首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background  

The recent determination of complete chloroplast (cp) genomic sequences of various plant species has enabled numerous comparative analyses as well as advances in plant and genome evolutionary studies. In angiosperms, the complete cp genome sequences of about 70 species have been determined, whereas those of only three gymnosperm species, Cycas taitungensis, Pinus thunbergii, and Pinus koraiensis have been established. The lack of information regarding the gene content and genomic structure of gymnosperm cp genomes may severely hamper further progress of plant and cp genome evolutionary studies. To address this need, we report here the complete nucleotide sequence of the cp genome of Cryptomeria japonica, the first in the Cupressaceae sensu lato of gymnosperms, and provide a comparative analysis of their gene content and genomic structure that illustrates the unique genomic features of gymnosperms.  相似文献   

2.
In this study, the chloroplast (cp) genome sequences from three early diverged leptosporangiate ferns were completed and analyzed in order to understand the evolution of the genome of the fern lineages. The complete cp genome sequence of Osmunda cinnamomea (Osmundales) was 142,812 base pairs (bp). The cp genome structure was similar to that of eusporangiate ferns. The gene/intron losses that frequently occurred in the cp genome of leptosporangiate ferns were not found in the cp genome of O. cinnamomea. In addition, putative RNA editing sites in the cp genome were rare in O. cinnamomea, even though the sites were frequently predicted to be present in leptosporangiate ferns. The complete cp genome sequence of Diplopterygium glaucum (Gleicheniales) was 151,007 bp and has a 9.7 kb inversion between the trnL-CAA and trnV-GCA genes when compared to O. cinnamomea. Several repeated sequences were detected around the inversion break points. The complete cp genome sequence of Lygodium japonicum (Schizaeales) was 157,142 bp and a deletion of the rpoC1 intron was detected. This intron loss was shared by all of the studied species of the genus Lygodium. The GC contents and the effective numbers of co-dons (ENCs) in ferns varied significantly when compared to seed plants. The ENC values of the early diverged leptosporangiate ferns showed intermediate levels between eusporangiate and core leptosporangiate ferns. However, our phylogenetic tree based on all of the cp gene sequences clearly indicated that the cp genome similarity between O. cinnamomea (Osmundales) and eusporangiate ferns are symplesiomorphies, rather than synapomorphies. Therefore, our data is in agreement with the view that Osmundales is a distinct early diverged lineage in the leptosporangiate ferns.  相似文献   

3.
Zhang YJ  Ma PF  Li DZ 《PloS one》2011,6(5):e20596

Background

Bambusoideae is the only subfamily that contains woody members in the grass family, Poaceae. In phylogenetic analyses, Bambusoideae, Pooideae and Ehrhartoideae formed the BEP clade, yet the internal relationships of this clade are controversial. The distinctive life history (infrequent flowering and predominance of asexual reproduction) of woody bamboos makes them an interesting but taxonomically difficult group. Phylogenetic analyses based on large DNA fragments could only provide a moderate resolution of woody bamboo relationships, although a robust phylogenetic tree is needed to elucidate their evolutionary history. Phylogenomics is an alternative choice for resolving difficult phylogenies.

Methodology/Principal Findings

Here we present the complete nucleotide sequences of six woody bamboo chloroplast (cp) genomes using Illumina sequencing. These genomes are similar to those of other grasses and rather conservative in evolution. We constructed a phylogeny of Poaceae from 24 complete cp genomes including 21 grass species. Within the BEP clade, we found strong support for a sister relationship between Bambusoideae and Pooideae. In a substantial improvement over prior studies, all six nodes within Bambusoideae were supported with ≥0.95 posterior probability from Bayesian inference and 5/6 nodes resolved with 100% bootstrap support in maximum parsimony and maximum likelihood analyses. We found that repeats in the cp genome could provide phylogenetic information, while caution is needed when using indels in phylogenetic analyses based on few selected genes. We also identified relatively rapidly evolving cp genome regions that have the potential to be used for further phylogenetic study in Bambusoideae.

Conclusions/Significance

The cp genome of Bambusoideae evolved slowly, and phylogenomics based on whole cp genome could be used to resolve major relationships within the subfamily. The difficulty in resolving the diversification among three clades of temperate woody bamboos, even with complete cp genome sequences, suggests that these lineages may have diverged very rapidly.  相似文献   

4.
Liu  Hongmei  Schneider  Harald  Yu  Ying  Fuijwara  Tao  Khine  Phyo Kay 《Journal of plant research》2019,132(5):601-616

The Chinese occurrences of the marattioid fern genus Christensenia have been considered as requiring protection because of its extreme rarity and very small population size. Here, we explored different biological aspects to enable protection of these rare ferns, well known as Mesozoic living fossils. Firstly, we documented the cytology of the Chinese occurrences for the first time. This is the second tetraploid record of Christensenia worth for further studies to confirm its taxonomic status. Secondly, we obtained the first complete plastid genome of this genus, which confirmed the proposed conservatism of the plastid genome structure in marattioid ferns. By comparing the chloroplast genome with other marattioids, we identified several candidate regions to develop highly variable markers to investigate the intra-species diversity of marattioid ferns. Thirdly, phylogenetic analyses of rbcL sequences implied that there are at least two distinct species of Christensenia. Finally, we re-assessed the conservation status of Christensenia in the context of its local and global distribution by assessing specimen information extracted from publications and digitized voucher information. This assessment confirmed the need to obtain more accurate information about the distribution of this genus to assess the status incorporating the disjunct distribution from southern China and India in the North towards the Solomon Islands in the South.

  相似文献   

5.
6.
Gene maps were constructed for the inverted repeat region and for the adjacent large single copy region of the chloroplast genome of the maiden hair fern,Adiantum capillus-veneris L. Gene order and organization was very different from the typical angiosperm chloroplast genome (e.g. tobacco). Elongation of inverted repeat and a minimum of two inversions must be postulated to account for the unusual genome structure.  相似文献   

7.
8.

Background  

The phylum Chlorophyta contains the majority of the green algae and is divided into four classes. The basal position of the Prasinophyceae has been well documented, but the divergence order of the Ulvophyceae, Trebouxiophyceae and Chlorophyceae is currently debated. The four complete chloroplast DNA (cpDNA) sequences presently available for representatives of these classes have revealed extensive variability in overall structure, gene content, intron composition and gene order. The chloroplast genome of Pseudendoclonium (Ulvophyceae), in particular, is characterized by an atypical quadripartite architecture that deviates from the ancestral type by a large inverted repeat (IR) featuring an inverted rRNA operon and a small single-copy (SSC) region containing 14 genes normally found in the large single-copy (LSC) region. To gain insights into the nature of the events that led to the reorganization of the chloroplast genome in the Ulvophyceae, we have determined the complete cpDNA sequence of Oltmannsiellopsis viridis, a representative of a distinct, early diverging lineage.  相似文献   

9.
BackgroundSome ferns have medicinal properties and are used in therapeutic interventions. However, the classification and phylogenetic relationships of ferns remain incompletely reported. Considering that chloroplast genomes provide ideal information for species identification and evolution, in this study, three unpublished and one published ferns were sequenced and compared with other ferns to obtain comprehensive information on their classification and evolution.Materials and MethodsThe complete chloroplast genomes of Dryopteris goeringiana (Kunze) Koidz, D. crassirhizoma Nakai, Athyrium brevifrons Nakai ex Kitagawa, and Polystichum tripteron (Kunze) Presl were sequenced using the Illumina HiSeq 4,000 platform. Simple sequence repeats (SSRs), nucleotide diversity analysis, and RNA editing were investigated in all four species. Genome comparison and inverted repeats (IR) boundary expansion and contraction analyses were also performed. The relationships among the ferns were studied by phylogenetic analysis based on the whole chloroplast genomes.ResultsThe whole chloroplast genomes ranged from 148,539 to 151,341 bp in size and exhibited typical quadripartite structures. Ten highly variable loci with parsimony informative (Pi) values of > 0.02 were identified. A total of 75–108 SSRs were identified, and only six SSRs were present in all four ferns. The SSRs contained a higher number of A + T than G + C bases. C‐to‐U conversion was the most common type of RNA editing event. Genome comparison analysis revealed that single‐copy regions were more highly conserved than IR regions. IR boundary expansion and contraction varied among the four ferns. Phylogenetic analysis showed that species in the same genus tended to cluster together with and had relatively close relationships.ConclusionThe results provide valuable information on fern chloroplast genomes that will be useful to identify and classify ferns, and study their phylogenetic relationships and evolution.  相似文献   

10.
In this study, new chloroplast (cp) resources were developed for the genus Cynara, using whole cp genomes from 20 genotypes, by means of high‐throughput sequencing technologies. Our target species included seven globe artichokes, two cultivated cardoons, eight wild artichokes, and three other wild Cynara species (C. baetica, C. cornigera and C. syriaca). One complete cp genome was isolated using short reads from a whole‐genome sequencing project, while the others were obtained by means of long‐range PCR, for which primer pairs are provided here. A de novo assembly strategy combined with a reference‐based assembly allowed us to reconstruct each cp genome. Comparative analyses among the newly sequenced genotypes and two additional Cynara cp genomes (‘Brindisino’ artichoke and C. humilis) retrieved from public databases revealed 126 parsimony informative characters and 258 singletons in Cynara, for a total of 384 variable characters. Thirty‐nine SSR loci and 34 other INDEL events were detected. After data analysis, 37 primer pairs for SSR amplification were designed, and these molecular markers were subsequently validated in our Cynara genotypes. Phylogenetic analysis based on all cp variable characters provided the best resolution when compared to what was observed using only parsimony informative characters, or only short ‘variable’ cp regions. The evaluation of the molecular resources obtained from this study led us to support the ‘super‐barcode’ theory and consider the total cp sequence of Cynara as a reliable and valuable molecular marker for exploring species diversity and examining variation below the species level.  相似文献   

11.
Nucleotide sequences fromrbcL were used to infer relationships of Lophosoriaceae and Hymenophyllopsidaceae. The phylogenetic positions of these two monotypic fern families have been debated, and neither group had been included in recent molecular systematic studies of ferns. Maximum parsimony analysis of our data supported a sister relationship betweenLophosoria andDicksonia, and also betweenHymenophyllopsis andCyathea. Thus, both newly-examined families appear to be part of a previously characterized and well-supported clade of tree ferns. The inferred relationships ofLophosoria are consistent with most (but not all) recent treatments. However,Hymenophyllopsis includes only small delicate plants superficially similar to filmy ferns (Hymenophyllaceae), very different from the large arborescent taxa. Nevertheless, some synapomorphic characteristics are shared with the tree fern clade. Further studies on gametophytes ofHymenophyllopsis are needed to test these hypotheses of relationship.  相似文献   

12.
Abstract. Thicket-forming ferns are common colonizers of disturbed habitats in the tropics, but little is known about their ecology. The effects of thickets formed by the fern Dicranopteris pectinata on tree seedlings on five landslides in the Luquillo Experimental Forest in northeastern Puerto Rico were both positive and negative. Soil moisture and total soil N were higher under fern thickets than in adjacent open areas and soil bulk density and soil surface temperatures were lower. Germination of seeds of the tree Cecropia schreberiana was higher for seeds sown under fern thickets than for those sown into adjacent open areas. Tree seedlings of Tabebuia hetero-phylla exhibited a threefold reduction in photosynthesis under ferns, probably resulting from a twelvefold reduction of photosynthetic photon flux density. Growth of Tabebuia seedlings was reduced under ferns but the distribution of seedlings of naturally occurring woody plants was not strongly correlated with the presence of fern thickets. Although fern thickets on low-nutrient landslide soils appear to facilitate germination, they inhibit growth of tree seedlings and may, therefore, delay forest development on landslides in Puerto Rico.  相似文献   

13.
Gaxiola A  Burrows LE  Coomes DA 《Oecologia》2008,155(2):325-335
Seedling regeneration on forest floors is often impaired by competition with established plants. In some lowland temperate rain forests, tree fern trunks provide safe sites on which tree species establish, and grow large enough to take root in the ground and persist. Here we explore the competitive and facilitative effects of two tree fern species, Cyathea smithii and Dicksonia squarrosa, on the epiphytic regeneration of tree species in nutrient-rich alluvial forests in New Zealand. The difficulties that seedlings have in establishing on vertical tree fern trunks were indicated by the following observations. First, seedling abundance was greatest on the oldest sections of tree fern trunks, near the base, suggesting that trunks gradually recruited more and more seedlings over time, but many sections of trunk were devoid of seedlings, indicating the difficulty of establishment on a vertical surface. Second, most seedlings were from small-seeded species, presumably because smaller seeds can easily lodge on tree fern trunks. Deer browsing damage was observed on 73% of epiphytic seedlings growing within 2 m of the ground, whereas few seedlings above that height were browsed. This suggests that tree ferns provide refugia from introduced deer, and may slow the decline in population size of deer-preferred species. We reasoned that tree ferns would compete with epiphytic seedlings for light, because below the tree fern canopy photosynthetically active radiation (PAR) was about 1% of above-canopy PAR. Frond removal almost tripled %PAR on the forest floor, leading to a significant increase in the height growth rate (HGR) of seedlings planted on the forest floor, but having no effects on the HGRs of epiphytic seedlings. Our study shows evidence of direct facilitative interactions by tree ferns during seedling establishment in plant communities associated with nutrient-rich soils.  相似文献   

14.

Background  

The Vitaceae (grape) is an economically important family of angiosperms whose phylogenetic placement is currently unresolved. Recent phylogenetic analyses based on one to several genes have suggested several alternative placements of this family, including sister to Caryophyllales, asterids, Saxifragales, Dilleniaceae or to rest of rosids, though support for these different results has been weak. There has been a recent interest in using complete chloroplast genome sequences for resolving phylogenetic relationships among angiosperms. These studies have clarified relationships among several major lineages but they have also emphasized the importance of taxon sampling and the effects of different phylogenetic methods for obtaining accurate phylogenies. We sequenced the complete chloroplast genome of Vitis vinifera and used these data to assess relationships among 27 angiosperms, including nine taxa of rosids.  相似文献   

15.
Chloromethane (CH3Cl) is the most abundant halogenated volatile organic compound in the atmosphere and contributes to stratospheric ozone depletion. CH3Cl has mainly natural sources such as emissions from vegetation. In particular, ferns have been recognized as strong emitters. Mitigation of CH3Cl to the atmosphere by methylotrophic bacteria, a global sink for this compound, is likely underestimated and remains poorly characterized. We identified and characterized CH3Cl-degrading bacteria associated with intact and living tree fern plants of the species Cyathea australis by stable isotope probing (SIP) with 13C-labelled CH3Cl combined with metagenomics. Metagenome-assembled genomes (MAGs) related to Methylobacterium and Friedmanniella were identified as being involved in the degradation of CH3Cl in the phyllosphere, i.e., the aerial parts of the tree fern, while a MAG related to Sorangium was linked to CH3Cl degradation in the fern rhizosphere. The only known metabolic pathway for CH3Cl degradation, via a methyltransferase system including the gene cmuA, was not detected in metagenomes or MAGs identified by SIP. Hence, a yet uncharacterized methylotrophic cmuA-independent pathway may drive CH3Cl degradation in the investigated tree ferns.  相似文献   

16.
This current study presents, for the first time, the complete chloroplast genome of two Cleomaceae species: Dipterygium glaucum and Cleome chrysantha in order to evaluate the evolutionary relationship. The cp genome is 158,576 bp in length with 35.74% GC content in D. glaucum and 158,111 bp with 35.96% GC in C. chrysantha. Inverted repeats IR 26,209 bp, 26,251 bp each, LSC of 87,738 bp, 87,184 bp and SSC of 18,420 bp, 18,425 bp respectively. There are 136 genes in the genome, which includes 80 protein coding genes, 31 tRNA genes and four rRNA genes were observed in both chloroplast genomes. 117 genes are unique while the remaining 19 genes are duplicated in IR regions. The analysis of repeats shows that the cp genome includes all types of repeats with more frequent occurrences of palindromic; Also, this analysis indicates that the total number of simple sequence repeats (SSR) were 323 in D. glaucum, and 313 in C. chrysantha, of which the majority of the SSRs in these plastid genomes were mononucleotide repeats A/T which are located in the intergenic spacer. Moreover, the comparative analysis of the four cp sequences revealed four hotspot genes (atpF, rpoC2, rps19, and ycf1), these variable regions could be used as molecular makers for the species authentication as well as resources for inferring phylogenetic relationships of the species. All the relationships in the phylogenetic tree are with high support, this indicate that the complete chloroplast genome is a useful data for inferring phylogenetic relationship within the Cleomaceae and other families. The simple sequence repeats identified will be useful for identification, genetic diversity, and other evolutionary studies of the species. This study reported the first cp genome of the genus Dipterygium and Cleome. The finding of this study will be beneficial for biological disciplines such as evolutionary and genetic diversity studies of the species within the core Cleomaceae.  相似文献   

17.
The plant chloroplast (cp) genome is a highly conserved structure which is beneficial for evolution and systematic research. Currently, numerous complete cp genome sequences have been reported due to high throughput sequencing technology. However, there is no complete chloroplast genome of genus Dodonaea that has been reported before. To better understand the molecular basis of Dodonaea viscosa chloroplast, we used Illumina sequencing technology to sequence its complete genome. The whole length of the cp genome is 159,375 base pairs (bp), with a pair of inverted repeats (IRs) of 27,099 bp separated by a large single copy (LSC) 87,204 bp, and small single copy (SSC) 17,972 bp. The annotation analysis revealed a total of 115 unique genes of which 81 were protein coding, 30 tRNA, and four ribosomal RNA genes. Comparative genome analysis with other closely related Sapindaceae members showed conserved gene order in the inverted and single copy regions. Phylogenetic analysis clustered D. viscosa with other species of Sapindaceae with strong bootstrap support. Finally, a total of 249 SSRs were detected. Moreover, a comparison of the synonymous (Ks) and nonsynonymous (Ka) substitution rates in D. viscosa showed very low values. The availability of cp genome reported here provides a valuable genetic resource for comprehensive further studies in genetic variation, taxonomy and phylogenetic evolution of Sapindaceae family. In addition, SSR markers detected will be used in further phylogeographic and population structure studies of the species in this genus.  相似文献   

18.
为了深入发掘日本厚朴、厚朴、凹叶厚朴叶绿体基因组差异,筛选厚朴优良性状候选基因,开展三种厚朴的分子遗传研究,该文利用Illumina HiSeq高通量测序平台首次对日本厚朴叶绿体进行测序、组装,并与已有的厚朴、凹叶厚朴叶绿体基因组共同注释,获得三个物种叶绿体基因图谱,筛选出三个基因组中的差异基因,又与同科中11个亲缘物种进行叶绿体基因组比对,构建NJ遗传树。结果表明:(1)日本厚朴叶绿体基因组的Clean Reads为19 791 019,Q30为91.33%,组装后基因组全长160 051 bp, GC含量为39.2%,含tRNA 37个,rRNA 8个。(2)比对分析发现三种厚朴具有相似的IR、LSC和SSC结构,以及GC含量和tRNA数量,但编码基因种类和数量、内含子和外显子的数量和结构等存在差异。(3)日本厚朴的功能基因数目较厚朴、凹叶厚朴分别多6个和4个,主要分布于LSC区和IR区,涉及核糖体大亚基、核糖体小亚基和未知功能基因类群。(4)系统发育分析结果进一步显示日本厚朴与凹叶厚朴亲缘关系较近,其次是厚朴。该研究表明日本厚朴具有更丰富的叶绿体基因组结构、组成和变异特征,是其适...  相似文献   

19.
Continuous exploratory use of tree species is threatening the existence of several plants in South America. One of these threatened species is Myracroduron urundeuva, highly exploited due to the high quality and durability of its wood. The chloroplast (cp) has been used for several evolutionary studies as well traceability of timber origin, based on its gene sequences and simple sequence repeats (SSR) variability. Cp genome organization is usually consisting of a large single copy and a small single copy region separated by two inverted repeats regions. We sequenced the complete cp genome from M. urundeuva based on Illumina next-generation sequencing. Our results show that the cp genome is 159,883 bp in size. The 36 SSR identified ranging from mono- to hexanucleotides. Positive selection analysis revealed nine genes related to photosystem, protein synthesis, and DNA replication, and protease are under positive selection. Genome comparison a other Anacardiaceae chloroplast genomes showed great variability in the family. The phylogenetic analysis using complete chloroplast genome sequences of other Anacardiaceae family members showed a close relationship with two other economically important genera, Pistacia and Rhus. These results will help future investigations of timber monitoring and population and evolutionary studies. Supplementary InformationThe online version contains supplementary material available at 10.1007/s12298-021-00989-1.  相似文献   

20.
Syringa pinnatifolia is an endangered endemic species in China with important ornamental and medicinal value, and it needs urgent protection. Here, we report the complete chloroplast (cp) genome structure of S. pinnatifolia and its evolution is inferred through comparative studies with related species. The S. pinnatifolia cp genome was 155 326 bp and contained a large single copy region (LSC) of 86 167 bp and a small single copy region (SSC) of 17 775 bp, as well as a pair of inverted repeat regions (IRs) of 25 692 bp. A total of 113 unique genes were annotated, including 79 protein‐coding genes, 30 tRNA genes and four rRNA genes. The GC content of the S. pinnatifolia cp genome was 37.9%, and the corresponding values in the LSC, SSC and IR regions were 36.0, 32.1, 43.2% respectively. Repetitive sequences analysis revealed that the S. pinnatifolia cp genome contained 38 repeats. Microsatellite marker detection analysis identified 253 simple sequence repeats (SSRs), which provides opportunities for future studies of the population genetics and phylogenetic relationships of Syringa. Phylogenetic analysis of 29 selected cp genomes revealed that S. pinnatifolia is closely related to Syringa vulgaris and all 27 Lamiales species formed a clade separate from the two outgroup species. This newly characterized S. pinnatifolia chloroplast genome will provide a useful genomic resource of phylogenetic inference and the development of more genetic markers for species discrimination and population studies in the genus Syringa.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号