首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
It was demonstrated that the presence of acid proteinases in the preparation isolated from Aspergillus awamori decreased the activity and stability of glucoamylase. Patterns of changes in the enzymatic activity and stability of glucoamylase at increased temperature and various pH values were studied over a long-term storage. A biospecific sorbent for removal of acid proteinases was synthesized, and glucoamylase preparations free of proteolytic activity were produced.  相似文献   

2.
We studied the dependence of activity and stability of proteolytic enzymes in salmon roe on pH and temperature. The activity of proteolytic enzymes in roe was primarily determined by proteinases. These enzymes were active at acid pH and had an optimum of 3.6. A study of subclasses of proteolytic enzymes in salmon roe and the published data suggest that the activity of proteinases may be related to the presence of aspartyl proteinases (cathepsin D). Serine proteinases and metalloenzymes were not found in roe. The activity of cysteine proteinases was low. The proposed conditions of pasteurization favored the complete inactivation of salmon roe at pH 6.0–6.4.  相似文献   

3.
The titanous and titanic complexes of the water-insoluble poly(N-acryloyl-4- and -5-aminosalicylic acids) have been prepared by several methods, and alpha-amylase, glucoamylase, and polygalacturonase (pectinase) have been coupled to the various preparations. The products from alpha-amylase and glucoamylase were enzymically active, but the alpha-amylase was washed off after only one use. With glucoamylase, the derivative withstood extensive washing and could be used continuously in a column. Particular advantages of the glucoamylase preparation were that maximal coupling of the enzyme was achieved in one hour and that a very high specific activity towards a macromolecular substrate was achieved. The polygalacturonase derivative was inactive, possibly because the polysalicylic acid acts as an inhibitor of the enzyme.  相似文献   

4.
To elucidate the mechanism of hydrolysis of fish muscle proteins by fish proteinases in fish sauce production, each pure preparation of three alkaline proteinases and two acid proteinases from sardine was tested for its ability to hydrolyze various proteins and its stability in the presence of 0 to 25% of NaCl. Each of the alkaline proteinases hydrolyzed casein more rapidly than other proteins. A major alkaline proteinase (III) hydrolyzed sarcoplasmic protein from sardine 5-times faster than other alkaline proteinases. Each of two acid proteinases hydrolyzed hemoglobin and myoglobin more rapidly than the other proteins. After preincubation with 25% NaCl, an alkaline proteinase (III) and an acid proteinase (II) were stable although the other proteinases became unstable. The two proteinases, alkaline proteinase III and acid proteinase II, were also stable for three months after the beginning of fish sauce production. The proteolytic activity of each of alkaline and the acid proteinases was strongly inhibited by more than 15% NaCl; however, minimum inhibition was observed when sardine muscle proteins were used as the substrate.  相似文献   

5.
Cell extracts of Clostridium thermohydrosulfuricum, an anaerobic bacterium which ferments starch into ethanol at 65°C, contained both pullulanase and glucoamylase activities. The general physiochemical and catalytic properties of these enzyme activities were compared. Pullulanase and glucoamylase activities were stable and optimally active at 85 and 75°C, respectively. The pH optima for activity and pH stability ranges were, respectively, 5.5 to 6 and 4.5 to 5.5 for pullulanase and 4 to 6 and 5 to 6 for glucoamylase. The apparent [S]0.5v and Vmax for pullulanase activity on pullulan were 0.33 mg/ml and 2.6 U/mg of protein. The apparent [S]0.5v and Vmax for glucoamylase activity on starch were of 0.41 mg/ml and 0.31 U/mg of protein. These enzymes were active and stable in the presence of air or 10% (vol/vol) ethanol. These enzyme activities allowed the organism to actively degrade raw starch into glucose in the absence of significant α-amylase activity.  相似文献   

6.
《Experimental mycology》1981,5(3):269-277
The proteolytic activities of the cellular slime moldsDictyostelium mucoroides, Dictyostelium purpureum, Polysphondylium pallidum, andPolysphondylium violaceum have been examined. Myxamoebae possessed activity against Hide Powder Azure at pH 2–5 which was enhanced by dithiothreitol: this enhancement was small inDictyostelium species but three- to four-fold in thePolysphondylium species. Following electrophoresis on polyacrylamide gels containing denatured haemoglobin five or more proteinases could be detected in each species. Activity against Hide Powder Azure was inhibited severely by HgCl2 and to a lesser extent by other thiol proteinase inhibitors such asN-α-p-tosyl-l-lysine chloromethyl ketone-HCl, antipain, and leupeptin. Inhibitors of aspartyl and serine proteinases had no effect. All proteinases visualized on gels were inhibited by HgCl2, and some, but not the major one of each species, were sensitive to the other thiol proteinase inhibitors. Extracts of fruiting bodies retained acid proteolytic activity. New proteinases were detected inD. mucoroides; there was a relative increase in one proteinase inP. violaceum but three proteinases were lost during fruiting body formation inP. pallidum. During microcyst formation inP. pallidum there was a decrease in proteolytic activity but most of the myxamoebal proteinases could be detected. Overall the results demonstrate that the cellular slime molds possess similar types of proteinase although there were significant differences between the actual proteinases observed in individual species.  相似文献   

7.
We studied the dependence of activity and stability of proteolytic enzymes in salmon roe on pH and temperature. The activity of proteolytic enzymes in roe was primarily determined by proteinases. These enzymes were active at acid pH and had an optimum of 3.6. A study of subclasses of proteolytic enzymes in salmon roe and the published data suggest that the activity of proteinases may be related to the presence of aspartyl proteinases (cathepsin D). Serine proteinases and metalloenzymes were not found in roe. The activity of cysteine proteinases was low. The proposed conditions of pasteurization favored the complete inactivation of salmon roe at pH 6.0-6.4.  相似文献   

8.
Glucoamylase (1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) has been covalently immobilized on a polyacrylamide-type support containing carboxylic groups activated by water-soluble carbodiimide. The activity was 5.5– 6.0 units g?1solid. The optimum pH for catalytic activity was pH 3.8. The apparent optimum temperature was found at 60°C. With soluble starch as substrate the Km value was 14 mg ml?1. The pH for maximum stability was pH 4.0–4.5. In the presence of 8 m urea the immobilized glucoamylase retained most of its catalytic activity but it was more susceptible to guanidinium hydrochloride than the soluble enzyme. The practical applicability of immobilized glucoamylase was tested in batch process and continuous operation.  相似文献   

9.
To find amino acid residues which are required for glucoamylase activity, mutant glucoamylase genes were constructed by in vitro mutations of GLU1 DNA encoding Saccharomycopsis fibuligera glucoamylase and introduced into Saccharomyces cerevisiae, and the resulting mutant proteins were assayed for enzymatic activities. Eighteen mutant proteins were obtained by random insertions of a BamHX linker DNA. Six out of 7 proteins with mutations in conserved regions among divergent glucoamylases showed no activities, while 8 out of 11 proteins with mutations in unconserved regions had similar specific activities to a wild-type value, suggesting that the conserved regions are important to the activity. A series of amino-terminal deletion mutants were also constructed. A mutant protein with a deletion of only two amino acid residues from the amino terminus had a significant reduction in the activity, suggesting an essential role for the amino-terminal peptide. Ten mutant proteins with single amino acid replacements were produced by site-directed mutagenesis. Analyses for thermal stability and temperature dependency of these mutant proteins revealed that Ala81, Asp89, Trp94, Arg96, Asp97, and Trp166 are required for wild-type levels of activities, and that at least Ala81 and Asp89 are not essential to catalytic activities, but act in thermal stability.  相似文献   

10.
Glucoamylase and α-amylase are present in callus and suspension cultures of sugar beets (Beta vulgaris L.) as well as in mature roots. The subcellular localization of glucoamylase differed in callus and suspension-cultured cells: in callus, glucoamylase was present together with α-amylase in the soluble fraction of cells, but in suspension cultures, it was present predominantly in the extracellular fraction while most of the α-amylase activity remained in cells. Glucoamylase activity was considerably lower in callus protoplasts relative to the activities of α-mannosidase and α-galactosidase and the suspension of callus in Murashige-Skoog liquid medium or in mannitol by brief agitation resulted in the release of glucoamylase to the medium. These findings suggest that glucoamylase in callus may be present in a soluble form in the free space in the cell wall. Both mature roots and callus contained α-amylase and glucoamylase in the soluble fraction. Glucoamylases in the soluble fraction of callus and in the medium of suspension cultures were purified separately to homogeneity by the same four-step purification procedure, which included fractionation with ammonium sulfate, column chromatography on carboxymethyl cellulose, gel filtration on Bio-Gel P-150, and preparative disc electrophoresis. The identity of the glucoamylases from the two sources was confirmed by a comparison of chromatographic behavior during purification, mobility during gel electrophoresis, Mr (83,000 D by SDS PAGE), and enzymic and kinetic properties of the catalytic reaction, such as optimal pH and temperature, heat stability, and Km value for soluble starch. Glucoamylase from suspension cultures was one of the major proteins that were secreted into the medium. Dedifferentiation of leaves of young plants to callus was accompanied by induction of glucoamylase and repression of some α-amylases and the debranching enzyme.  相似文献   

11.
One hundred and eighty strains of black aspergilli isolated from cassava fields and factories in Thailand were screened for the activity of raw cassava starch-digestive glucoamylase. Aspergillus sp. N-2 was selected as the best producer and its extracellular glucoamylase production was investigated. Conditions for the production were optimized for both liquid and solid cultures, and solid culture was found to be approximately three times more efficient than liquid culture. The culture filtrate showed strong glucoamylase activity at low pH (pH 2.0) and high temperature (55°C), and could digest high concentration raw cassava starch. The glucoamylase activity was separated to four fractions (A, B, C and D) by DEAE-Sephacel column chromatography. Fraction C was obtained in a homogeneous state with a molecular weight of 92,000. Each fraction was characterized in terms of the properties of the glucoamylase activity and the efficiency of digestion of cooked and raw cassava starch.  相似文献   

12.
Partially purified glucoamylase (1,4-α-d-glucan glucohydrolase, EC 3.2.1.3) from Aspergillus niger NRRL 330 has been immobilized on DEAE-cellulose activated with cyanuric chloride in 0.2 m acetate buffer, pH 4.2. In the matrix-bound glucoamylase, enzyme yield was 20 mg g?1 of support, corresponding to 40 200 units g?1 of DEAE support. Binding of the enzyme narrows the pH optimum from 3.8–5.2 to 3.6. Thermal stability of the bound glucoamylase enzyme was decreased although it showed a higher temperature optimum (70°C) than the free form (55°C). The rate of reaction of glucoamylase was also changed after immobilization. Vmax values for free and bound enzyme were 36.6 and 22.6 μmol d-glucose ml?1 min?1 and corresponding Km values were 3.73 and 4.8 g l?1 respectively. Free and immobilized enzyme when used in the saccharification process gave 84 and 56% conversion of starch to d-glucose, respectively. The bound enzyme was quite stable and in the batch process it was able to operate for about five cycles without any loss of activity.  相似文献   

13.
14.
 本文提出了一种新的稳定糖化酶的方法。用带有疏水基团的亲水性多糖,可以方便有效地稳定糖化酶,明显提高了糖化酶的储存稳定性。实验结果表明,在含有芳香基右旋糖酐,钙离子,甘油的缓冲溶液中,糖化酶于室温放置5个月,酶活力没有损失,放置7个月,活力只损失15.7%。  相似文献   

15.
《Gene》1998,207(2):127-134
The DNA (glaB) and a cDNA-encoding glucoamylase produced in solid-state culture of Aspergillus oryzae were cloned using oligodeoxyribonucleotide probes derived from internal amino acid sequences of the enzyme. Comparison of the nucleotide sequences of a genomic DNA fragment with its cDNA showed the glaB gene carried three exons interrupted by two introns and had an open reading frame encoding 493 aa residues. The 5′-flanking region had a TATA box at nt −87 from the start codon and two putative CAAT sequences at nt −276 and −288. The glaB gene shared 57% homology at the aa level with the glaA gene which was cloned previously from A. oryzae. Interestingly, the glucoamylase encoded by the glaB gene had no C-terminal domain such as that proposed to have starch binding activity in Aspergillus glucoamylases. Introduction of cDNA of the glaB gene to Saccharomyces cerevisiae caused the secretion of active glucoamylase to culture medium and introduction of the glaB gene to A. oryzae increased glucoamylase productivity in solid-state culture. Northern blot analysis showed the glaB gene was expressed in solid-state culture, but not in submerged culture.  相似文献   

16.
Glucoamylase has a wide range of applications in the production of glucose, antibiotics, amino acids, and other fermentation industries. Fungal glucoamylase, in particular, has attracted much attention because of its wide application in different industries, among which Aspergillus niger is the most popular strain producing glucoamylase. The low availability of NADPH was found to be one of the limiting factors for the overproduction of glucoamylase. In this study, 3 NADH kinases (AN03, AN14, and AN17) and malic enzyme (maeA) were overexpressed in aconidial A. niger by CRISPR/Cas9 technology, significantly increasing the size of the NADPH pool, resulting in the activity of glucoamylase was improved by about 70%, 50%, 90%, and 70%, respectively; the total secreted protein was increased by about 25%, 22%, 52%, and 26%, respectively. Furthermore, the combination of the mitochondrial NADH kinase (AN17) and the malic enzyme (maeA) increased glucoamylase activity by a further 19%. This study provided an effective strategy for enhancing glucoamylase production of A. niger.  相似文献   

17.
Mutational experiments were carried out to decrease the protease productivity of Aspergillus ficum IFO 4320 by using N-methyl-N′-nitro-N-nitrosoguanidine. A protease-negative mutant, M-33, exhibited higher α-amylaseactivity than the parent strain under submerged culture at 30°C for 24 h. About 70% of the total α-amylase activity in the M-33 culture filtrate was adsorbed onto starch granules. The electrophoretically homogeneous preparation of raw-starch-adsorbable α-amylase (molecular weight, 88,000), acid stable at pH 2, showed intensive raw-starch-digesting activity, dissolving corn starch granules completely. The preparation also exhibited a high synergistic effect with glucoamylase I. A mutant, M-72, with higher protease activity produced a raw cornstarch-unadsorbable α-amylase. The purified enzyme (molecular weight, 54,000), acid unstable, showed no digesting activity on raw corn starch and a lower synergistic effect with glucoamylase I in the hydrolysis of raw corn starch. The fungal α-amylase was therefore divided into two types, a novel type of raw-starch-digesting enzyme and a conventional type of raw-starch-nondigesting enzyme.  相似文献   

18.
Purified barley carboxypeptidase exhibits high activity against a number of N-substituted amino acid esters, which are commonly used as synthetic substrates for mammalian and microbial proteinases. The proteinases of barley, on the contrary, do not hydrolyse these compounds. Because many other plants contain carboxypeptidases closely resembling the barley enzyme, we conclude that synthetic ester substrates should not be used to detect proteinase activity in extracts of higher plants. Plant carboxypeptidases also liberate C-terminal tryptophan from α-casein. Therefore, casein also is an unreliable substrate for plant proteinases.  相似文献   

19.
The pH-dependence of the photo-oxidation of L-tryptophan, in the presence of Rose Bengal and Methylene Blue, has been investigated. True, initial rate constants were determined in order to circumvent errors due to secondary processes. Photo-oxidation of glycoamylase I from A. niger in the presence of Methylene Blue or Rose Bengal resulted in a pH-dependent loss of enzymic activity, which was analogous to the destruction of free L-tryptophan during photo-oxidation. The loss of enzymic activity was closely associated with the destruction of tryptophan residues in the enzyme. Significant protection of both enzymic activity and tryptophanyl residues in the enzyme molecule was achieved by performing the photo-oxidation in the presence of maltose, which is a substrate for the enzyme. The tryptophanyl residues of glucoamylase I, which had been inactivated by reaction of its carboxylic acid residues with glycine methyl ester in the presence of a water-soluble carbodi-imide, were also substantially protected by maltose. It is concluded that the active centre of glucoamylase I is a cleft lined with tryptophanyl residues that participate in the binding of the substrate. One or more carboxylic acid residues are involved in bond cleavage.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号