首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Recent evidence from isotope studies supports the view that catalysis by trimethylamine dehydrogenase (TMADH) proceeds from a Michaelis complex involving trimethylamine base and not, as thought previously, trimethylammonium cation. In native TMADH reduction of the flavin by substrate (perdeuterated trimethylamine) is influenced by two ionizations in the Michaelis complex with pK(a) values of 6.5 and 8.4; maximal activity is realized in the alkaline region. The latter ionization has been attributed to residue His-172 and, more recently, the former to the ionization of substrate itself. In the Michaelis complex, the ionization of substrate (pK(a) approximately 6.5 for perdeuterated substrate) is perturbed by approximately -3.3 to -3.6 pH units compared with that of free trimethylamine (pK(a) = 9.8) and free perdeuterated trimethylamine (pK(a) = 10.1), respectively, thus stabilizing trimethylamine base by approximately 2 kJ mol(-1). We show, by targeted mutagenesis and stopped-flow studies that this reduction of the pK(a) is a consequence of electronic interaction with residues Tyr-60 and His-172, thus these two residues are key for optimizing catalysis in the physiological pH range. We also show that residue Tyr-174, the remaining ionizable group in the active site that we have not targeted previously by mutagenesis, is not implicated in the pH dependence of flavin reduction. Formation of a Michaelis complex with trimethylamine base is consistent with a mechanism of amine oxidation that we advanced in our previous computational and kinetic studies which involves nucleophilic attack by the substrate nitrogen atom on the electrophilic C4a atom of the flavin isoalloxazine ring. Stabilization of trimethylamine base in the Michaelis complex over that in free solution is key to optimizing catalysis at physiological pH in TMADH, and may be of general importance in the mechanism of other amine dehydrogenases that require the unprotonated form of the substrate for catalysis.  相似文献   

2.
Tissue factor (TF) is an integral membrane protein cofactor for factor VIIa (fVIIa) that initiates the blood coagulation cascade during vascular injury. TF has two fibrinonectin type III-like domains, both of which make extensive interactions with both the light and heavy chains of fVIIa. In addition to interaction with fVIIa, the membrane proximal C-terminal domain of TF is also known to bind the natural substrates factors IX and X, thereby facilitating their assembly and recognition by fVIIa in the activation complex. Both fVIIa and TF are elongated proteins, and their complex appears to be positioned nearly perpendicular to the membrane surface. It is possible that, similar to fVIIa, the N-terminal domain of TF also contacts the natural substrates. To investigate this possibility, we substituted all 23 basic and acidic residues of the N-terminal domain of TF with Ala or Asn and expressed the mutants as soluble TF(2-219) in a novel expression/purification vector system in the periplasmic space of bacteria. Following purification to homogeneity, the cofactor properties of mutants in promoting the amidolytic and proteolytic activity of fVIIa were analyzed in appropriate kinetic assays. The amidolytic activity assays indicated that several charged residues spatially clustered at the junction of the N- and C-terminal domains of TF are required for high affinity interaction with fVIIa. On the other hand, the proteolytic activity assays revealed that none of the residues under study may be an interactive site for either factor IX or factor X. However, it was discovered the Arg(74) mutant of TF was defective in enhancing both the amidolytic and proteolytic activity of fVIIa, suggesting that this residue may be required for the allosteric activation of the protease.  相似文献   

3.
Manithody C  Yang L  Rezaie AR 《Biochemistry》2007,46(11):3193-3199
Tissue factor (TF) facilitates the recognition and rapid activation of factor X (fX) by factor VIIa (fVIIa) in the extrinsic Xase pathway. TF makes extensive interactions with both light and heavy chains of fVIIa; however, with the exception of a basic recognition site for the Gla domain of fX, no other interactive site on TF for the substrate has been identified. Structural and modeling data have predicted that a basic region of TF comprised of residues Asn-199, Arg-200, and Lys-201 is located at a proper height on the membrane surface to interact with either the C-terminus of the Gla domain or the EGF-1 domain of fX. To investigate this possibility, we prepared the Ala substitution mutants of these residues and evaluated their ability to function as cofactors for fVIIa in the activation of wild-type fX and its two mutants which lack either the Gla domain (GD-fX) or both the Gla and EGF-1 domains (E2-fX). All three TF mutants exhibited normal cofactor activity in the amidolytic activity assays, but the cofactor activity of Arg-200 and Lys-201 mutants in fVIIa activation of both fX and GD-fX, but not E2-fX, was impaired approximately 3-fold. Further kinetic analysis revealed that kcat values with both TF mutants are impaired with no change in Km. These results suggest that both Arg-200 and Lys-201 of TF interact with EGF-1 of fX to facilitate the optimal docking of the substrate into the catalytic groove of the protease in the activation complex.  相似文献   

4.
Factor VIIa (fVIIa) is composed of four discrete domains, a gamma-carboxyglutamic acid (Gla)-containing domain, two epidermal growth factor (EGF)-like domains, and a serine protease domain, all of which appear to be involved, to different extents, in an optimal interaction with tissue factor (TF). All except the second EGF-like domain contain at least one Ca2+ binding site and many properties of fVIIa, e.g., TF and phospholipid binding and amidolytic activity, are Ca(2+)-dependent. A CD study was performed to characterize and locate the conformational changes in fVIIa induced by Ca2+ and TF binding. In addition to intact fVIIa, derivatives lacking the Gla domain or the protease domain were used. Assignment of the Ca(2+)-induced changes in the far-UV region of the fVIIa spectrum to the Gla domain could be made by comparing the CD spectra obtained with these fVIIa derivatives. The changes primarily appeared to reflect a Ca(2+)-induced ordering of alpha-helices existing in the apo state of fVIIa. This was corroborated by models of the apo and Ca2+ forms of fVIIa, obtained as difference spectra between fVIIa derivatives, were very similar to those of isolated Gla peptides from other vitamin K-dependent plasma proteins. The near-UV CD spectrum of fVIIa was dominated by aromatic residues residing in the protease domain and specific bands affected by Ca2+ were indicative of tertiary structural alterations. The formation of a fVIIa:TF complex led to secondary structural changes that appeared to be restricted to the catalytic domain, possibly shedding light on the mechanism by which TF induces an enhancement of fVIIa catalytic activity.  相似文献   

5.
Holyoak T  Nowak T 《Biochemistry》2004,43(22):7054-7065
The pH dependence of the reaction catalyzed by phosphoenolpyruvate carboxykinase (PEPCK) provides significant insight into the chemical mechanism. The pH dependence of k(cat) shows the importance of two acidic ionizations with pK(a) values of 6.5 and 7.0 assigned to the active site metal ligands H249 and K228. A single basic ionization is observed with an apparent pK(a) value of 8.4 that is assigned to K275 that is located in the P-loop motif and is essential for phosphoryl transfer. The pH dependence of k(cat)/K(M,PEP) demonstrates the importance of the same two acidic ionizations in the interaction of phosphoenolpyruvate with PEPCK and a single basic ionization with a pK(a) value of 8.1 that is assigned to Y220. The interaction of Mg-IDP with PEPCK is dependent upon a single acidic ionization attributed to K228 and two basic ionizations, both having an average pK(a) value of 8.1. One of the basic ionizations is attributed to the P-loop lysine (K275) and the other to C273.  相似文献   

6.
The pH dependence of kcat/Km for the papain-catalyzed hydrolysis of ethyl hippurate, N-alpha-benzoyl-L-citrulline methyl ester, and the p-nitroanilide, amide, and ethyl ester derivatives of N-alpha-benzoyl-L-arginine was determined below pH 6.4. The value of kcat/Km was observed to be modulated by two acid ionizations rather than a single ionization as previously believed. For the five substrates studied, the average pK values for the two ionizations are 3.78 +/- 0.2 and 3.95 +/- 0.1 at T/2 0.3, 25 degrees C. The observation that similar pK values were obtained with different substrates was taken as evidence that the kinetically determined pK values are close in value to true macroscopic ionization constants for ionization of groups on the free enzyme.  相似文献   

7.
Norledge BV  Petrovan RJ  Ruf W  Olson AJ 《Proteins》2003,53(3):640-648
Factor X is activated to factor Xa (fXa) in the extrinsic coagulation pathway by the tissue factor (TF)/factor VIIa (fVIIa) complex. Upon activation, the fXa molecule remains associated with the TF/fVIIa complex, and this ternary complex is known to activate protease-activated receptors (PARs) 1 and 2. Activation of fVII in the TF complex by fXa is also seen at physiologic concentrations. The ternary complexes TF/fVII/fXa, TF/fVIIa/fX, and TF/fVIIa/fXa are therefore all physiologically relevant and of interest as targets for inhibition of both coagulation and cell-signaling pathways that are important in cardiovascular disease and inflammation. We therefore present a model of the TF/fVIIa/fXa complex, built with the use of the available structures of the TF/fVIIa complex and fXa by protein-protein docking calculations with the program Surfdock. The fXa model has an extended conformation, similar to that of fVIIa in the TF/fVIIa complex, with extensive interactions with TF and the protease domain of fVIIa. All four domains of fXa are involved in the interaction. The gamma-carboxyglutamate (Gla) and epithelial growth factor (EGF1 and EGF2) domains of fVIIa are not significantly involved in the interaction. Docking of the Gla domain of fXa to TF/fVIIa has been reported previously. The docking results identify potential interface residues, allowing rational selection of target residues for site-directed mutagenesis. This combination of docking and mutagenesis confirms that residues Glu51 and Asn57 in the EGF1 domain, Asp92 and Asp95 in the EGF2 domain, and Asp 185a, Lys 186, and Lys134 in the protease domain of factor Xa are involved in the interaction with TF/fVIIa. Other fX protease domain residues predicted to be involved in the interaction come from the 160s loop and the N-terminus of the fX protease domain, which is oriented in such a way that activation of both fVII by fXa, and the reciprocal fX activation by fVIIa, is possible.  相似文献   

8.
To identify ionizations of the active site metal-bound water in horse liver alcohol dehydrogenase (alcohol:NAD+ oxidoreductase; EC 1.1.1.1), the pH, solvent isotope, temperature, and anion dependences of the steady-state kinetic parameters kcat and kcat/KM have been evaluated under initial velocity conditions for the native and the active site-specific Co(2+)-reconstituted enzyme. In the oxidation of benzyl alcohol, a bell-shaped pattern of four prototropic equilibria was observed under conditions of saturating concentrations of NAD+. It is shown that the ionizations governing kcat (pK1 congruent to 6.7, pK2 congruent to 10.6) belong to the ternary enzyme-NAD(+)-alcohol complex, whereas the ionizations governing kcat/KM (pK1' congruent to 7.5, pK2' congruent to 8.9) belong to the binary enzyme-NAD+ complex. The ionizations pK1 and pK1' are not influenced by metal substitution and are ascribed to His-51 on the basis of experimental estimates of their associated enthalpies of ionization. On the other hand, pK2 and pK2' are significantly decreased (delta pKa congruent to 1.0) in the Co(2+)-enzyme and are attributed to the active site metal-bound water molecule. The shape of the pH profiles requires that the metal ion coordinates a neutral water molecule in the ternary enzyme-NAD(+)-alcohol complex under physiological conditions. The possible catalytic role of the water molecule within a pentacoordinate metal ion complex in the active site is discussed.  相似文献   

9.
Enthalpy changes of alpha-chymotrypsin acylation by 3-(2-furyl)acryloylimidazole (FAI) were calorimetrically determined as a function of pH. By observing the functional dependence of acylation enthalpies on buffer ionization heats, a complex pH profile was obtained describing proton release accompanying formation of acyl-enzyme. A pKa of 4.0 for FAI ionization and apparent pKa values of 6.8, 7.55 and 8.8 on the enzyme were used to account for the proton release data. A model which accounts for the proton release behavior was used to fit the acylation enthalpy data and values for the apparent dissociation enthalpies of the groups involved were obtained along with a pH-independent intrinsic enthalpy of acylation. This model suggests a group with an apparent pK = 6.8 and delta Hion = 8.7 kcal/mol which is perturbed to a pK of 7.55 and delta Hion = 7.6 kcal/mol on attachment of the acyl moiety to the enzyme. The apparent ionization enthalpy change for the active-inactive transition (pK3 = 8.8; delta H = 3.0 kcal/mol) corresponds with that calculated from the data of Fersht (J. Mol. Biol. 64 (1972) 497). The pH-independent intrinsic enthalpy of acylation (delta H = -7.9 kcal/mol) is corrected for group ionizations linked to the acylation process. Consequently, it more closely reflects molecular processes of interest such as substrate binding, covalent bond rearrangement, and product release.  相似文献   

10.
Recombinant nematode anticoagulant protein c2 (rNAPc2) is a potent, factor Xa (fXa)-dependent small protein inhibitor of factor VIIa-tissue factor (fVIIa.TF), which binds to a site on fXa that is distinct from the catalytic center (exo-site). In the present study, the role of other fX derivatives in presenting rNAPc2 to fVIIa.TF is investigated. Catalytically active and active site blocked fXa, as well as a plasma-derived and an activation-resistant mutant of zymogen fX bound to rNAPc2 with comparable affinities (K(D) = 1-10 nm), and similarly supported the inhibition of fVIIa.TF (K(i)* = approximately 10 pm). The roles of phospholipid membrane composition in the inhibition of fVIIa.TF by rNAPc2 were investigated using TF that was either detergent-solubilized (TF(S)), or reconstituted into membranes, containing phosphatidylcholine (TF(PC)) or a mixture of phosphatidylcholine and phosphatidylserine (TF(PCPS)). In the absence of the fX derivative, inhibition of fVIIa.TF was similar for all three conditions (K(i) approximately 1 microm), whereas the addition of the fX derivative increased the respective inhibition by 35-, 150-, or 100,000-fold for TF(S), TF(PC), and TF(PCPS). The removal of the gamma-carboxyglutamic acid-containing domain from the fX derivative did not affect the binding to rNAPc2, but abolished the effect of factor Xa as a scaffold for the inhibition of fVIIa.TF by rNAPc2. The overall anticoagulant potency of rNAPc2, therefore, results from a coordinated recognition of an exo-site on fX/fXa and of the active site of fVIIa, both of which are properly positioned in the ternary fVIIa.TF.fX(a) complex assembled on an appropriate phospholipid surface.  相似文献   

11.
The pH dependence of the spectra and of the oxidation-reduction potential of three cytochromes c2, from Rhodopseudomonas capsulata, Rhodopseudomonas sphaeroides and Rhodomicrobium vannielii, were studied. A single alkaline pK was observed for the spectral changes in all three ferricytochromes. In Rps. capsulata cytochrome c2 this spectroscopic pK corresponds to the pK observed in the dependence of oxidation-reduction potential on pH. For the other two cytochromes the oxidation-reduction potential showed a complex dependency on pH which can be fitted to theoretical curves involving three ionizations. The third ionization corresponds to the ionization observed in the spectroscopic studies but the first two occur without changes in the visible spectra. The possible structural bases for these ionizations are discussed.  相似文献   

12.
Tissue factor (TF) binds the zymogen (VII) and activated (VIIa) forms of coagulation factor VII with high affinity. The structure determined for the sTF-VIIa complex [Banner, D. W., et al. (1996) Nature 380, 41-46] shows that all four domains of VIIa (Gla, EGF-1, EGF-2, and protease) are in contact with TF. Although a structure is not available for the TF-VII complex, the structure determined for free VII [Eigenbrot, C., et al. (2001) Structure 9, 675-682] suggests a significant conformational change for the zymogen to enzyme transition. In particular, the region of the protease domain that must contact TF has a conformation that is altered from that of VIIa, suggesting that the VII protease domain interacts with TF in a manner different from that of VIIa. To test this hypothesis, a panel of 12 single-site sTF mutants, having substitutions of residues observed to contact the proteolytic domain of VIIa, have been evaluated for binding to both zymogen VII and VIIa. Affinities were determined by surface plasmon resonance measurements using a noninterfering anti-TF monoclonal antibody to capture TF on the sensor chip surface. Dissociation constants (K(D)) measured for binding to wild-type sTF are 7.5 +/- 2.4 nM for VII and 5.1 +/- 2.3 nM for VIIa. All of the sTF mutants except S39A and E95A exhibited a significant decrease (>2-fold) in affinity for VIIa. The changes in affinity measured for VII or VIIa binding with substitution in sTF were comparable in magnitude. We conclude that the proteolytic domain of both VII and VIIa interacts with this region of sTF in a nearly identical fashion. Therefore, zymogen VII can readily adopt a VIIa-like conformation required for binding to TF.  相似文献   

13.
Factors VII, IX, and X play key roles in blood coagulation. Each protein contains an N-terminal gamma-carboxyglutamic acid domain, followed by EGF1 and EGF2 domains, and the C-terminal serine protease domain. Protein C has similar domain structure and functions as an anticoagulant. During physiologic clotting, the factor VIIa-tissue factor (FVIIa*TF) complex activates both factor IX (FIX) and factor X (FX). FVIIa represents the enzyme, and TF represents the membrane-bound cofactor for this reaction. The substrates FIX and FX may utilize multiple domains in binding to the FVIIa*TF complex. To investigate the role of the EGF1 domain in this context, we expressed wild type FIX (FIX(WT)), FIX(Q50P), FIX(PCEGF1) (EGF1 domain replaced with that of protein C), FIX(DeltaEGF1) (EGF1 domain deleted), FX(WT), and FX(PCEGF1). Complexes of FVIIa with TF as well as with soluble TF (sTF) lacking the transmembrane region were prepared, and activations of WT and mutant proteins were monitored by SDS-PAGE and by enzyme assays. FVIIa*TF or FVIIa*sTF activated each mutant significantly more slowly than the FIX(WT) or FX(WT). Importantly, in ligand blot assays, FIX(WT) and FX(WT) bound to sTF, whereas mutants did not; however, all mutants and WT proteins bound to FVIIa. Further experiments revealed that the affinity of the mutants for sTF was reduced 3-10-fold and that the synthetic EGF1 domain (of FIX) inhibited FIX binding to sTF with K(i) of approximately 60 microm. Notably, each FIXa or FXa mutant activated FVII and bound to antithrombin, normally indicating correct folding of each protein. In additional experiments, FIXa with or without FVIIIa activated FX(WT) and FX(PCEGF1) normally, which is interpreted to mean that the EGF1 domain of FX does not play a significant role in its interaction with FVIIIa. Cumulatively, our data reveal that substrates FIX and FX in addition to interacting with FVIIa (enzyme) interact with TF (cofactor) using, in part, the EGF1 domain.  相似文献   

14.
We find that the isolated, extracellular domain of tissue factor (TF1-218; sTF) exhibits only 4% of the activity of wild-type transmembrane TF (TF1-263) in an assay that measures the conversion of factor X to Xa by the TF:VIIa complex. Further, the activity of sTF is manifest only when vesicles consisting of phosphatidylserine and phosphatidylcholine (30/70 w/w) are present. To determine whether the decreased activity results from weakened affinity of sTF for VIIa, we studied their interaction using equilibrium ultracentrifugation, fluorescence anisotropy, and an activity titration. Ultracentrifugation of the sTF:VIIa complex established a stoichiometry of 1:1 and an upper limit of 1 nM for the equilibrium dissociation constant (Kd). This value is in agreement with titrations of dansyl-D-Phe-L-Phe-Arg chloromethyl ketone active site labeled VIIa (DF-VIIa) with sTF using dansyl fluorescence anisotropy as the observable. Pressure dissociation experiments were used to obtain quantitative values for the binding interaction. These experiments indicate that the Kd for the interaction of sTF with DF-VIIa is 0.59 nM (25 degrees C). This value may be compared to a Kd of 7.3 pM obtained by the same method for the interaction of DF-VIIa with TF1-263 reconstituted into phosphatidylcholine vesicles. The molar volume change of association was found to be 63 and 117 mL mol-1 for the interaction of DF-VIIa with sTF and TF1-263, respectively. These binding data show that the sTF:VIIa complex is quantitatively and qualitatively different from the complex formed by TF1-263 and VIIa.  相似文献   

15.
A common feature of all the proposed mechanisms for monoamine oxidase is the initiation of catalysis with the deprotonated form of the amine substrate in the enzyme-substrate complex. However, recent steady-state kinetic studies on the pH dependence of monoamine oxidase led to the suggestion that it is the protonated form of the amine substrate that binds to the enzyme. To investigate this further, the pH dependence of monoamine oxidase A was characterized by both steady-state and stopped-flow techniques with protiated and deuterated substrates. For all substrates used, there is a macroscopic ionization in the enzyme-substrate complex attributed to a deprotonation event required for optimal catalysis with a pK(a) of 7.4-8.4. In stopped-flow assays, the pH dependence of the kinetic isotope effect decreases from approximately 13 to 8 with increasing pH, leading to assignment of this catalytically important deprotonation to that of the bound amine substrate. The acid limb of the bell-shaped pH profile for the rate of flavin reduction over the substrate binding constant (k(red)/K(s), reporting on ionizations in the free enzyme and/or free substrate) is due to deprotonation of the free substrate, and the alkaline limb is due to unfavourable deprotonation of an unknown group on the enzyme at high pH. The pK(a) of the free amine is above 9.3 for all substrates, and is greatly perturbed (DeltapK(a) approximately 2) on binding to the enzyme active site. This perturbation of the substrate amine pK(a) on binding to the enzyme has been observed with other amine oxidases, and likely identifies a common mechanism for increasing the effective concentration of the neutral form of the substrate in the enzyme-substrate complex, thus enabling efficient functioning of these enzymes at physiologically relevant pH.  相似文献   

16.
Hookworms are hematophagous nematodes capable of growth, development and subsistence in living host systems such as humans and other mammals. Approximately one billion, or one in six, people worldwide are infected by hookworms causing gastrointestinal blood loss and iron deficiency anemia. The hematophagous hookworm Ancylostoma caninum produces a family of small, disulfide-linked protein anticoagulants (75-84 amino acid residues). One of these nematode anticoagulant proteins, NAP5, inhibits the amidolytic activity of factor Xa (fXa) with K(i)=43 pM, and is the most potent natural fXa inhibitor identified thus far. The crystal structure of NAP5 bound at the active site of gamma-carboxyglutamic acid domainless factor Xa (des-fXa) has been determined at 3.1 A resolution, which indicates that Asp189 (fXa, S1 subsite) binds to Arg40 (NAP5, P1 site) in a mode similar to that of the BPTI/trypsin interaction. However, the hydroxyl group of Ser39 of NAP5 additionally forms a hydrogen bond (2.5 A) with His57 NE2 of the catalytic triad, replacing the hydrogen bond of Ser195 OG to the latter in the native structure, resulting in an interaction that has not been observed before. Furthermore, the C-terminal extension of NAP5 surprisingly interacts with the fXa exosite of a symmetry-equivalent molecule forming a short intermolecular beta-strand as observed in the structure of the NAPc2/fXa complex. This indicates that NAP5 can bind to fXa at the active site, or the exosite, and to fX at the exosite. However, unlike NAPc2, NAP5 does not inhibit fVIIa of the fVIIa/TF complex.  相似文献   

17.
Petrovan RJ  Ruf W 《Biochemistry》2002,41(30):9302-9309
Factor VIIa (VIIa) remains in a zymogen-like state following proteolytic activation and depends on interactions with the cofactor tissue factor (TF) for function. Val(21), Glu(154), and Met(156) are residues that are spatially close in available zymogen and enzyme structures, despite major conformational differences in the corresponding loop segments. This residue triad displays unusual side chain properties in comparison to the properties of other coagulation serine proteases. By mutagenesis, we demonstrate that these residues cooperate to stabilize the enzyme conformation and to enhance the affinity for TF. In zymogen VII, however, substitution of the triad did not change the cofactor affinity, further emphasizing the crucial role of the activation pocket in specifically stabilizing the active enzyme conformation. In comparison to VIIa(Q156), the triple mutant VIIa(N21I154Q156) had a stabilized amino-terminal Ile(16)-Asp(194) salt bridge and enhanced catalytic function. However, proteolytic and amidolytic activities of free VIIa variants were not concordantly increased. Rather, a negatively charged Asp at position 21 was the critical factor that determined whether an amidolytically more active VIIa variant also more efficiently activated the macromolecular substrate. These data thus demonstrate an unexpected complexity by which the zymogenicity-determining triad in the activation pocket of VIIa controls the active enzyme conformation and contributes to exosite interactions with the macromolecular substrate.  相似文献   

18.
The binding of factor VIIa (FVIIa) to tissue factor (TF) initiates blood coagulation. The binary complex is dependent on Ca2+ binding to several sites in FVIIa and is maintained by multiple contacts distributed throughout the various domains. Although the contributions from various residues and domains, including the Ca2+ coordination, to the global binding energy have been characterized, their importance for specific local interactions is virtually unknown. To address this aspect, we have attached four spectroscopic probes to an engineered Cys residue replacing Phe140 in soluble TF (sTF). This allows the monitoring of local changes in hydrophobicity and rigidity upon complex formation at the interface between the first epidermal growth factor-like (EGF1) domain of FVIIa and sTF. The fluorescent labels used sense a more hydrophobic environment and the spin labels are dramatically immobilized when FVIIa binds sTF. The results obtained with a 4-carboxyglutamic acid (Gla)-domainless derivative of FVIIa indicate that the Gla domain has no or minimal influence on the interaction between EGF1 and sTF. However, there is a difference in local Ca2+ dependence between Gla-domainless and full-length FVIIa.  相似文献   

19.
Functional group interactions involved in the formation of the glutamate dehydrogenase-NADPH binary complex have been studied by three independent but complementary approaches: the pH dependence of the overall dissociation constant measured by an improved differential spectroscopic technique; the pH dependence of the enthalpy of complex formation measured by flow calorimetry; and the pH dependence of the number of protons released to, or taken up from, the solvent in the complex formation reaction, measured by titration. We conclude that the coenzyme binds to the enzyme through three distinguishable interactions: a pH-independent process involving the binding of the reduced nicotinamide ring; a relatively weak "proton-stabilizing" process, occurring at low pH involving the shift at a pK of 6.3 in the free enzyme to 7.0 in the enzyme-NADPH complex; and a stronger "proton-destabilizing" process, occurring at a higher pH involving a shift of a pK of 8.5 in the enzyme down to 6.9 in the enzyme-NADPH complex. The proton ionization of the free enzyme involved in this third interaction exhibits some unusual thermodynamic parameters, having delta Go = +11.5 +/- 0.1 kcal mol-1, delta Ho = +19 +/- 1 kcal mol-1, and delta So = +23 eu. We show here that this proton ionization step is directly related to and indeed constitutes the "implicit" shift in enzyme macrostates which we have shown to be responsible for the existence of large highly nonlinear delta Cpo effects in the formation of this complex [Fisher, H. F., Colen, A. H., & Medary, R. T. (1981) Nature (London) 292, 271-272].  相似文献   

20.
As an attempt to investigate the dynamic interactions between plasma serine protease, coagulation factor VIIa (VIIa) and its cofactor, tissue factor (TF), we performed normal mode analysis (NMA) of the complex of VIIa with soluble TF (the extracellular part of TF; sTF). We compared fluctuations of Calpha atoms of VIIa or sTF derived from NMA in the VIIa-sTF complex with those of VIIa or sTF in an uncomplexed condition. The atomic fluctuations of the Calpha atoms of sTF complexed with VIIa did not significantly differ from those of sTF without VIIa. In contrast, the atomic fluctuations of VIIa complexed with sTF were much smaller than those of VIIa without sTF. These results suggest that domain motions of VIIa molecule alone are markedly dampened in the VIIa-sTF complex and that the sTF molecule is relatively more rigid than the VIIa molecule. This may indicate functions of TF as a cofactor.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号