首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The presence and subcellular distribution of D-myo-inositol 1,4,5-trisphosphate phosphatase (InsP3ase) in rabbit fast-twitch skeletal muscle were investigated. A specific InsP3ase was found in both sarcotubular-membrane and soluble fractions. Membrane-bound InsP3ase accounted for 60-65% of total activity. The InsP3ase was detected both on the surface membranes and on the InsP3-sensitive intracellular Ca2+ store, i.e. the sarcoplasmic reticulum. The Km for inositol 1,4,5-trisphosphate (InsP3) ranged between 15 and 18 microM, and the highest Vmax. (19.6 nmol of InsP3 hydrolysed/min per mg of protein) was measured in a membrane fraction enriched in transverse tubules. Several known inhibitors of InsP3ase, e.g. 2,3-bisphosphoglycerate, CdCl2 and EDTA, were active on skeletal-muscle InsP3ase. Total InsP3ase activity of both rabbit and frog skeletal muscle was comparable with that of rabbit brain, liver and main pulmonary artery (smooth muscle). The present results are consistent with the hypothesis that InsP3 plays a role in excitation-contraction coupling in skeletal muscle [Volpe, Salviati, Di Virgilio & Pozzan (1985) Nature (London) 316, 347-349].  相似文献   

2.
Dictyostelium discoideum homogenates contain phosphatase activity which rapidly dephosphorylates Ins(1,4,5)P3 (D-myo-inositol 1,4,5-trisphosphate) to Ins (myo-inositol). When assayed in Mg2+, Ins(1,4,5)P3 is dephosphorylated by the soluble Dictyostelium cell fraction to 20% Ins(1,4)P2 (D-myo-inositol 1,4-bisphosphate) and 80% Ins(4,5)P2 (D-myo-inositol 4,5-bisphosphate). In the particulate fraction Ins(1,4,5)P3 5-phosphatase is relatively more active than the Ins(1,4,5)P3 1-phosphatase. CaCl2 can replace MgCl2 only for the Ins(1,4,5)P3 5-phosphatase activity. Ins(1,4)P2 and Ins(4,5)P2 are both further dephosphorylated to Ins4P (D-myo-inositol 4-monophosphate), and ultimately to Ins. Li+ ions inhibit Ins(1,4,5)P3 1-phosphatase, Ins(1,4)P2 1-phosphatase, Ins4P phosphatase and L-Ins1P (L-myo-inositol 1-monophosphate) phosphatase activities; Ins(1,4,5)P3 1-phosphatase is 10-fold more sensitive to Li+ (half-maximal inhibition at about 0.25 mM) than are the other phosphatases (half-maximal inhibition at about 2.5 mM). Ins(1,4,5)P3 5-phosphatase activity is potently inhibited by 2,3-bisphosphoglycerate (half-maximal inhibition at 3 microM). Furthermore, 2,3-bisphosphoglycerate also inhibits dephosphorylation of Ins(4,5)P2. These characteristics point to a number of similarities between Dictyostelium phospho-inositol phosphatases and those from higher organisms. The presence of an hitherto undescribed Ins(1,4,5)P3 1-phosphatase, however, causes the formation of a different inositol bisphosphatase isomer [Ins(4,5)P2] from that found in higher organisms [Ins(1,4)P2]. The high sensitivity of some of these phosphatases for Li+ suggests that they may be the targets for Li+ during the alteration of cell pattern by Li+ in Dictyostelium.  相似文献   

3.
D-Myo-inositol 1,4,5-trisphosphate (Ins[1,4-,5]P3) inhibits rat heart sarcolemmal Ca(2+)-ATPase activity (T. H. Kuo, Biochem. Biophys. Res. Commun. 152: 1111, 1988). We have studied the effect and mechanism of action of Ins(1,4,5)P3 and related inositol phosphates on human red cell membrane Ca(2+)-ATPase (EC 3.6.1.3) activity in vitro. At 10(-6) M, Ins(1,4,5)P3 and D-myo-inositol 4,5-bisphosphate (Ins[4,5]P2) inhibited human erythrocyte membrane Ca(2+)-ATPase activity in vitro by 42 and 31%, respectively. D-Myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 1-phosphate were not inhibitory. Enzyme inhibition by Ins(1,4,5)P3 was blocked by heparin. Exogenous purified calmodulin also stimulated red cell membrane Ca(2+)-ATPase activity; this stimulation was inhibited by Ins(1,4,5)P3. Ins(4,5)P2 and Ins(1,4,5)P3, but not Ins(1,4)P2, inhibited the binding of [125I]calmodulin to red cell membranes. Thus, specific inositol phosphates reduce plasma membrane Ca(2+)-ATPase activity and enhancement of the latter in vitro by purified calmodulin. The mechanism of these effects may in part relate to inhibition by inositol phosphates of binding of calmodulin to erythrocyte membranes.  相似文献   

4.
Rabbit fast-twitch skeletal muscle microsomes have been separated by isopycnic centrifugation on a linear sucrose gradient into triads and light sarcoplasmic reticulum. In both fractions phosphatidylinositol-kinase activity is found [Varsányi et al. (1986) Biochem. Biophys. Res. Commun. 138, 1395]. In contrast, phosphatidylinositol-4-phosphate kinase is nearly exclusively associated with triads. The phosphatidylinositol-4,5-bisphosphate-phosphodiesterase activity shows a biphasic distribution: approximately 50% of the activity is associated with triads and 50% appears in the overlay. Triads have been broken mechanically into transverse tubules and terminal cisternae, then separated by isopycnic sucrose-gradient centrifugation. Both fractions exhibit phosphatidylinositol-kinase activity; the activities of phosphatidylinositol-4-phosphate kinase and phosphatidylinositol-4,5-bisphosphate phosphodiesterase are associated mainly with the transverse tubules. Consequently, in rabbit fast-twitch skeletal muscle all necessary enzymes for production of D-myo-inositol 1,4,5-trisphosphate are associated with transverse tubules. Phosphatidylinositol-4,5-bisphosphate phosphodiesterase associated with triads shows a pH optimum at 6.8. The enzyme is maximally active between pCa 5 and pCa 4. Mg2+ inhibits the enzyme activity half-maximally at about 1 mM. Guanine-nucleotide-binding proteins seem not to be involved in the regulation of enzyme activity; guanosine 5'-[gamma-thio]triphosphate does not influence phosphatidylinositol-4,5-bisphosphate phosphodiesterase activity. It correlates well with the observation that neither alpha 1-adrenergic nor muscarinic receptors have been found in fast-twitch rabbit skeletal muscle. On basis of the respective enzyme activities estimations on maximal phosphatidylinositol turnover were made and a possible involvement of this signal pathway in excitation-contraction coupling has been discussed. Furthermore, calculations show that during a single twitch D-myo-inositol 1,4,5-trisphosphate concentration does not reach more than 2 nM. However, during a 4-s tetanus D-myo-inositol 1,4,5-trisphosphate can accumulate to a level which could effect force generation [Thieleczek and Heilmeyer (1986) Biochem. Biophys. Res. Commun. 135, 662] and aldolase distribution (Thieleczek et al., unpublished results).  相似文献   

5.
Inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and inositol 1,4-bisphosphate [Ins(1,4)P2] phosphatase activities were measured in both 180,000 g (60 min) particulate and supernatant fractions of rat brain homogenates. Although Ins(1,4,5)P3 was mostly hydrolysed by a particulate phosphatase [Erneux, Delvaux, Moreau & Dumont (1986) Biochem. Biophys. Res. Commun. 134, 351-358], Ins(1,4)P2 phosphatase was predominantly soluble. The latter enzyme was Mg2+-dependent and sensitive to thiol-blocking agents (e.g. p-hydroxymercuribenzoate). In contrast with Ins(1,4,5)P3 phosphatase activity measured in the soluble fraction, Ins(1,4)P2 phosphatase was insensitive to 0.001-1 mM-2,3-bisphosphoglycerate. Lithium salts, widely used in psychiatric treatment, inhibited both Ins(1,4)P2 and Ins(1)P1 phosphatase activities of the crude soluble fraction. In particular, 50% inhibition of phosphatase activity, with 2 microM-Ins(1,4)P2 as substrate, was achieved at 3-5 mM-LiCl. At these concentrations, LiCl did not change Ins(1,4,5)P3 phosphatase activity measured in the same fraction with 1-4 microM-Ins(1,4,5)P3 as substrate. Chromatography of the soluble fraction of a rat brain homogenate on DEAE-cellulose resolved three phosphatase activities. These forms, peaks I, II and III, dephosphorylated Ins(1,4,5)P3, Ins(1)P1 and Ins(1,4)P2 respectively. If LiCl (10 mM) was included in the assay mixture, it inhibited both peak-II Ins(1)P1 phosphatase and peak-III Ins(1,4)P2 phosphatase, suggesting the existence of at least two Li+-sensitive phosphatases.  相似文献   

6.
Phosphatases in cytosolic fractions, vacuoles, and vacuolar membranes from barley (Hordeum vulgare L.) leaves were found to dephosphorylate inositol 1,4,5-trisphosphate (IP3). 1,4-inositol bisphosphate (1,4-IP2) is the main product of IP3 dephosphorylation by the cytosolic fraction. The activity was strictly Mg2+ dependent. In contrast, IP3 dephosphorylation activity of both the soluble vacuolar and the tonoplast fractions was inhibited up to 50% by Mg2+. When vacuolar membranes were incubated with IP3, 1,4-IP2 was produced only under neutral and slightly alkaline conditions. Under acidic conditions, however, dephosphorylation yielded putative 4,5-inositol bisphosphate. Li+ (20 mM) and Ca2+ (100 [mu]M) strongly inhibited activity in the soluble vacuolar fraction but had only a slight effect on the activities of the cytosolic and tonoplast fractions.  相似文献   

7.
Inositol polyphosphates and intracellular calcium release   总被引:2,自引:0,他引:2  
The hydrolysis of inositol lipids triggered by the occupation of cell surface receptors generates several intracellular messengers. Many different inositol phosphate isomers accumulate in stimulated cells. Of these D-myo-inositol 1,4,5-trisphosphate (Ins 1,4,5-P3) is responsible for discharging Ca2+ from intracellular stores. Specific membrane binding sites for Ins 1,4,5-P3 have been detected. The properties of these sites and their possible relationship to the calcium release process is reviewed. Ins 1,4,5-P3 binding sites may be present in discrete subcellular structures ("calciosomes"). Kinetic and some electrophysiological evidence indicates that Ins 1,4,5-P3 acts to open a Ca2+ channel. Recent progress on the purification of the receptor from neuronal tissues is summarized. Phosphorylation of Ins 1,4,5-P3 by a specific kinase results in the production of D-myo-inositol 1,3,4,5-tetraphosphate (Ins 1,3,4,5-P4). This inositol phosphate has been reported to increase the entry of Ca2+ across the plasma membrane, activate nonspecific ion channels in the plasma membrane, alter the Ca2+ content of the Ins 1,4,5-P3-releasable store, and bind to and alter the activity of certain enzymes. These data and the possible biological significance of Ins 1,3,4,5-P4 are discussed.  相似文献   

8.
The kinetics of [3H]inositol phosphate metabolism in agonist-activated rat parotid acinar cells were characterized in order to determine the sources of [3H]inositol monophosphates and [3H]inositol bisphosphates. The turnover rates of D-myo-inositol 1,4,5-trisphosphate and its metabolites, D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate, were examined following the addition of the muscarinic receptor antagonist, atropine, to cholinergically stimulated parotid cells. D-myo-Inositol 1,4,5-trisphosphate declined with a t1/2 of 7.6 +/- 0.7 s, D-myo-inositol 1,3,4-trisphosphate declined with a t1/2 of 8.6 +/- 1.2 min, and D-myo-inositol 1,4-bisphosphate was metabolized with a t1/2 of 6.0 +/- 0.7 min. The sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate (2.54% phosphatidylinositol/min) did not exceed the calculated rate of breakdown of D-myo-inositol 1,4,5-trisphosphate (2.76% phosphatidylinositol/min). Thus, there is no evidence for the direct hydrolysis of phosphatidylinositol 4-phosphate in intact cells since D-myo-inositol 1,4-bisphosphate formation can be attributed to the dephosphorylation of D-myo-inositol 1,4,5-trisphosphate. The source of the [3H]inositol monophosphates also was examined in cholinergically stimulated parotid cells. When parotid cells were stimulated with methacholine, D-myo-inositol 1,4,5-trisphosphate, D-myo-inositol 1,3,4,5-tetrakisphosphate, D-myo-inositol 1,4-bisphosphate, and D-myo-inositol 4-monophosphate levels increased within 2 s, whereas D-myo-inositol 1-monophosphate accumulation was delayed by several seconds. Rates of [3H]inositol monophosphate accumulation also were examined by the addition of LiCl to cells stimulated to steady state levels of [3H]inositol phosphates. The sum of the rates of accumulation of D-myo-inositol 1-monophosphate and D-myo-inositol 4-monophosphate did not exceed the rate of breakdown of D-myo-inositol 1,4,5-trisphosphate or the sum of the rates of flux through D-myo-inositol 1,4-bisphosphate and D-myo-inositol 1,3,4-trisphosphate. These kinetic analyses suggest that agonist-stimulated [3H]inositol bis- and monophosphate formation in intact rat parotid acinar cells can be accounted for by the metabolism of D-myo-[3H]inositol 1,4,5-trisphosphate rather than by phospholipase C-catalyzed hydrolysis of phosphatidylinositol or phosphatidylinositol 4-phosphate.  相似文献   

9.
Activation of the cAMP messenger system was found to cause specific changes in angiotensin-II (All)-induced inositol phosphate production and metabolism in bovine adrenal glomerulosa cells. Pretreatment of [3H]inositol-labeled glomerulosa cells with 8-bromo-cAMP (8Br-cAMP) caused both short and long term changes in the inositol phosphate response to stimulation by All. Exposure to 8Br-cAMP initially caused dose-dependent enhancement (ED50 = 0.7 microM) of the stimulatory action of All (50 nM; 10 min) on the formation of D-myo-inositol 1,4,5-trisphosphate [Ins(1,4,5)P3] and its immediate metabolites. This effect of 8Br-cAMP was also observed in permeabilized [3H]inositol-labeled glomerulosa cells in which degradation of Ins(1,4,5)P3 was inhibited, consistent with increased activity of phospholipase-C. Continued exposure to 8Br-cAMP for 5-16 h caused selective enhancement of the All-induced increases in D-myo-inositol 1,3,4,6-tetrakisphosphate [Ins(1,3,4,6)P4] and myo-inositol 1,4,5,6-tetrakisphosphate. The long term effect of 8Br-cAMP on the 6-phosphorylated InsP4 isomers, but not the initial enhancement of Ins(1,4,5)P3 formation, was inhibited by cycloheximide. The characteristic biphasic kinetics of All-induced Ins(1,4,5)P3 formation were also changed by prolonged treatment with 8Br-cAMP to a monophasic response in which Ins(1,4,5)P3 increased rapidly and remained elevated during All stimulation. In permeabilized glomerulosa cells treated with 8Br-cAMP for 16 h, the conversion of D-myo-inositol 1,3,4-trisphosphate [Ins(1,3,4)P3] to Ins(1,3,4,6)P4 was consistently increased, whereas dephosphorylation of Ins(1,4,5)P3 to D-myo-inositol 1,4-bisphosphate and of D-myo-inositol 1,3,4,5-tetrakisphosphate to Ins(1,3,4)P3, was reduced.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
In permeabilized hepatocytes, inositol 1,4,5-trisphosphate, inositol 2,4,5-trisphosphate and inositol 4,5-bisphosphate induced rapid release of Ca2+ from an ATP-dependent, non-mitochondrial vesicular pool, probably endoplasmic reticulum. The order of potency was inositol 1,4,5-trisphosphate greater than inositol 2,4,5-trisphosphate greater than inositol 4,5-bisphosphate. The Ca2+-releasing action of inositol 1,4,5-trisphosphate is not inhibited by high [Ca2+], nor is it dependent on [ATP] in the range of 50 microM-1.5 mM. These results suggest a role for inositol 1,4,5-trisphosphate as a second messenger in hormone-induced Ca2+ mobilisation, and that a specific receptor is involved in the Ca2+-release mechanism.  相似文献   

11.
Previous studies have shown that most of the inositol 1,4,5-trisphosphate/inositol 1,3,4,5-tetrakisphosphate 5-phosphatase activity of rat hepatocytes is associated with the plasma membrane [Shears, Parry, Tang, Irvine, Michell & Kirk (1987) Biochem. J. 246, 139-147]. We now show that the specific activity of this enzyme is highest in the bile-canalicular domain of the plasma membrane, at the opposite pole of the hepatocyte from the presumed site of receptor-mediated formation of inositol 1,4,5-trisphosphate. In intact hepatocytes and in sealed membrane vesicles originating from the bile-canalicular domain of the plasma membrane, the 5-phosphatase activity was mostly latent and therefore located at the cytoplasmic surface. A substantial amount of 5-phosphatase was also found in rat liver endosomal fractions, particularly a 'late' endosomal subfraction, indicating that this enzyme may be transported between the sinusoidal plasma membrane and other cellular membranes.  相似文献   

12.
Purification of D-myo-inositol 1,4,5-trisphosphate 3-kinase from rat brain   总被引:7,自引:0,他引:7  
The ATP-dependent, calmodulin-sensitive 3-kinase responsible for the conversion of D-myo-inositol 1,4,5-trisphosphate to D-myo-inositol 1,3,4,5-tetrakisphosphate has been purified 2,700-fold from rat brain to a specific activity of 2.3 mumol/min/mg protein. A method of purification is described involving chromatography on phosphocellulose, Orange A dye ligand, calmodulin agarose, and hydroxylapatite columns. Neither the highly purified enzyme nor enzyme eluting from the phosphocellulose column were activated by Ca2+. However, enzyme in the 100,000 x g supernatant from rat brain was activated by Ca2+ over the range from 10(-7) to 10(-6) M and Ca2+ sensitivity of the purified enzyme was restored by the addition of calmodulin. The enzyme has a catalytic subunit Mr of 53,000 by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Size exclusion chromatography of the purified enzyme on a Superose 12 column gave a Mr value of 70,000, indicating that the purified enzyme was present as a monomer. In contrast, the 100,000 x g supernatant and the purified enzyme after addition of calmodulin and 10(-6) M Ca2+ chromatographed on size exclusion chromatography with a Mr of 150,000-160,000. These results imply that the native enzyme is a dimeric structure of two catalytic subunits plus calmodulin. The purified enzyme showed a Km of 0.21 +/- 0.08 microM for D-myo-inositol 1,4,5-trisphosphate and had a pH optimum of 8.5. Addition of calmodulin increased both the Km and the Vmax of the purified enzyme about 2-fold. The high affinity of the 3-kinase for D-myo-inositol 1,4,5-trisphosphate together with its activation by Ca2+/calmodulin suggests that this enzyme may exert an important regulatory role in inositol phosphate signaling by promoting the formation of additional inositol polyphosphate isomers.  相似文献   

13.
Platelets, and a variety of other cells, rapidly hydrolyze the phosphoinositides in response to stimulation by agonists. One of the products of hydrolysis of phosphatidylinositol 4,5-diphosphate is inositol 1,4,5-trisphosphate, which recently has been suggested to mediate intracellular Ca2+ mobilization. We have found that human platelets contain an enzyme that degrades inositol 1,4,5-trisphosphate. We have isolated this soluble enzyme and find that it hydrolyzes the 5-phosphate of inositol 1,4,5-trisphosphate (Km = 30 microM, Vmax = 5.3 microM/min/mg of protein). The products of the reaction are inositol 1,4-diphosphate and phosphate. The apparent molecular weight of the enzyme is 38,000 as determined both by gel filtration and by sodium dodecyl sulfate-polyacrylamide gel electrophoresis in the presence and absence of 2-mercaptoethanol. This enzyme is specific for inositol 1,4,5-trisphosphate. Other water soluble inositol phosphates as well as phosphorylated sugars are not hydrolyzed, while the only inositol containing phospholipid hydrolyzed is phosphatidylinositol 4,5-diphosphate at a rate less than 1% that for inositol 4,5-trisphosphate. The inositol 1,4,5-trisphosphate 5-phosphomonoesterase requires Mg2+ for activity and is inhibited by Ca2+, Ki = 70 microM. Li+, up to 40 mM, has no effect on enzyme activity. The duration and magnitude of any inositol 1,4,5-trisphosphate response in stimulated platelets may be determined by the activity of this enzyme.  相似文献   

14.
The distribution of binding sites for the calcium-mobilizing second messenger inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) was investigated in subcellular fractions of bovine adrenal cortex. The [3H]Ins(1,4,5)P3-binding capacity was enriched in the microsomal fraction, which contained a single class of high affinity binding sites with a Kd of 21.6 +/- 3.0 nM. The specific [3H]Ins(1,4,5)P3 binding appeared to be sharply pH dependent and was inhibited by millimolar concentrations of ATP. Upon fractionation of microsomes on sucrose density gradient there was a clearcut separation of the Ins(1,4,5)P3 receptor-containing fractions from those enriched in specific endoplasmic reticulum markers such as sulfatase C activity or RNA content. The microsomes enriched in Ins(1,4,5)P3-binding sites were of lower density than the endoplasmic reticulum and co-purified partly with the plasma membrane. In addition, Ins(1,4,5)P3-sensitive 45Ca2+ uptake into the microsomes was maximal in the lighter fractions. This distinction between Ins(1,4,5)P3-binding sites and endoplasmic reticulum-derived microsomes was confirmed upon fractionation according to their electrophoretic mobilities by free flow electrophoresis. These results indicate that in adrenal cortical cells, the source of Ca2+ mobilized by Ins(1,4,5)P3 upon stimulation with an agonist is not located in the endoplasmic reticulum. Our data support the hypothesis that a specialized vesicular organelle, distinct from endoplasmic reticulum and in close apposition with the plasma membrane, is involved in intracellular Ca2+ homeostasis.  相似文献   

15.
Rat pancreatic islets demonstrate inositol-1,4,5-trisphosphate 5-phosphomonoesterase activity which is 3 times higher than that in the exocrine pancreas. This enzyme has several features in common with the erythrocyte and hepatocyte enzymes: it is located primarily in the plasma membrane, it has a similar Km for inositol trisphosphate (IP3) (16 microM), and it requires Mg2+. The activity of the islet enzyme is inhibited by several diphosphorylated glucose metabolites: 2,3-bisphosphoglycerate, fructose 1,6-bisphosphate, fructose 2,6-bisphosphate, and glucose 1,6-bisphosphate. Monophosphorylated and unphosphorylated metabolites have little or no effect on its activity. Several reports show that stimulation of islets with glucose raises the concentrations of various glucose metabolites including fructose 1,6-bisphosphate, glucose 1,6-bisphosphate, and 2,3-bisphosphoglycerate to concentrations that are in the range that inhibit the islet inositol-1,4,5-trisphosphate 5-phosphomonoesterase. Other reports show that IP3 mobilizes calcium when added to permeabilized insulin-secreting cells. It is possible that the increase in cytosolic calcium known to occur during glucose-induced insulin secretion may be sustained in part by higher IP3 levels resulting from the inhibition of inositol-1,4,5-trisphosphate 5-phosphomonoesterase by some of the diphosphorylated glucose metabolites.  相似文献   

16.
1. The activity of inositol 1,4,5-trisphosphate 3-kinase in subcellular fractions of smooth muscles of the pig coronary artery was examined. 2. Incubation of [3H]inositol 1,4,5-trisphosphate (IP3) with muscle homogenates produced more polar 3H-radioactivity (probably as inositol 1,3,4,5-tetrakisphosphate, IP4) than IP3, in the Mg2+- and ATP-dependent manner, thereby indicating the presence of IP3 3-kinase activity in homogenates of the muscle. 3. Most of the kinase activity was present in the cytosol fraction. The enzyme activity was reversibly activated by Ca2+ with a half-maximal effective concentration of 2.5 x 10(-7) M. 4. The calmodulin antagonists, W-7 and chlorpromazine inhibited the Ca2+-activated enzyme activity.  相似文献   

17.
Membranes isolated from normal murine B lymphocytes were found to contain a novel phosphatidylinositol (PtdIns)-specific phospholipase C (PLC) which becomes activated as the Mg2+ concentration is raised from 30 to 1000 microM. This activity, which has not been described previously in any tissue, is restricted to naturally occurring B cell blasts, i.e. it was not detected in quiescent B cells, B lymphomas, or plasmacytomas. As seen in other cell systems, B cell membranes were found to contain Mg2(+)-stimulated inositol 1,4,5-trisphosphate phosphatase activity. Although neither the inositol 1,4,5-trisphosphate phosphatase nor the PtdIns PLC activities were affected by Ca2+, B cell membranes were found to contain a Ca2(+)-stimulated phosphatidylinositol 4,5-bisphosphate (PtdInsP2) PLC activity which is activated by [Ca2+] greater than 100 nM. Based on several characteristics, it appears that the Mg2(+)- and Ca2(+)-regulated PLCs are distinct species. First, they have distinct specificity for PtdIns and PtdInsP2, respectively. Second, they have distinct tissue distribution while the Ca2(+)-regulated activity was detected in all B cells, the Mg2(+)-regulated activity is restricted to low density, natural B blasts. Third, the kinetics of activation of the enzymes is distinct; the Mg2(+)-regulated enzyme exhibits slower and less transient activation kinetics. Fourth, the activities exhibit absolute specificity in terms of activation by Mg2+ and Ca2+, i.e. the PtdIns PLC is activated only by Mg2+ and the PtdInsP2 PLC is activated only by Ca2+. Data are consistent with the possibility that Mg2+ mobilization which follows ligation of certain receptors, may play an important role in the regulation of levels of the second messenger diacylglycerol.  相似文献   

18.
We have augmented our previous studies [Storey, Shears, Kirk & Michell (1984) Nature (London) 312, 374-376] on the subcellular location and properties of Ins(1,4,5)P3 (inositol 1,4,5-trisphosphate) phosphatases in rat liver and human erythrocytes. We also investigate Ins(1,3,4)P3 (inositol 1,3,4-trisphosphate) metabolism by rat liver. Membrane-bound and cytosolic Ins(1,4,5)P3 phosphatases both attack the 5-phosphate. The membrane-bound enzyme is located on the inner face of the plasma membrane, and there is little or no activity associated with Golgi apparatus. Cytosolic Ins(1,4,5)P3 5-phosphatase (Mr 77,000) was separated by gel filtration from Ins(1,4)P2 (inositol 1,4-bisphosphate) and inositol 1-phosphate phosphatases (Mr 54,000). Ins(1,4,5)P3 5-phosphatase activity in hepatocytes was unaffected by treatment of the cells with insulin, vasopressin, glucagon or dibutyryl cyclic AMP. Ins(1,4,5)P3 5-phosphatase activity in cell homogenates was unaffected by changes in [Ca2+] from 0.1 to 2 microM. After centrifugation of a liver homogenate at 100,000 g, Ins(1,3,4)P3 phosphatase activity was largely confined to the supernatant. The sum of the activities in the supernatant and the pellet exceeded that in the original homogenate. When these fractions were recombined, Ins(1,3,4)P3 phosphatase activity was restored to that observed in unfractionated homogenate. Ins(1,3,4)P3 was produced from Ins(1,3,4,5)P4 (inositol 1,3,4,5-tetrakisphosphate) and was metabolized to a novel InsP2 that was the 3,4-isomer. Ins(1,3,4)P3 phosphatase activity was not changed by 50 mM-Li+ or 0.07 mM-Ins(1,4)P2 alone, but when added together these agents inhibited Ins(1,3,4)P3 metabolism. In Li+-treated and vasopressin-stimulated hepatocytes, Ins(1,4)P2 may reach concentrations sufficient to inhibit Ins(1,3,4)P3 metabolism, with little effect on Ins(1,4,5)P3 hydrolysis.  相似文献   

19.
It is now generally accepted that a phosphoinositide cycle is involved in the transduction of a variety of signals in plant cells. In animal cells, the binding of D-myo-inositol 1,4,5-trisphosphate (InsP(3)) to a receptor located on the endoplasmic reticulum (ER) triggers an efflux of calcium release from the ER. Sites that bind InsP(3) with high affinity and specificity have also been described in plant cells, but their precise intracellular locations have not been conclusively identified. In contrast to animal cells, it has been suggested that in plants the vacuole is the major intracellular store of calcium involved in signal induced calcium release. The aim of this work was to determine the intracellular localization of InsP(3)-binding sites obtained from 3-week-old Chenopodium rubrum leaves. Microsomal membranes were fractionated by sucrose density gradient centrifugation in the presence and absence of Mg(2+) and alternatively by free-flow electrophoresis. An ER-enriched fraction was also prepared. The following enzymes were employed as specific membrane markers: antimycin A-insensitive NADH-cytochrome c reductase for ER, cytochrome c oxidase for mitochondrial membrane, pyrophosphatase for tonoplast, and 1,3-beta-D-glucansynthase for plasma membrane. In all membrane separations, InsP(3)-binding sites were concentrated in the fractions that were enriched with ER membranes. These data clearly demonstrate that the previously characterized InsP(3)-binding site from C. rubrum is localized on the ER. This finding supports previous suggestions of an alternative non-vacuolar InsP(3)-sensitive calcium store in plant cells.  相似文献   

20.
The ability of two fluoro-analogues of D-myo-inositol 1,4,5-trisphosphate (Ins(1,4,5)P3) to mobilize intracellular Ca2+ stores in SH-SY5Y neuroblastoma cells has been investigated. DL-2-deoxy-2-fluoro-scyllo-Ins(1,4,5)P3 (2F-Ins(1,4,5)P3) and DL-2,2-difluoro-2-deoxy-myo-Ins(1,4,5)P3 (2,2-F2-Ins(1,4,5)P3) were full agonists (EC50s 0.77 and 0.41 microM respectively) and slightly less potent than D-Ins(1,4,5)P3 (EC50 0.13 microM), indicating that the axial 2-hydroxyl group of Ins(1,4,5)P3 is relatively unimportant in receptor binding and stimulation of Ca2+ release. Both analogues mobilized Ca2+ with broadly similar kinetics and were substrates for Ins(1,4,5)P3 3-kinase but, qualitatively, were slightly poorer than Ins(1,4,5)P3. 2F-Ins(1,4,5)P3 was a weak substrate for Ins(1,4,5)P3 5-phosphatase but 2,2-F2-Ins(1,4,5)P3 was apparently not hydrolysed by this enzyme, although it inhibited its activity potently (Ki = 26 microM).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号