首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Highly purified liver microsomal cytochrome P-450 acts as a peroxygenase in catalyzing the reaction, RH+ XOOH→ROH+XOH, Where RH represents any of a large variety of foreign or physiological substrates and ROH the corresponding product, and XOOH represents any of a series of peroxy compounds such as hydroperoxides or peracids serving as the oxygen donor and XOH the resulting alcohol or acid. Several experimental approaches in this and other laboratories have yielded results compatible with a homolytic mechanism of oxygen-oxygen bond cleavage but not with the heterolytic formation of a common iron-oxo intermediate from the various peroxides. Recently, we have found a new reaction, catalyzed by the reconstituted system containing the phenobarbital-inducible form of P-450, which catalyzes the reductive cleavage of hydroperoxides: XRR’C-OOH+ NADPH+H+→ XR’CO + R’H+H2O + NADP+ Thus, cumyl hydroperoxide yields acetophenone and methane, and 13-hydroperoxyoctadeca-9, 11-dienoic acid yields pentane and an as yet unidentified additional product. Since hydroperoxide reduction does not produce the corresponding alcohol, it is concluded that homolytic cleavage of the oxygen-oxygen bond occurs with rearrangement of the resulting alkoxy radical. Studies are in progress to determine how broad a role the new hydroperoxide cleavage reaction plays in the biological peroxidation of lipids.  相似文献   

2.
The p-peroxyquinol derived from butylated hydroxytoluene, 2,6-di-t-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone, was degraded by the ferric form of rat liver cytochrome P-450, and the resulting products and their mechanisms of formation were investigated. Quinoxy radical BO. from homolysis of the O-O bond reacted by competing pathways; beta-scission yielded 2,6-di-t-butyl-p-benzoquinone, and rearrangement with ring-expansion produced an oxacycloheptadienone free radical (X(.)). This rearranged radical was stabilized by the captodative effect that facilitated competitive interactions with the P-450 iron-oxo complexes formed during O-O bond scission. Approximately 15% of X(.) was captured by oxygen rebound with a hydroxyl radical from the P-450 complex (FeOH)3+ to form a hemiketal, that led to the ring-contracted product 2,5-di-t-butyl-5-(2'-oxopropyl)-4-oxa-2-cyclopentenone by spontaneous rearrangement. The major fraction of X(.), however, underwent electron transfer oxidation to form the corresponding cation. Hydration of this cation produced the ring-contracted product, and proton elimination (or, alternatively, direct H(.) removal from X(.) led to the product 2,7-di-t-butyl-4-methylene-5-oxacyclohepta-2,6-dienone. The findings indicate that cytochrome P-450 intermediate complexes are mainly responsible for oxidation of X(.). The results complement our previous study with 2,6-di-t-butyl-4-hydroperoxy-4-methyl-2,5-cyclohexadienone (Thompson, J. A., and Wand, M. D. (1985) J. Biol. Chem. 260, 10637-10644), demonstrating competitive heterolytic and homolytic mechanisms of O-O bond cleavage, and competitive rebound and oxidation processes when a substrate-derived radical interacts with P-450 complexes.  相似文献   

3.
Schwartz PA  Frey PA 《Biochemistry》2007,46(24):7293-7301
The complex of dioldehydrase with adenosylcobalamin (coenzyme B12) and potassium ion reacts with molecular oxygen in the absence of a substrate to oxidize coenzyme and inactivate the complex. In this article, high performance liquid chromatography and mass spectral analysis are used to identify the nucleoside products resulting from oxygen inactivation. The product profile indicates that oxygen inactivation proceeds by direct reaction of molecular oxygen with the 5'-deoxyadenosyl radical and cob(II)alamin. Formation of 5'-peroxyadenosine as the initial nucleoside product chemically correlates this reaction with aerobic, aqueous photoinduced homolytic cleavage of adenosylcobalamin (Schwartz, P. A., and Frey, P. A., (2007) Biochemistry, in press), indicating that both reactions proceed through similar chemical intermediates. The oxygen inactivation of the enzyme-coenzyme complex shows an absolute requirement for the same monocations required in catalysis by dioldehydrase. Measurements of the dissociation constants for adenosylcobalamin from potassium-free (Kd = 16 +/- 2 microM) or potassium-bound dioldehydrase (Kd = 0.8 +/- 0.2 microM) reveal that the effect of the monocation in stimulating oxygen sensitivity cannot be explained by an effect on the binding of coenzyme to the enzyme. Cross-linking experiments suggest that the full quaternary structure is assembled in the absence of potassium ion under the experimental conditions. The results indicate that dioldehydrase likely harvests the binding energy of the activating monocation to stimulate the homolytic cleavage of the Co-C5' bond in adenosylcobalamin.  相似文献   

4.
The kinetics of horseradish peroxidase (EC 1.11.1.7)-catalyzed oxidation of o-dianisidine by hydrogen peroxide in the presence of thiourea were studied. At the first, fast step of this process thiourea acts as a competitive reversible inhibitor with respect to o-dianisidine (Ki = 0.22 mM). The formation of a thiourea-peroxidase complex was determined by the increase in the absorbance at A495 and A638 of the enzyme. The dissociation constant for the peroxidase-thiourea complex is equal to 2.0-2.7 mM. Thiourea is not a specific substrate of peroxidase during the oxidation reaction by H2O2, but is an oxidase substrate (although not a very active one) of peroxidase. The irreversible inactivation of the enzyme during its incubation with thiourea was studied. The first-order inactivation rate constant (kin) was shown to increase with a fall in the enzyme concentration. The curve of the dependence of kin on the initial concentration of thiourea shows a maximum at 5-7 mM. The enzyme inactivation is due to its modification by intermediate free radical products of thiourea oxidation. The inhibitors of the free radical reactions (o-dianisidine) protect the enzyme against inactivation. The degree of inactivation depends on concentrations and ratio of thiourea and peroxidase. A possible mechanism of peroxidase interaction with thiourea is discussed.  相似文献   

5.
J E Erman  L B Vitello  J M Mauro  J Kraut 《Biochemistry》1989,28(20):7992-7995
Peroxide oxidation of a mutant cytochrome c peroxidase, in which Trp-191 has been replaced by Phe through site-directed mutagenesis, produces an oxidized intermediate whose stable UV/visible absorption spectrum is very similar to that of compound I of the native yeast enzyme. This spectrum is characteristic of an oxyferryl, Fe(IV), heme. Stopped-flow studies reveal that the reaction between the mutant enzyme and hydrogen peroxide is biphasic with the transient formation of an intermediate whose absorption spectrum is quite distinct from that of either the native ferric enzyme or the final product. Rapid spectral scanning of the intermediate provides a spectrum characteristic of an oxyferryl porphyrin pi-cation-radical species. At pH 6, 100 mM ionic strength, and 25 degrees C, the rate constant for formation of the oxyferryl pi-cation radical has a lower limit of 6 X 10(7) M-1 s-1 and the rate of conversion of the transient intermediate to the final oxidized product is 51 +/- 4 s-1. Evidence is presented indicating that Trp-191 either is the site of the radical in CcP compound I or is intimately involved in formation of the radical.  相似文献   

6.
1-Phenylcyclobutylamine (PCBA) is shown to be both a substrate and a time-dependent irreversible inactivator of monoamine oxidase (MAO). Inactivation results in attachment to the flavin cofactor. For every molecule of PCBA leading to inactivation, 325 molecules are converted to product. The first metabolite formed is identified as 2-phenyl-1-pyrroline; then after a lag time, 3-benzoylpropanal and 3-benzoylpropionic acid are generated. The 3-benzoylpropanal is a product of MAO-catalyzed oxidation of 2-phenyl-1-pyrroline (presumably, of its hydrolysis product, gamma-aminobutyrophenone). The aldehyde is nonenzymatically oxidized by nascent hydrogen peroxide to the carboxylic acid. These results are consistent with a one-electron oxidation of PCBA to the amine radical cation followed by homolytic cyclobutane ring cleavage. The resulting radical can partition between cyclization (an intramolecular radical trap) to the 2-phenylpyrrolinyl radical and attachment to the flavin. The cyclic radical can be further oxidized by one electron to 2-phenyl-1-pyrroline. PCBA represents the first in the cyclobutylamine class of MAO inactivators and strongly supports involvement of a radical mechanism for MAO-catalyzed amine oxidations.  相似文献   

7.
Nitric-oxide synthases are flavoheme enzymes that catalyze two sequential monooxygenase reactions to generate nitric oxide (NO) from l-arginine. We investigated a possible redox role for the enzyme-bound cofactor 6R-tetrahydrobiopterin (H4B) in the second reaction of NO synthesis, which is conversion of N-hydroxy-l-arginine (NOHA) to NO plus citrulline. We used stopped-flow spectroscopy and rapid-freeze EPR spectroscopy to follow heme and biopterin transformations during single-turnover NOHA oxidation reactions catalyzed by the oxygenase domain of inducible nitric-oxide synthase (iNOSoxy). Significant biopterin radical (>0.5 per heme) formed during reactions catalyzed by iNOSoxy that contained either H4B or 5-methyl-H4B. Biopterin radical formation was kinetically linked to conversion of a heme-dioxy intermediate to a heme-NO product complex. The biopterin radical then decayed within a 200-300-ms time period just prior to dissociation of NO from a ferric heme-NO product complex. Measures of final biopterin redox status showed that biopterin radical decay occurred via an enzymatic one-electron reduction process that regenerated H4B (or 5MeH4B). These results provide evidence of a dual redox function for biopterin during the NOHA oxidation reaction. The data suggest that H4B first provides an electron to a heme-dioxy intermediate, and then the H4B radical receives an electron from a downstream reaction intermediate to regenerate H4B. The first one-electron transition enables formation of the heme-based oxidant that reacts with NOHA, while the second one-electron transition is linked to formation of a ferric heme-NO product complex that can release NO from the enzyme. These redox roles are novel and expand our understanding of biopterin function in biology.  相似文献   

8.
Yin W  Mitra K  Stearns RA  Baillie TA  Kumar S 《Biochemistry》2004,43(18):5455-5466
Earlier we described a novel cytochrome P450 (CYP) catalyzed metabolism of the 2,2,6,6-tetramethylpiperidine (2,2,6,6-TMPi) moiety in human liver microsomes to a ring-contracted 2,2-dimethylpyrrolidine (2,2-DMPy) [Yin, W., et al. (2003) Drug Metab. Dispos. 31, 215-223]. In the current report, evidence is provided for the involvement of 2,2,6,6-TMPi hydroxylamines and their one-electron oxidation products, the nitroxide radicals, as intermediates in this pathway. Nitroxide radicals could be converted to their corresponding 2,2-DMPy metabolites by "inactivated CYP3A4", as well as by a number of other heme proteins and hemin, suggesting that this is a heme-catalyzed process. The conversion of nitroxide radicals to the 2,2-DMPy products by CYP3A4 or hemin was accompanied by the generation of acetone in incubations, providing evidence that the three-carbon unit from 2,2,6,6-TMPi was lost as acetone. With one model 2,2,6,6-TMPi nitroxide radical, evidence for an alternate pathway, which resulted in the formation of an intermediate that incorporated two oxygen atoms from water of the incubation medium before collapsing to the 2,2-DMPy product, was also obtained. To account for both pathways, a mechanism involving interaction of the nitroxide radicals with heme iron (Fe(III)), followed by a homolytic scission of the N-O bond and transfer of the nitroxide oxygen to heme iron to form a perferryl-oxygen complex, is proposed. The nitrogen-centered 2,2,6,6-TMPi radical thus formed then precipitates the contraction of the piperidine ring via C2-C3 bond cleavage, and the resulting product further oxidizes to an exocyclic iminium ion (by the perferryl-oxygen complex); the latter may undergo capture by water from the incubation medium and eliminate the three-carbon unit via N-dealkylation. It remains to be determined whether this novel interaction of nitroxide radicals with heme iron has any relevance in regard to the known biological properties of these stable radical species.  相似文献   

9.
S M Miller  J P Klinman 《Biochemistry》1985,24(9):2114-2127
The chemical mechanism of hydroxylation, catalyzed by dopamine beta-monooxygenase, has been explored with a combination of secondary kinetic isotope effects and structure-reactivity correlations. Measurement of primary and secondary isotope effects on Vmax/Km under conditions where the intrinsic primary hydrogen isotope effect is known allows calculation of the corresponding intrinsic secondary isotope effect. By this method we have obtained an alpha-deuterium isotope effect, Dk alpha = 1.19 +/- 0.06, with dopamine as substrate. The beta-deuterium isotope effect is indistinguishable from one. The large magnitude of Dk alpha, together with our previous determination of a near maximal primary deuterium isotope effect of 9.4-11, clearly indicates the occurrence of a stepwise process for C-H bond cleavage and C-O bond formation and hence the presence of a substrate-derived intermediate. To probe the nature of this intermediate, a structure-reactivity study was performed by using a series of para-substituted phenylethylamines. Deuterium isotope effects on Vmax and Vmax/Km parameters were determined for all of the substrates, allowing calculation of the rate constants for C-H bond cleavage and product dissociation and dissociation constants for amine and O2 loss from the enzyme-substrate ternary complex. Multiple regression analysis yielded an electronic effect of p = -1.5 for the C-H bond cleavage step, eliminating the possibility of a carbanion intermediate. A negative p value is consistent with formation of either a radical or a carbocation; however, a significantly better correlation is obtained with sigma p rather than sigma p+, implying formation of a radical intermediate via a polarized transition state. Additional effects determined from the regression analyses include steric effects on rate constants for substrate hydroxylation and product release and on KDamine, consistent with a sterically restricted binding site, and a positive electronic effect of p = 1.4 on product dissociation, ascribed to a loss of product from an enzyme-bound Cu(II)-alkoxide complex. These results lead us to propose a mechanism in which O-O homolysis [from a putative Cu(II)-OOH species] and C-H homolysis (from substrate) occur in a concerted fashion, circumventing the formation of a discrete, high energy oxygen species such as hydroxyl radical. The substrate and peroxide-derived radical intermediates thus formed undergo a recombination, kinetically limited by displacement of an intervening water molecule, to give the postulated Cu(II)-alkoxide product complex.  相似文献   

10.
Sun S  Bao Z  Ma H  Zhang D  Zheng X 《Biochemistry》2007,46(22):6668-6673
Generation of singlet oxygen is first investigated in the decomposition of polyunsaturated lipid peroxide, alpha-linolenic acid hydroperoxide (LAOOH), by heme-proteins such as cytochrome c and lactoperoxidase. Chemiluminescence and electron spin resonance methods are used to confirm the singlet oxygen generation and quantify its yield. Decomposition products of LAOOH are characterized by HPLC-ESI-MS, which suggests that singlet oxygen is produced via the decomposition of a linear tetraoxide intermediate (Russell's mechanism). Free radicals formed in the decomposition are also identified by the electron spin resonance technique, and the results show that peroxyl, alkyl, and epoxyalkyl radicals are involved. The changes of cytochrome c and lactoperoxidase in the reaction are monitored by UV-visible spectroscopy, revealing the action of a monoelectronic and two-electronic oxidation for cytochrome c and lactoperoxidase, respectively. These results suggest that cytochrome c causes a homolytic reaction of LAOOH, generating alkoxyl radical and then peroxyl radical, which in turn releases singlet oxygen following the Russell mechanism, whereas lactoperoxidase leads to a heterolytic reaction of LAOOH, and the resulting ferryl porphyryl radical of lactoperoxidase abstracts the hydrogen atom from LAOOH to give peroxyl radical and then singlet oxygen. This observation would be important for a better understanding of the damage mechanism of cell membrane or lipoprotein by singlet oxygen and various radicals generated in the peroxidation and decomposition of lipids induced by heme-proteins.  相似文献   

11.
Heo J  Campbell SL 《Biochemistry》2004,43(8):2314-2322
Nitric oxide (NO), a highly reactive redox molecule, can react with protein thiols and protein metal centers to regulate a multitude of physiological processes. NO has been shown to promote guanine nucleotide exchange on the critical cellular signaling protein p21Ras (Ras) by S-nitrosylation of a redox-active thiol group (Cys(118)). This increases cellular Ras-GTP levels in vivo, leading to activation of downstream signaling pathways. Yet the process by which this occurs is not clear. Although several feasible mechanisms for protein S-nitrosylation with NO and NO donating have been proposed, results obtained from our studies suggest that Ras can be S-nitrosylated by direct reaction of Cys(118) with nitrogen dioxide (*NO(2)), a reaction product of NO with O(2), via a Ras thiyl-radical intermediate (Ras-S*). Results from our studies also indicate that Ras Cys(118) can be S-nitrosylated by direct reaction of Cys(118) with a glutathionyl radical (GS*), a reaction product derived from homolytic cleavage of S-nitrosoglutathione (GSNO). Moreover, we present evidence that reaction of GS* with Ras generates a Ras-S* intermediate during GSNO-mediated Ras S-nitrosylation. The Ras-S(*) radical intermediate formed from reaction of the Ras thiol with either *NO(2) or GS*, in turn, reacts with NO to complete Ras S-nitrosylation. NO and GSNO modulate Ras activity by promoting guanine nucleotide dissociation from Ras. Our results suggest that formation of the Ras radical intermediate, Ras-S*, may perturb interactions between Ras and its guanine nucleotide substrate, resulting in enhancement of guanine nucleotide dissociation from Ras.  相似文献   

12.
Dai Y  Pochapsky TC  Abeles RH 《Biochemistry》2001,40(21):6379-6387
Two dioxygenases (ARD and ARD') were cloned from Klebsiella pneumoniae that catalyze different oxidative decomposition reactions of an advanced aci-reductone intermediate, CH(3)SCH(2)CH(2)COCH(OH)=CH(OH) (I), in the methionine salvage pathway. The two enzymes are remarkable in that they have the same polypeptide sequence but bind different metal ions (Ni(2+) and Fe(2+), respectively). ARD converts I to CH(3)SCH(2)CH(2)COOH, CO, and HCOOH. ARD' converts I to CH(3)SCH(2)CH(2)COCOOH and HCOOH. Kinetic analyses suggest that both ARD and ARD' have ordered sequential mechanisms. A model substrate (II), a dethio analogue of I, binds to the enzyme first as evidenced by its lambda(max) red shift upon binding. The dianion formation from II causes the same lambda(max) red shift, suggesting that II bind to the enzyme as a dianion. The electron-rich II dianion likely reacts with O(2) to form a peroxide anion intermediate. Previous (18)O(2) and (14)C tracer experiments established that ARD incorporates (18)O(2) into C(1) and C(3) of II and C(2) is released as CO. ARD' incorporates (18)O(2) into C(1) and C(2) of II. The product distribution seems to necessitate the formation of a five-membered cyclic peroxide intermediate for ARD and a four-membered cyclic peroxide intermediate for ARD'. A model chemical reaction demonstrates the chemical and kinetic competency of the proposed five-membered cyclic peroxide intermediate. The breakdown of the four-membered and five-membered cyclic peroxide intermediates gives the ARD' and ARD products, respectively. The nature of the metal ion appears to dictate the attack site of the peroxide anion and, consequently, the different cyclic peroxide intermediates and the different oxidative cleavages of II. A cyclopropyl substrate analogue inactivates both enzymes after multiple turnovers, providing evidence that a radical mechanism may be involved in the formation of the peroxide anion intermediate.  相似文献   

13.
4-Hydroxyphenylacetate decarboxylase (4Hpad) is an Fe/S cluster containing glycyl radical enzyme (GRE), which catalyses the last step of tyrosine fermentation in clostridia, generating the bacteriostatic p-cresol. The respective activating enzyme (4Hpad-AE) displays two cysteine-rich motifs in addition to the classical S-adenosylmethionine (SAM) binding cluster (RS cluster) motif. These additional motifs are also present in other glycyl radical activating enzymes (GR-AE) and it has been postulated that these orthologues may use an alternative SAM homolytic cleavage mechanism, generating a putative 3-amino-3-carboxypropyl radical and 5′-deoxy-5′-(methylthio)adenosine but not a 5′-deoxyadenosyl radical and methionine. 4Hpad-AE produced from a codon-optimized synthetic gene binds a maximum of two [4Fe–4S]2+/+ clusters as revealed by EPR and Mössbauer spectroscopy. The enzyme only catalyses the turnover of SAM under reducing conditions, and the reaction products were identified as 5′-deoxyadenosine (quenched form of 5′-deoxyadenosyl radical) and methionine. We demonstrate that the 5′-deoxyadenosyl radical is the activating agent for 4Hpad through p-cresol formation and correlation between the production of 5′-deoxyadenosine and the generation of glycyl radical in 4Hpad. Therefore, we conclude that 4Hpad-AE catalyses a classical SAM-dependent glycyl radical formation as reported for GR-AE without auxiliary clusters. Our observation casts doubt on the suggestion that GR-AE containing auxiliary clusters catalyse the alternative cleavage reaction detected for glycerol dehydratase activating enzyme.  相似文献   

14.
In mammals, nitric oxide (NO) is an essential biological mediator that is exclusively synthesized by nitric-oxide synthases (NOSs). However, NOSs are also directly or indirectly responsible for the production of peroxynitrite, a well known cytotoxic agent involved in numerous pathophysiological processes. Peroxynitrite reactivity is extremely intricate and highly depends on activators such as hemoproteins. NOSs present, therefore, the unique ability to both produce and activate peroxynitrite, which confers upon them a major role in the control of peroxynitrite bioactivity. We report here the first kinetic analysis of the interaction between peroxynitrite and the oxygenase domain of inducible NOS (iNOSoxy). iNOSoxy binds peroxynitrite and accelerates its decomposition with a second order rate constant of 22 x 10(4) m(-1)s(-1) at pH 7.4. This reaction is pH-dependent and is abolished by the binding of substrate or product. Peroxynitrite activation is correlated with the observation of a new iNOS heme intermediate with specific absorption at 445 nm. iNOSoxy modifies peroxynitrite reactivity and directs it toward one-electron processes such as nitration or one-electron oxidation. Taken together our results suggest that, upon binding to iNOSoxy, peroxynitrite undergoes homolytic cleavage with build-up of an oxo-ferryl intermediate and concomitant release of a NO(2)(.) radical. Successive cycles of peroxynitrite activation were shown to lead to iNOSoxy autocatalytic nitration and inhibition. The balance between peroxynitrite activation and self-inhibition of iNOSoxy may determine the contribution of NOSs to cellular oxidative stress.  相似文献   

15.
Magnusson OT  Frey PA 《Biochemistry》2002,41(5):1695-1702
3',4'-Anhydroadenosylcobalamin (anAdoCbl) is an analogue of the adenosylcobalamin (AdoCbl) coenzyme (Magnusson, O.Th., and Frey, P. A. (2000) J. Am. Chem. Soc. 122, 8807-8813). This compound supports activity for diol dehydrase at 0.02% of that observed with AdoCbl. In a side reaction, however, anAdoCbl induces suicide inactivation by an electron-transfer mechanism. Homolytic cleavage of the Co-C bond of anAdoCbl at the active site of diol dehydrase was observed by spectrophotometric detection of cob(II)alamin. Anaerobic conversion of enzyme bound cob(II)alamin to cob(III)alamin, both in the absence and presence of substrate, indicates that the coenzyme derived 5'-deoxy-3',4'-anhydroadenosine-5'-yl serves as the oxidizing agent. This hypothesis is supported by the stoichiometric formation of 3',5'-dideoxyadenosine-4',5'-ene as the nucleoside cleavage product, as determined by high-performance liquid chromatography, mass spectrometry, and nuclear magnetic resonance spectroscopy. Experiments performed in deuterium oxide show that a single solvent exchangeable proton is incorporated into the product. These data are consistent with the intermediate formation of a transient allylic anion formed after one electron transfer from cob(II)alamin to the allylic 5'-deoxy-3',4'-anhydroadenosyl radical. Selective protonation at C3' was demonstrated by spectroscopic characterization of the purified product. This study provides an example of suicide inactivation of a radical enzyme brought about by a side reaction of an analogue of the radical intermediate.  相似文献   

16.
Using radiolytic reduction of the oxy-ferrous horseradish peroxidase (HRP) at 77 K, we observed the formation and decay of the putative intermediate, the hydroperoxo-ferric heme complex, often called "Compound 0." This intermediate is common for several different enzyme systems as the precursor of the Compound I (ferryl-oxo pi-cation radical) intermediate. EPR and UV-visible absorption spectra show that protonation of the primary intermediate of radiolytic reduction, the peroxo-ferric complex, to form the hydroperoxo-ferric complex is completed only after annealing at temperatures 150-180 K. After further annealing at 195-205 K, this complex directly transforms to ferric HRP without any observable intervening species. The lack of Compound I formation is explained by inability of the enzyme to deliver the second proton to the distal oxygen atom of hydroperoxide ligand, shown to be necessary for dioxygen bond heterolysis on the "oxidase pathway," which is non-physiological for HRP. Alternatively, the physiological substrate H2O2 brings both protons to the active site of HRP, and Compound I is subsequently formed via rearrangement of the proton from the proximal to the distal oxygen atom of the bound peroxide.  相似文献   

17.
We report that the production of hydrogen peroxide by radical chain reductions of molecular oxygen into water in buffers leads to hinge degradation of a human IgG1 under thermal incubation conditions. The production of the hydrogen peroxide can be accelerated by superoxide dismutase or redox active metal ions or inhibited by free radical scavengers. The hydrogen peroxide production rate correlates well with the hinge cleavage. In addition to radical reaction mechanisms described previously, new degradation pathways and products were observed. These products were determined to be generated via radical reactions initiated by electron transfer and addition to the interchain disulfide bond between Cys(215) of the light chain and Cys(225) of the heavy chain. Decomposition of the resulting disulfide bond radical anion breaks the C-S bond at the side chain of Cys, converting it into dehydroalanine and generating a sulfur radical adduct at its counterpart. The hydrolysis of the unsaturated dehydropeptides removes Cys and yields an amide at the C terminus of the new fragment. Meanwhile, the competition between the carbonyl (-C(α)ONH-) and the side chain of Cys allows an electron transfer to the α carbon, forming a new intermediate radical species (-(·)C(α)(O(-))NH-) at Cys(225). Dissociative deamidation occurs along the N-C(α) bond, resulting in backbone cleavage. Given that hydrogen peroxide is a commonly observed product of thermal stress and plays a role in mediating the unique degradation of an IgG1, strategies for improving stability of human antibody therapeutics are discussed.  相似文献   

18.
The interaction between glutathione-containing dinitrosyl iron complexes and superoxide radicals has been studied under the conditions of superoxide radical generation in mitochondria and in a model system xanthine-xanthine oxidase. It has been shown that both superoxide radical and hydroxyl radical are involved in the destruction of dinitrosyl iron complexes. At the same time, iron contained in dinitrosyl iron complex, apparently, does not catalyze the decomposition of hydrogen peroxide with the formation of hydroxyl radical. It has been found that dinitrosyl iron complexes with different anion ligands inhibit effectively the formation of phenoxyl probucol radical in a hemin-H2O2 a system. In this process, different components of the dinitrosyl iron complexes take part in the antioxidant action of these complexes.  相似文献   

19.
The formation of hydroxyl radical (OH·) from the oxidation of glutathione, ascorbic acid, NADPH, hydroquinone, catechol, and riboflavin by hydrogen peroxide was studied using a range of enzymes and copper and iron complexes as possible catalysts. Copper-1,10-phenanthroline appears to catalyze the production of OH· from hydrogen peroxide without superoxide radical being formed as an intermediate, and without the involvement of a catalyzed Haber-Weiss (Fenton) reaction. Superoxide radical is involved, however, in the Cu2+ -catalyzed decomposition of hydrogen peroxide, and in the oxidation of glutathione by atmospheric oxygen. For this latter oxidation, copper-4,7-dimethyl-1,10-phenanthroline was found to be a much more effective catalyst than the copper complex of 1,10-phenanthroline, which is normally used. Mechanisms for these reactions are proposed, and the toxicological significance of the ability of a variety of biological reductants to provide a prolific source of OH· when oxidized by hydrogen peroxide is discussed.  相似文献   

20.
Mutagenesis studies have been used to investigate the role of a heme ligand containing protein loop (67-79) in the activation of di-heme peroxidases. Two mutant forms of the cytochrome c peroxidase of Pseudomonas aeruginosa have been produced. One mutant (loop mutant) is devoid of the protein loop and the other (H71G) contains a non-ligating Gly at the normal histidine ligand site. Spectroscopic data show that in both mutants the distal histidine ligand of the peroxidatic heme in the un-activated enzyme is lost or is exchangeable. The un-activated H71G and loop mutants show, respectively, 75% and 10% of turnover activity of the wild-type enzyme in the activated form, in the presence of hydrogen peroxide and the physiological electron donor cytochrome c(551). Both mutant proteins show the presence of constitutive reactivity with peroxide in the normally inactive, fully oxidised, form of the enzyme and produce a radical intermediate. The radical product of the constitutive peroxide reaction appears to be located at different sites in the two mutant proteins. These results show that the loss of the histidine ligand from the peroxidatic heme is, in itself, sufficient to produce peroxidatic activity by providing a peroxide binding site and that the formation of radical intermediates is very sensitive to changes in protein structure. Overall, these data are consistent with a major role for the protein loop 67-79 in the activation of di-heme peroxidases and suggest a "charge hopping" mechanism may be operative in the process of intra-molecular electron transfer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号