首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The detection of double-stranded (ds) DNA by SYBR Green I (SG) is important in many molecular biology methods including gel electrophoresis, dsDNA quantification in solution and real-time PCR. Biophysical studies at defined dye/base pair ratios (dbprs) were used to determine the structure–property relationships that affect methods applying SG. These studies revealed the occurrence of intercalation, followed by surface binding at dbprs above ~0.15. Only the latter led to a significant increase in fluorescence. Studies with poly(dA) · poly(dT) and poly(dG) · poly(dC) homopolymers showed sequence-specific binding of SG. Also, salts had a marked impact on SG fluorescence. We also noted binding of SG to single-stranded (ss) DNA, although SG/ssDNA fluorescence was at least ~11-fold lower than with dsDNA. To perform these studies, we determined the structure of SG by mass spectrometry and NMR analysis to be [2-[N-(3-dimethylaminopropyl)-N-propylamino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-quinolinium]. For comparison, the structure of PicoGreen (PG) was also determined and is [2-[N-bis-(3-dimethylaminopropyl)-amino]-4-[2,3-dihydro-3-methyl-(benzo-1,3-thiazol-2-yl)-methylidene]-1-phenyl-quinolinium]+. These structure–property relationships help in the design of methods that use SG, in particular dsDNA quantification in solution and real-time PCR.  相似文献   

2.
2,5-Bis-[4-(N-cyclobutyl-amidino)phenyl] furan and 2,5-bis-[4-(N-cyclohexyl-amidino)phenyl] furan have activity against Pneumocystis carinii and also show cytotoxicity against several tumour cell lines. These activities are correlated with DNA-binding abilities; the crystal structures of complexes with the DNA sequence d(CGCGAATTCGCG) is reported here. Interactions with, and effects on, the DNA minor groove, are found to be factors in the biological properties of these compounds.  相似文献   

3.
A novel class of 1-[4-(1H-benzoimidazol-2-yl)-phenyl]-3-[4-(1H-benzoimidazol-2-yl)-phenyl]-ureas are described as potent inhibitors of heparanase. Among them are 1,3-bis-[4-(1H-benzoimidazol-2-yl)-phenyl]-urea (7a) and 1,3-bis-[4-(5,6-dimethyl-1H-benzoimidazol-2-yl)-phenyl]-urea (7d), which displayed good heparanase inhibitory activity (IC(50) 0.075-0.27 microM). Compound 7a showed good efficacy in a B16 metastasis model.  相似文献   

4.
The inhibition of DDT [1,1,1-trichloro-2,2-bis-(p-chlorophenyl)ethane] dehydrochlorinase and glutathione S-aryltransferase by diphenylmethane and triphenylmethane derivatives was examined. Bis-(3,5-dibromo-4-hydroxyphenyl)methane and similar compounds were excellent inhibitors of both enzymes, but only DDT dehydrochlorinase was inhibited by compounds similar to bis-(N-dimethylaminophenyl)methane. Colour salts of the basic triphenylmethyl dyes were excellent inhibitors of both enzymes. All the inhibitors examined appeared to act by competition with glutathione for its binding site on the two enzymes.  相似文献   

5.
N,N′-bis-[2-N-(O-2,6-dichlorobenzyl-L-tyrosyl)aminoethylguanyl]cystamine 3 and N,N′-bis-[2-N-(O-2,6-dichlorobenzyl-L-tyrosyl)aminoethyl]-1,6-hexanediguanidine 4 have been designed as neuropeptide Y (NPY) functional group mimetics. Both 3 and 4 displace N-[propionyl-3H]-NPY from rat brain binding sites, and are NPY receptor antagonists in rat femoral artery ring segments.  相似文献   

6.
Three tetrahydropyrrolo[3,4-a]carbazole-1,3-diones (6--8) and two tetrahydropyrido[3,2-b]pyrrolo[3,4-g]indole-1,3-diones (11--12) have been synthesized. Their interaction with DNA was probed by absorption and thermal melting studies. Compounds 8 and 12 both equipped with a hydroxyethyl-aminoethyl side-chain demonstrated higher affinities for poly(dA-dT)(2) than compounds 6, 7 and 11 bearing a dimethylaminoethyl side-chain. Circular and electric linear dichroism measurements showed that all five drugs behave as typical DNA intercalating agents. A plasmid cleavage assay was used to evaluate the capacity of the drugs to inhibit human topoisomerase II. Compounds 8 and 12 which bind strongly to DNA were found to stabilize DNA-topoisomerase II covalent complexes but their topoisomerase II inhibitory properties do not correlate with their cytotoxic potential. Compounds 6 and 7 are essentially inactive whereas compounds 8, 11 and 12 exhibit a high toxicity to P388 murine leukemia cells and provoke a marked accumulation in the G2/M phase of the cell cycle. These compounds form a new class of DNA-targeted antitumor agents.  相似文献   

7.
A series of new pyrido[1,2-a]- and pyridazino[1,6-a]benzimidazolium salts have been synthesized from readily available 1,3-disubstituted 2-alkylbenzimidazolium salts. Their affinity to DNA and in vitro cytotoxicity versus HT-29 have been tested. The initial results show that the title compounds are a new family of intercalating agents.  相似文献   

8.
Dimethyl ethers of (±)-hinokiresinol, dihydro- and tetrahydro-hinokiresinol have been synthesized. The key compounds, 1,3-bis-(p-methoxyphenyl)-pentan-1-one (4) and 1,3-bis-(p-methoxyphenyl)-4-penten-1-one (8) were obtained by treatment of 4,4′-dimethoxybenzal-acetophenone (3) with ethyl magnesium iodide and vinyl magnesium chloride, respectively. On Clemmensen reduction of the compound (4), tetrahydrohinokiresinol dimethyl ether was obtained. On reduction followed by dehydration of the compounds (4) and (8), dimethyl ethers of dihydrohinokiresinol and hinokiresinol were obtained, respectively.  相似文献   

9.
Five lignans have been isolated from wood of Larix leptolepis. They are identified as 1-(4-hydroxy-3-methoxyphenyl)-2-4-[2-formyl-(E)-vinyl]-2-methoxyphenoxy-propane- 1,3-diol, 1-(4-hydroxy-3-methoxyphenyl)-2-2-methoxy-4-[1-(E)-propen-3-ol]-phenoxy- propane-1,3-diol, 1-(4-hydroxy-3-methoxyphenyl)-2-(4-formyl-2-methoxyphenoxy)-propane-1,3-diol, 1,2-bis-(4-hydroxy-3-methoxyphenyl)-propane-1,3-diol and a trilignol, leptolepisol C.  相似文献   

10.
A series of potential DNA-binding antitumor agents, 2-[omega-(alkylamino)alkyl]-6-{[omega-(alkylamino)alkyl]amino}-1H-benzo[de]isoquinolin-1,3(2H)-diones and 1,7-bis{6-[(omega-(dimethylamino)alkyl)amino]-1,3-dioxo-1H-benzo[de]isoquinolin-2(3H)-yl}-4-methyl-4-azaheptanes, have been prepared as mitonafide derivatives. Their DNA-binding ability and cytotoxic activity have been evaluated. Some of the target compounds have shown high DNA affinity as well as relevant cytotoxic properties.  相似文献   

11.
A novel pyridine derivative, 3,5-bis-(1-methyl-pyrrolidin-2-yl)-pyridine, and a pair of diastereomers of 1,1'-dimethyl-[2,3']bipyrrolidinyl were isolated from the root of Nicotiana tabacum plants and identified as novel alkaloids by GC-MS analysis. The structures of these new alkaloids were confirmed by total synthesis. The affinities of these novel alkaloids, and other structurally related compounds for alpha4beta2*, alpha7* neuronal nicotinic acetylcholine receptors (nAChRs), and for nAChRs mediating nicotine-evoked dopamine release from rat striatum were also assessed. The results indicate that these compounds do not interact with alpha7* nAChRs, but inhibit [3H]nicotine binding to the alpha4beta2* nAChR subtype. The results also demonstrate that these compounds act as antagonists at nAChRs mediating nicotine-evoked dopamine release from rat striatum.  相似文献   

12.
Modified Candida rugosa lipase was co-lyophilized with two gemini-type amphiphiles, l- and d-2-(3-bis-[3-(2,3,4,5,6-pentahydroxy-hexanoylamino)-propyl]-carbamoyl -propionylamino)-pentanedioic acid didodecyl ester or dodecanoic acid 2-[(3-bis-[3-(2,3,4,5,6-pentahydroxy-hexanoylamino)-propyl]-carbamoyl -propionyl)-(2-dodecanoyloxy-ethyl)-amino]-ethyl ester. Enzymatic activities of the modified lipases in the transesterification between racemic 2,2-dimethyl-1,3-dioxolane-4-methanol and vinyl butyrate in cyclohexane were enhanced as much as by 37-78, 1.5–5- and 41–83-fold of magnitude relative to that of native enzyme, respectively. The lack of significant enhancement of the enzymatic activity, only in the case of the d-isomeric amphiphile-modified lipase, was considered from the topological view of the amphiphile.  相似文献   

13.
Ca2+-activated Cl- channels are inhibited by inositol 3,4,5, 6-tetrakisphosphate (Ins(3,4,5,6)P4) (Xie, W., Kaetzel, M. A., Bruzik, K. S., Dedman, J. R., Shears, S. B., and Nelson, D. J. (1996) J. Biol. Chem. 271, 14092-14097), a novel second messenger that is formed after stimulus-dependent activation of phospholipase C (PLC). In this study, we show that inositol 1,3,4-trisphosphate (Ins(1,3,4)P3) is the specific signal that ties increased cellular levels of Ins(3,4,5,6)P4 to changes in PLC activity. We first demonstrated that Ins(1,3,4)P3 inhibited Ins(3,4,5,6)P4 1-kinase activity that was either (i) in lysates of AR4-2J pancreatoma cells or (ii) purified 22,500-fold (yield = 13%) from bovine aorta. Next, we incubated [3H]inositol-labeled AR4-2J cells with cell permeant and non-radiolabeled 2,5,6-tri-O-butyryl-myo-inositol 1,3, 4-trisphosphate-hexakis(acetoxymethyl) ester. This treatment increased cellular levels of Ins(1,3,4)P3 2.7-fold, while [3H]Ins(3, 4,5,6)P4 levels increased 2-fold; there were no changes to levels of other 3H-labeled inositol phosphates. This experiment provides the first direct evidence that levels of Ins(3,4,5,6)P4 are regulated by Ins(1,3,4)P3 in vivo, independently of Ins(1,3,4)P3 being metabolized to Ins(3,4,5,6)P4. In addition, we found that the Ins(1, 3,4)P3 metabolites, namely Ins(1,3)P2 and Ins(3,4)P2, were >100-fold weaker inhibitors of the 1-kinase compared with Ins(1,3,4)P3 itself (IC50 = 0.17 microM). This result shows that dephosphorylation of Ins(1,3,4)P3 in vivo is an efficient mechanism to "switch-off" the cellular regulation of Ins(3,4,5,6)P4 levels that comes from Ins(1,3, 4)P3-mediated inhibition of the 1-kinase. We also found that Ins(1,3, 6)P3 and Ins(1,4,6)P3 were poor inhibitors of the 1-kinase (IC50 = 17 and >30 microM, respectively). The non-physiological trisphosphates, D/L-Ins(1,2,4)P3, inhibited 1-kinase relatively potently (IC50 = 0.7 microM), thereby suggesting a new strategy for the rational design of therapeutically useful kinase inhibitors. Overall, our data provide new information to support the idea that Ins(1,3,4)P3 acts in an important signaling cascade.  相似文献   

14.
Degradation of nonphenolic lignin by the laccase/1-hydroxybenzotriazole system   总被引:12,自引:0,他引:12  
Phenolic and nonphenolic (permethylated) synthetic [14C]lignins were depolymerized by Trametes villosa laccase in the presence of a radical mediator, 1-hydroxybenzotriazole (HOBT). Gel permeation chromatography of the treated lignins showed that approximately 10% of their substructures were cleaved. The system also cleaved a beta-O-4-linked model compound, 1-(4-ethoxy-3-methoxy-ring-[14C]phenyl)-2-(2-methoxyphenoxy)-propane- 1,3-diol, and a beta-1-linked model, 1, 2-bis-(3-methoxy-4-[14C]methoxyphenyl)-propane-1,3-diol, that represent nonphenolic substructures in lignin. High performance liquid chromatography of products from the oxidized models showed that they were produced in sufficient yields to account for the ability of laccase/HOBT to depolymerize nonphenolic lignin.  相似文献   

15.
Several benzo[c]pyrido[2,3,4-kl]acridines bearing different substituents on the A and E rings were synthesized and evaluated for their capacity to bind to DNA and to inhibit DNA topoisomerases. Potent cytotoxic compounds were discovered but no strict correlation with their DNA binding affinity and effects on topoisomerases were observed. DNA is one but not the unique target of these compounds.  相似文献   

16.
We have re-examined hexose-transport inhibition by hexose isothiocyanates and find that the inhibition is incomplete, probably because of decomposition of the reagent. The inhibition type is 'mixed', because hexose-transporter ligands such as maltose and cytochalasin B only give partial protection from inhibition. This suggests that a liganded-transporter-hexose isothiocyanate ternary complex is formed. We have compared the labelling of red-blood-cell membranes by [14C]MITC (D-maltose isothiocyanate) with the labelling obtained using a photoaffinity probe (ASA-BMPA [2-N-(4-azidosalicyloyl)-1,3-bis-(D-mannos-4'-yloxy)-2 -propylamine]) which gives specific labelling of the hexose transporter in band 4.5. [14C]MITC gives a partially D-glucose-displaceable labelling of a band 3 component in the same cell preparations which show ASA-BMPA labelling of band 4.5. This eliminates the possibility that band 4.5 labelling can only occur when the HITC (hexose isothiocyanate) binding protein in band 3 is proteolysed. HITC pretreatment does not decrease ASA-BMPA labelling of the exofacial site of band 4.5. This is also consistent with the formation of ternary complex. However, HITC pretreatment inhibits both reversible and photoactivated covalent [3H]cytochalasin B binding to band 4.5. These results suggest that, in the intact cell, interactions between a band 3 HITC-binding component and the inside cytochalasin B-binding site on the hexose transporter in band 4.5 may occur.  相似文献   

17.
A series of 1,3-diazacycloalkyl carboxaldehyde oxime derivatives was synthesized and tested for muscarinic activity in receptor binding assays using [3H]-oxotremorine-M (OXO-M) and [3H]-pirenzepine (PZ) as ligands. Potential muscarinic agonistic or antagonistic properties of the compounds were determined using binding studies measuring their potencies to inhibit the binding of OXO-M and PZ. Preferential inhibition of OXO-M binding was used as an indicator for potential muscarinic agonistic properties; this potential was confirmed in functional studies on isolated organs.  相似文献   

18.
Effects of diacylmethanes on the mutagenicity of 2-naphthohydroxamic acid, methylnitrosourea, benzo[a]pyrene and aflatoxin B1 in S. typhimurium and the tRNA binding by benzo[a]pyrene and aflatoxin B1 were investigated. Acetylacetone, benzoylacetone and dibenzoylmethane inhibited the mutagenicity of 2-naphthohydroxamic acid, and dibenzoylmethane and 1,3-indandione inhibited that of methylnitrosourea, benzo[a]pyrene and aflatoxin B1. The binding to tRNA of benzo[a]pyrene and aflatoxin B1 was inhibited by benzoylacetone and dibenzoylmethane, and dibenzoylmethane, 1,3-indandione and 1,1,1-trifluoroacetylacetone, respectively. The inhibition of methylnitrosourea mutagenicity was observed when the bacteria were exposed concomitantly to the inhibitors and the mutagen, but not when they were exposed to the inhibitors 1 h after exposure to the mutagen. These results demonstrate that active methylene compounds can inhibit mutagenicity and nucleic acid-binding of chemical carcinogens presumably by trapping carcinogenic electrophiles, and they are potential anti-carcinogenic agents during the initiation stage.  相似文献   

19.
20.
Pulsed field gel electrophoresis (PFGE) techniques have been developed to overcome the limitations of conventional electrophoresis and to increase the separation to DNA chromosomes of few megabase pairs in size. Despite of the large success of these techniques, the various separation protocols employed for PFGE experiments have been determined empirically. However, a deep understanding of the molecular mechanisms of motion responsible for DNA separation becomes necessary for the rational optimization of these techniques. This paper shows the first clear observations of individual molecules of DNA during the reorientation process in 90 degrees PFGE and 120 degrees PFGE. Real-time visualization of the DNA dynamics during PFGE was possible with the use of an epi-illumination fluorescence microscope specifically equipped to run these experiments and by staining the DNA with YOYO-1 (1,1'-(4,4,7,7-tetramethyl-4,7-diazaundecamethylene)-bis-4-[3-meth yl -2,3-dihydro-(benzo-1,3-oxazole)-2-methyl-idene]-quinolinium tetraiodide). This dye forms a very stable, highly fluorescent complex with double-stranded DNA and dramatically improves the quality of the DNA images. The results of computer simulations used to reproduce the molecular mechanisms of motion as well as the DNA separation features are also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号