首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
During Hydra oogenesis, an aggregate of germ cells differentiates into one oocyte and thousands of nurse cells. Nurse cells display a number of features typical of apoptotic cells and are phagocytosed by the growing oocyte. Yet, these cells remain unchanged in morphology and number until hatching of the polyp, which can occur up to 12 months later. Treatments with caspase inhibitors can block oocyte development during an early phase of oogenesis, but not after nurse cell phagocytosis has taken place, indicating that initiation of nurse cell apoptosis is essential for oocyte development. The genomic DNA of the phagocytosed nurse cells in the oocyte and embryo shows large-scale fragmentation into 8- to 15-kb pieces, but there is virtually none of the internucleosomal degradation typically seen in apoptotic cells. The arrested nurse cells exhibit high levels of peroxidase activity and are prevented from entering the lysosomal pathway. After hatching of the polyp, apoptosis is resumed and the nurse cells are degraded within 3 days. During this final stage, nurse cells become TUNEL-positive and enter secondary lysosomes in a strongly degraded state. Our results suggest that nurse cell apoptosis consists of caspase-dependent and caspase-independent phases. The independent phase can be arrested at an advanced stage for several months, only to resume after the primary polyp hatches.  相似文献   

2.
Many of the major pathways that govern early development in higher animals have been identified in cnidarians, including the Wnt, TGFbeta and tyrosine kinase signaling pathways. We show here that Notch signaling is also conserved in these early metazoans. We describe the Hydra Notch receptor (HvNotch) and provide evidence for the conservation of the Notch signaling mode via regulated intramembrane proteolysis. We observed that nuclear translocation of the Notch intracellular domain (NID) was inhibited by the synthetic gamma-secretase inhibitor DAPT. Moreover, DAPT treatment of hydra polyps caused distinct differentiation defects in their interstitial stem cell lineage. Nerve cell differentiation proceeded normally but post-mitotic nematocyte differentiation was dramatically reduced. Early female germ cell differentiation was inhibited before exit from mitosis. From these results we conclude that gamma-secretase activity and presumably Notch signaling are required to control differentiation events in the interstitial cell lineage of Hydra.  相似文献   

3.
4.
剑尾鱼卵子发生的组织学观察   总被引:1,自引:0,他引:1  
应用光学显微镜对卵胎生硬骨鱼类剑尾鱼(Xiphophorus helleri)卵巢的组织结构进行了观察。结果显示,剑尾鱼卵子的发育过程可划分为6个时相。Ⅰ时相的卵母细胞呈原始分化状态,细胞外具一层细胞质膜。Ⅱ时相卵母细胞外不仅具有质膜,而且还包绕一层滤泡细胞。Ⅲ时相和Ⅳ时相的卵母细胞分化明显,胞质内开始积累脂滴和卵黄颗粒。Ⅴ时相为成熟卵子,卵子的卵膜极薄,胞质内含有丰富的脂滴和卵黄。Ⅵ时相卵母细胞进入退化期,滤泡细胞从卵周向中央突入,卵黄被完全吸收,滤泡细胞自身也变得肥大。结果表明,剑尾鱼卵巢中卵母细胞的发育是不同步的。  相似文献   

5.
Spermatogenesis in higher animals is a tightly regulated process, in which survival and death of sperm precursor cells depends on the presence of somatic cells in gonads. In the basal metazoan Hydra spermatogenesis takes place in anatomically simple testes and in the absence of accessory structures. Hydra sperm precursors are derived from interstitial stem cells. Here we show that large numbers of sperm precursors in testes of Hydra vulgaris undergo programmed cell death (apoptosis) and that ectodermal epithelial cells phagocytose the apoptotic sperm precursors. This is surprising since so far no evidence has been reported that epithelial cells are directly involved in germ cell differentiation in Hydra. We propose that, similar to Sertoli cells in mammals, in Hydra epithelial cells support and perhaps even control spermatogenesis.  相似文献   

6.
nanos1 is required to maintain oocyte production in adult zebrafish   总被引:1,自引:0,他引:1  
Development of the germline requires the specification and survival of primordial germ cells (PGCs) in the embryo as well as the maintenance of gamete production during the reproductive life of the adult. These processes appear to be fundamental to all Metazoans, and some components of the genetic pathway regulating germ cell development and function are evolutionarily conserved. In both vertebrates and invertebrates, nanos-related genes, which encode RNA-binding zinc finger proteins, have been shown to play essential and conserved roles during germ cell formation. In Drosophila, maternally supplied nanos is required for survival of PGCs in the embryo, while in adults, nanos is required for the continued production of oocytes by maintaining germline stem cells self-renewal. In mice and zebrafish, nanos orthologs are required for PGC survival during embryogenesis, but a role in adults has not been explored. We show here that nanos1 in zebrafish is expressed in early stage oocytes in the adult female germline. We have identified a mutation in nanos1 using a reverse genetics method and show that young female nanos mutants contain oocytes, but fail to maintain oocyte production. This progressive loss of fertility in homozygous females is not a phenotype that has been described previously in the zebrafish and underlines the value of a reverse genetics approach in this model system.  相似文献   

7.
 In Drosophila a remarkable feature of oogenesis is the regression of the nurse cells after dumping their cytoplasmic contents into the oocyte. We have studied the nature of this process at the late stages of egg chamber development. In egg chambers DAPI staining shows highly condensed chromatin from stage 12 and TUNEL labelling shows DNA fragmentation up to stage 14. Gel electrophoresis of the end-labelled DNA, extracted from isolated egg chambers at the same stages of development, shows a ladder typical of apoptotic nuclei. This provides evidence that, during Drosophila oogenesis, the nurse cells undergo apoptosis. Apoptotic nuclei have also been detected in dumping-defective egg chambers, indicating that the cytoplasmic depletion of nurse cells is concurrent with but apparently not the cause of the process. Received: 12 December 1997 / Accepted: 6 January 1998  相似文献   

8.
9.
Summary During stages 11 and 12, follicle cells surrounding the nurse cells produce lysosomes which presumably aid in the breakdown of the nurse cells. Accompanying a DNA reduction in nurse cell nuclei are several characteristic morphological changes including the appearance of intranuclear rod-like structures and nuclear granules about 300 Å in diameter. Similarities between structures seen in Drosophila nurse cell nuclei and those seen in other organisms are discussed.This research was supported by U. S. Public Health Service Grants 5TIGM903-3 and 1-F1-GM-33, 385-01 and National Science Foundation grant GB-7457.  相似文献   

10.
The single copy Drosophila alpha-actinin gene is alternatively spliced to generate three different isoforms that are expressed in larval muscle, adult muscle and non-muscle cells, respectively. We have generated novel alpha-actinin alleles, which specifically remove the non-muscle isoform. Homozygous mutant flies are viable and fertile with no obvious defects. Using a monoclonal antibody that recognizes all three splice variants, we compared alpha-actinin distribution in wild type and mutant embryos and ovaries. We found that non-muscle alpha-actinin was present in young embryos and in the embryonic central nervous system. In ovaries, non-muscle alpha-actinin was localized in the nurse cell subcortical cytoskeleton, cytoplasmic actin cables and ring canals. In the mutant, alpha-actinin expression remained in muscle tissues, but also in a subpopulation of epithelial cells in both embryos and ovaries. This suggests that various populations of non-muscle cells regulate alpha-actinin expression in different ways. We also show that ectopically expressed adult muscle-specific alpha-actinin localizes to all F-actin containing structures in the nurse cells in the absence of endogenous non-muscle alpha-actinin.  相似文献   

11.
12.
13.
Although Cnidaria have no specialised immune cells, some colonial forms possess a genetic system to discriminate between self and nonself. Allorecognition is thought to protect them from fusion with genetically different individuals and to prevent germ line parasitism. Surprisingly, when grafting tissue of two species of the solitary freshwater polyp Hydra, we found within the contact zone phagocytozing epithelial cells which selectively eliminated cells from the other species (Bosch and David, 1986). This led us to speculate that Hydra, which never undergoes "natural transplantation", can differentiate between self and nonself (Bosch and David, 1986). In a previous paper (Kuznetsov et al., 2002) we described that cells which accumulate in the contact region of these interspecies grafts are apoptotic and that apoptosis is induced by impaired cell matrix contact. Thus, observations in such interspecies grafts did not give hints concerning the presence of a discriminative allorecognition system. To clarify whether this fundamental aspect of immunity is present in these phylogenetically old animals, we examined epithelial interactions between different strains of Hydra vulgaris. Here, we show that contact to allogeneic tissue does not evoke any response in terms of phagocytosis and elimination of allogeneic cells. We, therefore, question Hydra's ability to discriminate between self and nonself and propose that, in contrast to colonial cnidarians, the solitary polyp Hydra has either lost or substantially reduced this ability.  相似文献   

14.
15.
Cell-cell interactions and cell rearrangements play important roles during development. Aggregates of Hydra cells reorganize into the two epithelial layers and subsequently form a normal animal. Examination of the formation of the two layers under various situations, indicates that the motility of endodermal epithelial cells, but not the differential adhesive forces of the two types of epithelial cells, plays the critical role in setting up the two epithelial layers. (1) When aggregates of ectodermal cells and of endodermal cells were placed in direct contact, the endodermal cells migrated into the interior of the ectodermal aggregate. This process was completely inhibited by cytochalasin B although initial firm attachment between the two aggregates was not blocked. (2) A single endodermal epithelial cell placed in contact with an ectodermal aggregate, actively extended pseudopod-like structures and migrated toward the center of the ectodermal aggregate. In contrast, an ectodermal epithelial cell remained in contact with an endodermal aggregate and never exhibited migratory behavior. Cytochalasin treatment of only endodermal epithelial cells abolished the migration. (3) One to 4 endodermal epithelial cells and/or ectodermal epithelial cells were placed in contact with one another forming up to 4-cell aggregates. Endodermal epithelial cells exhibited high motility that can be attributed to the migratory movement described above. Finally, formation of actin bundles, as visualized with rhodamine-phalloidin, was always correlated with pseudopod formation in endodermal epithelial cells during early and mid stages of aggregate formation.  相似文献   

16.
Understanding the mechanisms controlling the stability of the differentiated cell state is a fundamental problem in biology. To characterize the critical regulatory events that control stem cell behavior and cell plasticity in vivo in an organism at the base of animal evolution, we have generated transgenic Hydra lines [Wittlieb, J., Khalturin, K., Lohmann, J., Anton-Erxleben, F., Bosch, T.C.G., 2006. Transgenic Hydra allow in vivo tracking of individual stem cells during morphogenesis. Proc. Natl. Acad. Sci. U. S. A. 103, 6208-6211] which express eGFP in one of the differentiated cell types. Here we present a novel line which expresses eGFP specifically in zymogen gland cells. These cells are derivatives of the interstitial stem cell lineage and have previously been found to express two Dickkopf related genes [Augustin, R., Franke, A., Khalturin, K., Kiko, R., Siebert, S. Hemmrich, G., Bosch, T.C.G., 2006. Dickkopf related genes are components of the positional value gradient in Hydra. Dev. Biol. 296 (1), 62-70]. In the present study we have generated transgenic Hydra in which eGFP expression is under control of the promoter of one of them, HyDkk1/2/4 C. Transgenic Hydra recapitulate faithfully the previously described graded activation of HyDkk1/2/4 C expression along the body column, indicating that the promoter contains all elements essential for spatial and temporal control mechanisms. By in vivo monitoring of eGFP+ gland cells, we provide direct evidence for continuous transdifferentiation of zymogen cells into granular mucous cells in the head region. We also show that in this tissue a subpopulation of mucous gland cells directly derives from interstitial stem cells. These findings indicate that both stem cell-based mechanisms and transdifferentiation are involved in normal development and maintenance of cell type complexity in Hydra. The results demonstrate a remarkable plasticity in the differentiation capacity of cells in an organism which diverged before the origin of bilaterian animals.  相似文献   

17.
Cytological study revealed that maturation of oocytes of Heterodera betulae is by regular meiosis and reproduction is by parthenogenesis. Restoration of the somatic chromosome number occurs after telophase II and before egg pronucleus formation, in the absence of a mitotic apparatus through a type of endomitotic division. The haploid chromosome number is 12 (2n = 24) in 95% of the female nematodes studied and 13 in the remaining 5%. The phylogenetic relationship of H. betulae with most other Heterodera species having n = 9 is not clear.  相似文献   

18.
Summary Intramitochondrial crystals are found in normal Hydra as well as in animals undergoing various conditions (budding, regenerating, eserinetreated, and sexual). They appear in all regions of the animal, but seem to be more prevalent at or near the extremities: hypostome, tentacles and basal disk. They are found in all of the seven basic cell types: interstitial, cnidocyte, nerve, epithelio-muscular, gland, mucous and digestive cells. The chemical nature of the intramitochondrial crystals is unknown and their significance remains speculative.This investigation was supported by the National Science Foundation, Grant Number Gb-27395  相似文献   

19.
The deleted in azoospermia (DAZ) family genes encode potential RNA-binding proteins that are expressed exclusively in germ cells in a wide range of metazoans. We have previously shown that mutations in daz-1, the only DAZ family gene in Caenorhabditis elegans, cause pachytene stage arrest of female germ cells but do not affect spermatogenesis. In this study, we report that DAZ-1 protein is most abundantly expressed in proliferating female germ cells, in a manner independent of the GLP-1 signaling pathway. DAZ-1 is dispensable in males but it is expressed also in male mitotic germ cells. Detailed phenotypic analyses with fluorescence microscopy and transmission electron microscopy have revealed that loss of daz-1 function causes multiple abnormalities as early as the onset of meiotic prophase, which include aberrant chromatin structure, small nucleoli, absence of the cytoplasmic core, and precocious cellularization. Although the reduced size of nucleoli is indicative of a low translational activity in these cells, artificial repression of general translation in the germline does not phenocopy the daz-1 mutant. Thus, we propose that DAZ-1 in C. elegans plays essential roles in female premeiotic and early meiotic germ cells, probably via regulating the translational activity of specific target genes required for the progression of oogenesis.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号