首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The properties of the rectangular hyperbola and monomolecularfunctions, with respect to the photosynthesis/photon flux density(PFD) relationship, are discussed, and the shortcomings of theformer are highlighted. Both models were fitted to data acquiredfrom three closely related Veronica species of contrasting ecology.The non-linear regression algorithms give estimates, with standarderrors, of light saturated photosynthetic rate, light compensationpoint, dark respiration rate, and photochemical efficiency atlow PFD. While the rectangular hyperbola gave almost as gooda fit to the data as the monomolecular for each species, thelight saturated photosynthetic rate estimate given by the formerwas always unacceptably high in comparison with that indicatedby the obvious trend of the data. Moreover, this tendency wasaccentuated if near-saturating PFDs were removed from data sets,and there was a tendency for the fitting algorithm to becomeunstable. No such problems were encountered with the monomolecularfunction, and it is suggested that this be used whenever a simpleempirical model is required to analyze photosynthesis/PFD data. Veronica montana L, Veronica chamaedrys L, Veronica officinalis L, wood speedwell, Germander speedwell, common speedwell, empirical mathematical model, monomolecular function, rectangular hyperbola function, nonlinear regression, photosynthesis, photon flux density, light saturated photosynthetic rate, light compensation point, photochemical efficiency, dark respiration rate  相似文献   

2.
When Lemna minor and Salvinia natans, grown in a constant environment,are subjected to sub-lethal concentrations of 2,2-dichioropropionicacid (DCPA), the relative growth-rates are progressively reduced.These cumulative reductions, which are greater for S. natans,are correlated with decreases in (1) the rate of leaf or frondformation, (2) the mean area per leaf or frond, and (3) thenet assimilation rate. Of these components, the first is themost important and the third is the least. The effects of light intensity (300, 600, 900 f.c.), temperature(20, 25, and 30°C), and concentration of DCPA on both therelative growth-rate and rate of leaf or frond multiplicationhave been examined in multi-factorial experiments. Over theconcentration range selected (100, 200, and 400 mg/l for S.natans and 100, 300, and 6oo mg/l for L. minor) there are positiveeffects of light intensity, temperature, and concentration.For each concentration the order of the depression is maximalunder a combination of the highest temperature and the greatestintensity. Using radioactive DCPA it has been established that uptake isalso a cumulative process, and that S. natans has a greatercapacity to absorb DCPA. The rate of uptake is independent ofthe light intensity but increases with temperature and concentration. DCPA brings about morphological and structural changes. In S.natans, many of the leaves become submerged and the proportionis positively dependent on light, temperature, and concentration.This failure to float is associated with a reduction in thedensity of epiderrnal hairs. It is concluded that the inhibitory effects of DCPA are maximalunder conditions which are optimal for both meristematic activityand accumulation.  相似文献   

3.
Sulphate Influx in Characean Cells: I. GENERAL CHARACTERISTICS   总被引:2,自引:0,他引:2  
There is a significant sulphate influx in Chara australis, Nitellatranslucens, and Tolypella intricata but not in Nitellopsisobtusa. The uptake is active in Chara, the ions moving intothe vacuole against an electrochemical potential gradient. Influxrate in the light remains constant whereas a transient increasein rate occurs upon transfer to the dark. Both the light andthe dark influx rate respond similarly to temperature, and toexternal sulphate ion concentration. It is proposed that sulphateis pumped actively across the plasmalemma and that the increasein influx rate following transfer to the dark reflects a transientincrease in the rate at which the pump operates. There is anapparent light stimulation of the tonoplast flux.  相似文献   

4.
  1. A linear relation was found between the relative light intensityat 5 in depth and the mean chlorophyll a content of the euphoticzone, when they were plotted on logarithmic scales. The intensitiesof underwater lights of different wave lengths were measuredby a photocell with various colored filters. It was recognizedthat with the increase in chlorophyll a content the proportionof blue light fraction became reduced and that of red lightincreased. A similar relation was also found in the sea.
  2. Thephotosynthetic rate.light relation was investigated withthesuspension of cultured Chlorella and Tabellaria. At lowlightintensities, the photosynthetic rate for red light waslargerthan those for blue and green lights. The photosyntheticrateunder the mixed light of red and blue was equal to thesum ofthe rates in the individual lights, so far as the intensityof each light was low. But when the intensity of red light wassufficiently high, the addition of blue light brought no furtherincrease in photosynthesis.
  3. The photosynthetic rate-depthrelations were investigated bythe surface and underwater exposuremethods. Good agreementswere found between the results obtainedby these two differentmethods. However, there are some discrepanciesbetween the resultsof in situ exposure experiments and thoseobtained by the twomethods.
(Received January 11, 1963; )  相似文献   

5.
Further Observations on Light and Spore Discharge in Certain Pyrenomycetes   总被引:1,自引:0,他引:1  
A ‘spore-clock’ for studying the hourly rate ofspore discharge over a 24-hour period is described. A numberof the experiments reported in this paper have involved theuse of this apparatus. In Sordaria fimicola there is a distinct positive light-dischargereaction in a dark-conditioned culture, the rate of spore dischargeincreasing steeply to a peak 2–3 hours after brief stimulationby bright light. Although darkening a light-conditioned cultureleads to an immediate decrease in the rate of discharge, thereis no evidence of a delayed negative dark-discharge reaction. In S. verruculosa with a 12-hours light: 12-hours dark dailyreëgime, more spores are discharged in the dark than inthe light periods if the intensity of illumination is low. Withhigher light intensity there is no significant difference betweenthe number of spores discharged in light and dark periods. Asin S. fimicola there is a positive light-discharge reaction,the interval between stimulus and maximum response being muchlonger (8–12 hours). When a dark-conditioned culture istransferred to light for 48 hours and then returned to darknessfor a further 48 hours it is apparent that not only is therea positive light-discharge reaction but also a negative dark-dischargeresponse. The ‘plateau’ level of discharge is essentiallythe same in light and darkness. It is confirmed that in Hypoxylon fuscum light inhibits discharge.  相似文献   

6.
The presence of ferric chelate reducing activity in sunflower[Helianthus annuus L.) leaves has been studied by submergingleaf discs in a solution with Fe(III)-ethylenediaminetetra-acetate(FeEDTA), batho-phenanthroline disulphonate (BPDS) and vacuuminfiltration. The effect of different factors on the Fe(III)reduction rate was studied. Ferric reduction rate was about10-fold higher in the light than in darkness. The light effectwas greatly inhibited by 3-(3,4-dichloro-phenyl)-1,1-dimethylurea(DCMU), a photosystem II inhibitor. Several inhibitors of redoxsystems [cis-platinum (II) diamine dichloride (cis-platin),p-nitro-phenylacetate (p-NPA) and p-hydroxymercuribenzoic acid(pHMB)] decreased the FeEDTA reduction rate. The greatest inhibitionwas produced by the - SH group reagent pHMB (17% of control,in light). The FeEDTA reduction rate was much higher in theabsence of O2 than with air or 100% O2. Superoxide dismutase(SOD) decreased FeEDTA reduction with air in the light. Youngleaves reduced Fe(III)-chelate at a higher rate than did olderleaves. In iron-deficient plants, leaves did not exhibit enhancedferric chelate-reducing activity as was observed in roots. Itis suggested that at least two different redox systems or twostates of the same redox system work in the light and in darkness. Key words: Iron, leaves, plasma membrane-redox, light, oxygen level  相似文献   

7.
When leaf discs of Xanthium strumarium L. a C3 plant, or Zeamays L. a C4 plant, are incubated in 1-aminocyclopropane-l-carboxylicacid (ACC) in closed flasks, ethylene is released. The rateof ethylene release appears to be dependent on the levels oflight and CO2 available for photosynthesis in the tissues. In Xanthium the rate of ethylene release is lower in the lightthan in the dark regardless of the presence or absence of addedbicarbonate as a source of CO2. The inhibition of ethylene releaseis most apparent in the absence of added bicarbonate (i.e. atthe CO2 compensation point), and at light intensities sufficientto saturate photosynthesis (had the CO2 level in the test flaskbeen maintained). In contrast, light dramatically promotes therate of ethylene release from Zea leaf tissue when the CO2 levelis maintained above the CO2 compensation point. The rate ofethylene release from either Xanthium or Zea, incubated withor without added bicarbonate, does not appear to be alteredby further increasing the light intensity above the minimallevels sufficient to saturate photosynthesis. In the closed system used in these studies and at a light intensitysufficient to saturate photosynthesis, Xanthium and Zea leaftissue both appear to release comparable amounts of ethylenefrom ACC when the data is expressed on a chlorophyll basis.However, in Xanthium the rate of ethylene release is similarin light and dark, while in Zea the rate in the light is muchgreater than in the dark when the data is expressed either ona leaf area or on a chlorophyll basis. It is suggested thatthe different responses of these tissues to light/dark transientsmay reflect differences in their ability to metabolize ACC and/ordifferences in their ability to retain and metabolize ethyleneitself.  相似文献   

8.
9.
Since relative growth rate is the product of net assimilationrate and leaf-area ratio (leaf area/plant weight), it followsthat if the effects of shading on both net assimilation rateand leaf-area ratio can be expressed mathematically, then therelationship between light intensity and relative growth ratecan be derived from the product of the two mathematical expressions. For all the ten species investigated in field and pot cultureexperiments, it has been found that during the early vegetativephase both the changes in leaf-area ratio and net assimilationrate, over the range of 0·1 to full daylight, are linearlyrelated to the logarithm of the light intensity. In consequence,the relationship between relative growth rate and the logarithmof light intensity—being the product of the two linearregressions—is curvilinear. For species of shady habitats (Geum urbanum, Solamun dulcamara)neither the levels of assimilation rate nor the ‘compensation-point’values are very different from those of the eight species fromopen situations (e.g. Hordeum vulgare, Pisum sativum, Fagopyrumesculentum). Nevertheless the intensity at which growth rateis maximal varies between species: it is 0•5 for G. urbanum,0•7 for H. annuus, full daylight for F. esculentum, whilefor Trifolium subterraneum the calculated value is 1·8daylight. Such specific differences can be largely accountedfor in terms of the differences in leaf-area ratio at the differentlight levels. On the basis of this analysis of the light factor, a ‘shade’plant is best redefined as a species in which a reduction ofthe light intensity causes a rapid rise in the leaf-area ratiofrom an initial low value in full daylight: for a ‘sun’plant the converse definition holds.  相似文献   

10.
Evidence Inconsistent with the Blaauw Model of Phototropism   总被引:4,自引:0,他引:4  
The Blaauw model of phototropism equates the inhibition of growthat the illuminated side of a unilaterally illuminated organwith the blue light inhibition of overall organ extension evidentwhen some shoots are exposed to uniform blue light However,a study of the growth responses of Avena coleoptiles exposedto omnilateral, equal bilateral, unequal bilateral and unilateralblue light has revealed some light induced growth rate changeswhich cannot be explained by the Blaauw model. The growth responsesof cells at the illuminated and shaded sides of phototropicallystimulated coleoptiles seem to depend on the existence of alight gradient across the whole organ rather than the absolutelevels of light at either side. Key words: Phototropism, Avena coleoptile, Blaauw hypothesis, Blue light, Growth inhibition  相似文献   

11.
Planktonic algae submitted to vertical mixing with a short periodicitycommute many times a day from low to high irradiance levels.To study the influence of this light periodicity, two diatoms,Skeletonema coslatum and Nitzschia turgiduloides, were cultivatedunder alternating conditions of 2 h light/2 h dark (2 h/2 h),simulating vertical mixing in the natural environment. Two otherlight regimes were used: continuous light (CL) and alternatecycles of 12 h light/12 h dark (12 h/12 h). Products synthesizedin the dark by S.costmum during 60 s incubation for 2 h/2 hculture or during 5 min for 12 h/12 h culture were determined.They were essentially sugars, malate, aspartate and glyceratefor 2 h/2 h cells and 12 h/12 h cells taken at the beginningof the light period. In contrast, 12 h/12 h cells taken duringthe darkness or in the middle of the light period and set inthe dark synthesized only amino acids. Our results corroborateprevious reports on dark CO2 fixation via phosphoenolpyruvatecarboxykinase (PEPCKase, enzyme allowing the fixation of CO2on PEP and the synthesis of amino acids) with involvement ofa substrate synthesized during the light period, but demonstratethat incorporation also occurs by the C-3 pathway (pathway responsiblefor the major CO2 fixation in the light) in the very early stagesof the dark period. Another important result highlighted bythis study is the appreciable rate of dark fixation: on average6.7, 8.3 and 12.7% of photosynthesis at saturating photon fluxdensity for N.turgiduloides cultivated under 2 h/2 h, CL and12 h/12 h regime respectively and nearly 12% for S.costatumin the 2 h/2 h light regime. Variation of dark fixation wasinvestigated as a function of hour in the two species. Skeletonemacostatum cells submitted to the 2 h/2 h cycle show a constantrate of light-independent assimilation throughout the day. Bycontrast, both N.turgiduloides grown under the 12 h/12 h or2 h/2 h regime and S.costatum cultured under the 12 h/12 h cycleundergo fluctuations in the rate of dark fixation over the light/darkcycle. The mean dark fixation rate is controlled by the lengthof the photoperiod or the frequency of light fluctuations, dependingon species. We argue that this phenomenon must be taken intoconsideration in primary production calculations. Dependingon whether they are synthesized at the beginning or at the endof the light period, products are somewhat different and therate of fixation varies. This leads us to suggest that the pathwayof dark fixation may be regulated by at least two factors: amountof available substrate and enzyme (RuBPCase and PEPCKase) activityand/or amount.  相似文献   

12.
Plants of Plantago lanceolata L. and Zea mays L., cv. ‘Campo’were grown at two levels of light intensity. Especially in theroots, the rate of dry matter accumulation decreased at lowlight intensity. The carbohydrate content of both roots andshoots of P. lanceolata was not affected by light intensity.The relative contribution of SHAM1-sensitive respiration, thealternative chain, to total root respiration of both P. lanceolataand Z. mays, was not affected by light intensity during thedaytime. The alternative pathway was somewhat decreased at theend of the dark period, but not in the root tips (0–5mm) where it still contributed 56% in respiration. It was, therefore,concluded that photosynthesis is not a major factor in regulationof root growth in the species investigated. To see whether the effect of light intensity on root growthrate was via transpiration, plants of Z. mays were grown atdifferent air humidities. Both high humidity and low light intensityaffected the root morphology in such a way that the distancebetween the apex and the first laterals on the primary rootaxis increased. It is suggested that this effect on root morphologyis due to transpiration and the subsequent removal of root-producedinhibitors of lateral root growth; although light intensityalso affected the rate of dry matter accumulation of roots andthe rate was not affected by the humidity of the air. It is,therefore, concluded that the effect of light intensity on therate of dry matter accumulation of roots of Z. mays is not viaan effect on transpiration.  相似文献   

13.
A technique, using leaf disks, has been developed to study thepenetration of isotopically labelled compounds into leaves underconditions where there is no appreciable change in the concentrationof the external solution and no subsequent translocation. Inthis preliminary survey, the leaves of Phaseolus vulgaris andColeus Blumei were employed to investigate the entry of 2,4-dichlorophenoxyaceticacid (2,4-D), labelled in the carboxyl group with 14C. Over3 days there is no loss of 14C to the atmosphere from treatedleaves of Phaseolus. The rate of penetration is enhanced when(a) the leaves are young, (b) the water status is lowered, (c)the temperature is raised (Q10=2.3–2.8), and (d) a surface-activeagent is added to the external solution. Penetration is alsofavoured by a decrease in the pH, the relation indicating thatboth ions and molecules enter. Penetration is greater in thelight and prior illumination of the tissues positively affectsthe subsequent rate in the light, but not in the dark. In boththe light and the dark considerably more 2,4-D penetrates theabaxial surface of Phaseolus leaves. For Coleus an even greaterdifference between surfaces is found in the light but not inthe dark. For both species in the light the rates of entry intoboth surfaces are proportional to their respective stomataldensities. The simultaneous addition of indoleacetic acid tothe external solution caused more 2,4-D to enter Phaseolus leaves,but the addition of triiodobenzoic acid restricts entry. Therate of penetration remains constant over 24 hours and between0.1 and 200 mg./l. the rate is linearly related to concentration.Subsequent to entry, the 2,4-D is in a form which does not diffusefrom the tissue into buffer or exchange with unlabelled 2,4-D.Moreover, no outward movement takes place from treated tissuewhich has been frozen and thawed. These findings are discussedin relation to previous work on foliar penetration. It is concludedthat at least with Phaseolus penetration largely takes placethrough the guard cells and/or accessory cells.  相似文献   

14.
Leaf and whole plant gas exchange rates of Lycopersicon esculentumMill, were studied during several days of continuous exposureto ethylene. Steady-state photosynthesis and transpiration ratesof control and ethylene-treated individual leaves were equivalent.However, the photosynthesis and transpiration rates of treatedleaves required at least five times longer to reach 50% of thesteady-state rate. This induction lag was attributed to ethylene—inducedleaf epinasty and temporary acclimation to lower incident lightlevels immediately prior to measurement of gas exchange. Thewhole plant net carbon exchange rate (NCER) of a representativetreated plant was also reduced by 51% after 24 h exposure toethylene relative to both its pre-treatment rate and that ofthe control. Ethylene exposure reduced the growth rate of thetreated plant by 50% when expressed as carbon (C) gain. Theinhibition of NCER and growth rate associated with epinastywas completely reversed when the epinastic leaves were returnedto their original positions and light interception was re-established.The results demonstrate that the inhibition of whole plant CO2assimilation is indirect and due to reduced light interceptionby epinastic leaves. Morphological changes caused by environmentalethylene are thus shown to reduce plant C accumulation withoutinhibiting leaf photosynthesis processes per se. Key words: Ethylene, carbon assimilation, growth  相似文献   

15.
Callus cultures of Ipomoea pes-caprae and I. batatas were establishedon MS medium containing 10–5 M 2,4-D and 10–8 Mbenzyladenine. Ipomoea pes-caprae calli exhibited green pigmentationand grew better in the light than in darkness. Callus tissuesof I. batatas showed a pale-yellow colouration and they grewat the same rate in light as in dark conditions. I. pes-capraeand I. batatas callus cultures were sensitive to the presenceof 60 mM NaCl in the culture medium, the growth of the formerbeing more sensitive in light than in darkness. The significanceof the responses of I. pes-caprae callus cultures in relationto the mechanism of salt tolerance is discussed. Ipomoea batatas, Ipomoea pes-caprae, sweet potato, railroad vine, callus cultures, salinity, light  相似文献   

16.
A comparison of photosynthesis-irradiance response curves (PEresponse curves) obtained through fast repetition rate (FRR)fluorometry and radiocarbon (14C) tracer method was made inthe chlorophyte, Dunaliella tertiolecta, grown under differentirradiance conditions. In FRR-based PE response curveexperiments, actinic light provided by white light-emittingdiodes (LEDs) was increased gradually from 0 to 1500 µmolquanta m–2 s–1 and the rate of photosyntheticelectron transport was determined at each light level. Short-termexperiments (20 min) of 14C-based PE response curvewere carried out with an improved photosynthetron, which containswhite LEDs as the light source. Irrespective of growth irradiance,the ratios of FRR to 14C-based initial slopes were almost uniform.The ratios of FRR- to 14C-based maximum rates were 25–36%higher than those of FRR- to 14C-based initial slopes. The relationshipbetween electron transport and carbon assimilation was non-linearwith increasing discrepancy towards high actinic light. Thisnon-linear relationship between FRR- and 14C-based estimatesis primarily due to the effect of physiological processes stimulatedat high levels of light, such as cyclic electron flow and theMehler reaction. The results of this study indicate that theFRR fluorometry can be used as a good indicator of photosyntheticrates from low to middle light levels, but becomes increasinglyquestionable as the maximum photosynthetic rate is approached.The degree to which this relationship is further affected bynutrient-status warrants investigation.  相似文献   

17.
Illuminating a colorless mutant of Chlorella vulgaris 11h (M125)with blue light caused a reversible photoreduction of b-typecytochrome, i.e., absorbance increases at 423, 525 and 557 nm.This light-induced reduction of cytochrome b was most pronouncedin nitrate-starved cells, which showed some blue light responsesin carbon metabolism, including enhancement of respiration byblue light as reported previously. Prolonged illumination withblue light caused a decrease in the rate of the reduction. The photoactivation of nitrate reductase in the mutant cellswas studied in both cell-free crude extract and purified enzyme.The absorption spectrum of purified enzyme showed three peaksat 423, 525 and 557 nm after the addition of a reductant, indicatingthat the spectrum is that of cytochrome b associated with nitratereductase. Nitrate reductase activity was easily enhanced byblue light illumination after 1 min; red light had no effecton it. The blue light activation of nitrate reductase was notsignificant in growing cells, which showed its high activity. The relationship between the blue light-induced reduction ofcytochrome b and carbon metabolism is discussed. (Received September 30, 1987; Accepted February 9, 1988)  相似文献   

18.
WILSON  D.; COOPER  J. P. 《Annals of botany》1969,33(5):951-965
Using growth-analysis techniques, the variation in relativegrowth-rate (RGR) and its components, net assimilation rate(NAR), and leaf-area ratio (LAR), was examined in 18 populationsof L. perenne, six of L. multiflorum, and two hybrid cultivarsfrom contrasting climatic and agronomic origins, grown at lowand high light intensities in the glasshouse. Significant differences between populations were found for RGR,NAR, and LAR at both light intensities. At both intensitiesthe annual or biennial multiflorum group had a greater LAR anda lower specific leaf weight and chlorophyll content than theperennial perenne group. At the low intensity this was compensatedby a greater NAR in the perenne group, with no resultant differencein RGR. At the high intensity there was no difference betweenthe groups in NAR, and hence a greater RGR in the multiflorumgroup. Within the perenne and multiflorum groups, at both light intensities,the variation between populations in RGR was based on differencesin NAR rather than in LAR. There was no regular correlationof NAR with either specific leaf weight, or chlorophyll contentat either light intensity, though at low light intensity itwas significantly correlated with shoot-root ratio.  相似文献   

19.
Laminar pulvini of bean (Phaseolus vulgaris L.) contain numerouschloroplasts in cells of their motor tissue. The quantitativerelationships of the chloroplast pigments, chlorophyll a andb, ß-carotene, lutein, neoxanthin as well as the xanthophyllcycle carotenoids (violaxanthin, antheraxanthin and zeaxanthin)were similar to those of mesophyll chloroplasts from leafletlaminae. Exposure of pulvinules to light caused deepoxidationof violaxanthin to zeaxanthin, showing that the xanthophyllcycle is functioning. Chlorophyll fluorescence analysis of pulvinulesconfirmed that their chloroplasts are capable of both photosyntheticelectron transport and non-photochemical fluorescence quenching,showing that they build up a considerable transthylakoid protongradient in the light. Application of DCMU to excised pulvinulesand laminar discs, as well as to pulvinules of intact, attachedterminal leaflets blocked electron transport and fluorescencequenching. Application of the uncoupler CCCP to intact pulvinulesalso prevented non-photochemical fluorescence quenching. Therate of movement of the low-light-adapted terminal leaflet inresponse to exposure of its pulvinule to overhead red light(500 µmol m–2 s–1) was reduced when the pulvinulewas pretreated with DCMU. The pulvinar response to overheadblue light (50 µmol –2 s–1), which is morepronounced than to red light, was not affected by similar pretreatmentwith DCMU. Pretreatment with CCCP caused a short lag in theresponse to red light, but did not affect its subsequent rate.The results suggest that the pulvinar response to red, but notto blue light, requires non-cyclic electron transport and theresulting generation of ATP Key words: Leaf movements, light, non-cyclic electron transport, Phaseolus, pulvinar chloroplasts  相似文献   

20.
Pansies (Viola xwittrockiana Gams.) cv. Universal Violet weresown on five dates between Jul. and Dec. 1992 and placed insix temperature-controlled glasshouse compartments set to providemean temperatures between 6.5 and 30 °C. Shoot dry weightand leaf number were recorded. A model was constructed, to analysethe effects of light and temperature on dry matter accumulation,which assumed that relative growth rate (RGR) declined linearlywith thermal time accumulated from sowing, reflecting ontogeneticdrift. Furthermore, it assumed that RGR was a semi-ellipsoidfunction of temperature, rising to an optimum of 25.3 °Cand declining thereafter, and a positive linear function oflight integral. When fitted to data collected in this studythe model accounted for 94% of the variance in RGR. Independentvalidation using data from four further crops grown in glasshousecompartments at four different set point temperatures showedthat the model could also be used to predict plant dry weightaccurately (r 2=0.98). The rate of mainstem leaf productionwas also linearly related to both light integral and temperature. Pansy; Viola xwittrockiana ; temperature; light integral; dry weight; relative growth rate; leaf number  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号