo post-PNX, average airway CSA was 24% above that in controls. Theoretically, the increased airway length and CSA should reduce lobar Raw by 50%. However, post-PNX airway dilatation did not normalize total CSA, and estimated resistance due to turbulence and convective acceleration increased threefold; i.e., the 50% reduction in lobar Raw would be offset by the loss of four of seven lobes. Thus the expected reduction in work of breathing in the whole animal is only ~30%, consistent with previously measured work of breathing in pneumonectomized dogs. We conclude that airway structure adapts slowly and incompletely, resulting in limited functional compensation.  相似文献   

14.
The deposition of aerosol particles in the human lung airways is due to two distinct mechanisms. One is by direct deposition resulting from diffusion, sedimentation and impaction as the aerosol moves in and out of the lung. The other is an indirect mechanism by which particles are transported mechanically from the tidal air to the residential air and eventually captured by the airways due to intrinsic particle motion. This last mechanism is not well understood at present. Using a trumpet airway model constructed from Weibel's data, a two-component theory is developed. In this theory, the particle concentrations in the airways and the alveoli at a given airway depth are considered to be quantitatively different. This difference in concentrations will cause a net mixing between the tidal and residential aerosol as the aerosol is breathed in and out. A distribution parameter is then introduced to account for the distribution of ventilation. The effect of intrinsic particle motion on the aerosol mixing is also included. From this theory, total and regional deposition in the lung at the steady mouth breathing without pause is calculated for several different respiratory cycles. The results agree reasonably well with the experimental data.  相似文献   

15.
Some respiratory diseases result in the inflammation of the lung airway epithelium. An associated chronic cough, as found in many cases of asthma and in long-term smokers, can exacerbate damage to the epithelial layer. It has been proposed that wall shear stresses, created by peak expiratory flow-rates during a coughing episode, are responsible. The work here uses a computational fluid dynamics technique to model peak expiratory flow in the trachea and major lung bronchi. Calculated wall shear stress values are compared to a limited set of published measurements taken from a physical model. The measurements are discussed in the context of a flow study of a complex bronchial network. A more complete picture is achieved by the calculation method, indicating, in some cases, higher maximum wall shear stresses than measured, confirming the original findings of the experimental work. Recommendations are made as to where further work would be beneficial to medical applications.  相似文献   

16.
17.
Most cystic fibrosis (CF) patients die of lung failure, due to the combined effects of bacterial infection, neutrophil-mediated inflammation, and airway obstruction by hyperviscous mucus. To this day, it remains unclear where and how this pathological vicious circle is initiated in vivo. In particular, it has proven difficult to investigate whether inflammatory pathways are dysregulated in CF airways independently of infection. Also, the relative involvement of large (tracheobronchial) vs. small (bronchiolar) airways in CF pathophysiology is still unclear. To help address these issues, we used an in vivo model based on the maturation of human fetal CF and non-CF small airways in severe combined immunodeficiency mice. We show that uninfected mature CF small airway grafts, but not matched non-CF controls, undergo time-dependent neutrophil-mediated inflammation, leading to progressive lung tissue destruction. This model of mature human small airways provides the first clear-cut evidence that, in CF, inflammation may arise at least partly from a primary defect in the regulation of neutrophil recruitment, independently of infection.  相似文献   

18.
Effector memory T cell populations in the periphery play a key role in cellular immune responses to secondary infections. However, it is unclear how these populations are maintained under steady-state conditions in nonlymphoid peripheral sites, such as the lung airways. In this study, we show that LFA-1 expression is selectively down-regulated following entry of memory T cells into the lung airways. Using Sendai virus as a mouse model of respiratory virus infection, we use LFA-1 expression levels to demonstrate that effector memory T cell populations in the lung airways are maintained by continual recruitment of new cells from the circulation. The rate of memory cell recruitment is surprisingly rapid, resulting in replacement of 90% of the population every 10 days, and is maintained for well over 1 year following viral clearance. These data indicate that peripheral T cell memory is dynamic and depends on a systemic source of T cells.  相似文献   

19.
A discrete one-dimensional model of convection-diffusion in branching alveolar ducts is described and it is shown that, for a suitable choice of effective axial dispersion, the solution closely approximates that for an axially symmetric representation, at least for Peclet numbers Pe<1. Following earlier work a composite model of a uniform lung is formed by matching such a respiratory pathway (now having the more convenient one-dimensional form) onto a trumpet representation of the conducting airways. Enhanced mixing due to heart action, and isotropic volume changes of trumpet (in addition to the pathway) during breathing are additional factors included. Calculations are made of O2 concentrations during steady-state breathing and of the concentration of inert gas during single breath wash-out of a gas mixture containing it. Predicted alveolar levels in each case agree extremely well with published data, although no alveolar slope is obtained for the inert gas.  相似文献   

20.
A model is developed to calculate the deposition of hygroscopic aerosols in the human tracheobronchial (TB) tree. The TB airflow pattern assumed is consistent with experimental observations and accounts for anatomical features such as the larynx and cartilaginous rings in large airways. Some original deposition efficiency formulae are presented for laminar and turbulent airstreams. Stepwise growth is simulated by changes in particle size and density at each TB generation. The dose distribution of NaCl aerosols is studied as a function of inhaled particle size and flow rate. Two NaCl growth rate curves are used which differ in the mode of aerosol-air mixing in the trachea. The initial rate of aerosol mixing in the human due to the laryngeal jet is shown to be an important factor affecting the deposition of hygroscopic aerosols. Total TB deposition of NaCl exceeds that for nonhygroscopic particles of the same inhaled aerodynamic size. Hygroscopic growth can also influence the regional TB distribution of dose when submicron NaCl particles grow rapidly enough to deposit by impaction and sedimentation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号