首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The labeling patterns produced by radioiodinated botulinum neurotoxin (125I-BoNT) types A and B at the vertebrate neuromuscular junction were investigated using electron microscopic autoradiography. The data obtained allow the following conclusions to be made. 125I-BoNT type A, applied in vivo or in vitro to mouse diaphragm or frog cutaneous pectoris muscle, interacts saturably with the motor nerve terminal only; silver grains occur on the plasma membrane, within the synaptic bouton, and in the axoplasm of the nerve trunk, suggesting internalization and retrograde intra-axonal transport of toxin or fragments thereof. 125I-BoNT type B, applied in vitro to the murine neuromuscular junction, interacts likewise with the motor nerve terminal except that a lower proportion of internalized radioactivity is seen. This result is reconcilable with the similar, but not identical, pharmacological action of these toxin types. The saturability of labeling in each case suggested the involvement of acceptors; on preventing the internalization step with metabolic inhibitors, their precise location became apparent. They were found on all unmyelinated areas of the nerve terminal membrane, including the preterminal axon and the synaptic bouton. Although 125I-BoNT type A interacts specifically with developing terminals of newborn rats, the unmyelinated plasma membrane of the nerve trunk is not labeled, indicating that the acceptors are unique components restricted to the nerve terminal area. BoNT types A and B have distinct acceptors on the terminal membrane. Having optimized the conditions for saturation of these binding sites and calibrated the autoradiographic procedure, we found the densities of the acceptors for types A and B to be approximately 150 and 630/micron 2 of membrane, respectively. It is proposed that these membrane acceptors target BoNT to the nerve terminal and mediate its delivery to an intracellular site, thus contributing to the toxin's selective inhibitory action on neurotransmitter release.  相似文献   

2.
A targeted drug carrier (TDC) is described for transferring functional proteins or peptides into motor nerve terminals, a pivotal locus for therapeutics to treat neuromuscular disorders. It exploits the pronounced selectivity of botulinum neurotoxin type B (BoNT/B) for interacting with acceptors on these cholinergic nerve endings and becoming internalized. The gene encoding an innocuous BoNT/B protease-inactive mutant (BoTIM) was fused to that for core streptavidin, expressed in Escherichia coli and the purified protein was conjugated to surface-biotinylated liposomes. Such decorated liposomes, loaded with fluorescein as traceable cargo, acquired pronounced specificity for motor nerve terminals in isolated mouse hemidiaphragms and facilitated the intraneuronal transfer of the fluor, as revealed by confocal microscopy. Delivery of the protease light chain of botulinum neurotoxin type A (BoNT/A) via this TDC accelerated the onset of neuromuscular paralysis, indicative of improved translocation of this enzyme into the presynaptic cytosol with subsequent proteolytic inactivation of synaptosomal-associated protein of molecular mass 25 kDa (SNAP-25), an exocytotic soluble N-ethyl-maleimide-sensitive factor attachment protein receptor (SNARE) essential for neurotransmitter release. BoTIM-coupled liposomes, loaded with peptide inhibitors of proteases, yielded considerable attenuation of the neuroparalytic effects of BoNT/A or BoNT/F as a result of their cytosolic transfer, the first in situ demonstration of the ability of designer antiproteases to suppress the symptoms of botulism ex vivo. Delivery of the BoNT/A inhibitor by liposomes targeted with the full-length BoTIM proved more effective than that mediated by its C-terminal neuroacceptor-binding domain. This demonstrated versatility of TDC for nonviral cargo transfer into cholinergic nerve endings has unveiled its potential for direct delivery of functional targets into motor nerve endings.  相似文献   

3.
The Ca2+-dependent regulator protein of cyclic nucleotide phosphodiesterase was labeled with 125I to the extent of 1 mol of monoiodotyrosine per mol. The iodinated protein showed a small decrease in affinity for phosphodiesterase but gave the same maximal level of activation of the enzyme as did the unmodified regulator protein. Iodinated regulator protein formed complexes with both highly purified cyclic nucleotide phosphodiesterase and phosphodiesterase inhibitory protein in the presence but not in the absence of Ca2+ as demonstrated by ultracentrifugation in glycerol gradients. Cross-linking experiments indicate that the Ca2+-dependent regulator protein interacts with the large subunit of the inhibitory protein.  相似文献   

4.
Zhang Z  Nguyen KT  Barrett EF  David G 《Neuron》2010,68(6):1097-1108
Key components of vesicular neurotransmitter release, such as Ca(2+) influx and membrane recycling, are affected by cytosolic pH. We measured the pH-sensitive fluorescence of Yellow Fluorescent Protein transgenically expressed in mouse motor nerve terminals, and report that Ca(2+) influx elicited by action potential trains (12.5-100 Hz) evokes a biphasic pH change: a brief acidification (~ 13 nM average peak increase in [H(+)]), followed by a prolonged alkalinization (~ 30 nM peak decrease in [H(+)]) that outlasts the stimulation train. The alkalinization is selectively eliminated by blocking vesicular exocytosis with botulinum neurotoxins, and is prolonged by the endocytosis-inhibitor dynasore. Blocking H(+) pumping by vesicular H(+)-ATPase (with folimycin or bafilomycin) suppresses stimulation-induced alkalinization and reduces endocytotic uptake of FM1-43. These results suggest that H(+)-ATPase, known to transfer cytosolic H(+) into prefused vesicles, continues to extrude cytosolic H(+) after being exocytotically incorporated into the plasma membrane. The resulting cytosolic alkalinization may facilitate vesicular endocytosis.  相似文献   

5.
Clostridium botulinum neurotoxins (BoNTs) act on nerve endings to block acetylcholine release. Their potency is due to their enzymatic activity and selective high affinity binding to neurons. Although there are many pieces of data available on the receptor for BoNT, little attempt has been made to characterize the receptors for BoNT/C and BoNT/D. For this purpose, we prepared the recombinant carboxyl-terminal domain of the heavy chain (H(C)) and then examined its binding capability to rat brain synaptosomes treated with enzymes and heating. Synaptosomes treated with proteinase K or heating retained binding capability to both H(C)/C and H(C)/D, suggesting that a proteinaceous substance does not constitute the receptor component. We next performed a thin layer chromatography overlay assay of H(C) with a lipid extract of synaptosomes. Under physiological or higher ionic strengths, H(C)/C bound to gangliosides GD1b and GT1b. These data are in accord with results showing that neuraminidase and endoglycoceramidase treatment decreased H(C)/C binding to synaptosomes. On the other hand, H(C)/D interacted with phosphatidylethanolamine but not with any ganglioside. Using cerebellar granule cells obtained from GM3 synthase knock-out mice, we found that BoNT/C did not elicit a toxic effect but that BoNT/D still inhibited glutamate release to the same extent as in granule cells from wild type mice. These observations suggested that BoNT/C recognized GD1b and GT1b as functional receptors, whereas BoNT/D induced toxicity in a ganglioside-independent manner, possibly through binding to phosphatidylethanolamine. Our results provide novel insights into the receptor for clostridial neurotoxin.  相似文献   

6.
W Xiao  L Wang  J M Ryan  A Pater  H Liu 《Radiation research》1999,152(3):250-256
The feasibility of using low-density lipoprotein (LDL) to deliver cytotoxic drugs to tumor cells has been explored since the 1980s, when cells of a number of cancer cell lines were found to have higher LDL receptor activity than normal cells. Such differential uptake between tumor and normal cells may provide a unique opportunity to use LDL as a tumor-specific carrier of radiopharmaceuticals for the clinical management of cancer. In this study, an (125)I-labeled hexa-iodinated diglyceride analog, 1, 3-dihydroxypropan-2-one 1,3-diiopanoate (DPIP), was synthesized and incorporated into LDL using a fusion technique. It was found that approximately 500 [(125)I] DPIP molecules were incorporated into each LDL particle. Cells of three human cervical tumor cell lines, HeLa, SiHa and C-33A, were used to examine the cellular uptake of the [(125)I]DPIP-LDL conjugate. It was shown that the [(125)I]DPIP-LDL conjugate was specifically bound to and taken up by cervical tumor cells through an LDL receptor-mediated endocytosis pathway. The results suggest that LDL may be a selective carrier for delivering hydrophobic radiopharmaceuticals to cancer cells and particularly for the diagnosis of cervical tumors.  相似文献   

7.
Summary Immunohistochemistry was employed to study the development of somatostatin-containing cells in the pancreas and duodenum of rat fetuses and of 1–7 day-old newborns. Immunoreactive cells were first detected in the pancreatic islets on day 17 of gestation and in the duodenum on day 18. Somatostatin cells were numerous in the pancreas and gut at term and in early postnatal stages. The development of somatostatin-containing cells in both pancreatic islets and duodenum was not affected by either fetal hypophysectomy on day 16 or intrauterine growth retardation induced by ligature of the main uterine vessels on day 17 of gestation.This investigation was supported by grant 003 from the INSERM (ATP n 56-78-88)  相似文献   

8.
9.
Two of the tree toxic compounds used in this work, veratridine and the sea anemone toxin, provoke neurotransmitter release from synaptosomes; the third one, tetrodotoxin, prevents the action of both veratridine and the sea anemone toxin. The half-maximum effects of veratridine and sea anemone toxin actions on synaptosomes are K0.5 = 10 and 0.02 micronM, respectively. Although veratridine and the sea anemone toxin similarly provoke neurotransmitter release, they act on different receptor structures in the membrane. Tetrodotoxin antagonizes the effects of both veratridine and the sea anemone toxin. The half-maximum inhibitory concentration of tetrodotoxin is K0.5 = 4 nM for veratridine and 7.9 nM for ATXII. It is very similar to the dissociation constant measured from direct binding experiments with the radioactive toxin. The analysis of this antagonistic action offers an easy in vitro assay for tetrodotoxin interaction with its receptor.  相似文献   

10.
The aim of this work was to investigate the possible mechanisms for uptake by human monocyte-derived macrophages (HMDM) of low density lipoprotein (LDL) pretreated with human arterial chondroitin-6-SO4-rich proteoglycan (LDL-PG). HMDM were incubated with 125I-labeled tyramine cellobiose-labeled LDL-PG, native LDL, and acetylated LDL (Ac-LDL). The results showed that two to four times more LDL-PG than LDL was bound and internalized by the HMDM. Competition experiments showed that LDL-PG competed with native LDL for the apoB,E (LDL) receptor, but not for the Ac-LDL scavenger receptor. Both the LDL and LDL-PG uptake were reduced after preincubation of the macrophages with unlabeled native LDL, though to a lesser extent with LDL-PG. The specific binding of 125I-labeled LDL and 125I-labeled LDL-PG at 4 degrees C was both saturable and concentration-dependent. The dissociation constant (Kd) for binding was 8.6 x 10(-9) M for LDL and 9.4 x 10(-9) M for LDL-PG, but the maximum binding (Bmax) was 1.5-times higher for LDL-PG. Cholesterol derived from LDL-PG was less effective than native LDL in suppressing HMG-CoA reductase activity. The results indicate that the uptake of LDL-PG is mediated not only by the LDL-receptor, but also by another unspecific pathway, which may not be subjected to regulation. These results provide further support for the hypothesis that LDL modifications induced by arterial PG may contribute to the formation of foam cells.  相似文献   

11.
12.
R A Harris  D Fenner  S W Leslie 《Life sciences》1983,32(23):2661-2666
Several physiological stimuli, including neuronal depolarization, increase the production of phosphatidate (PA) from phosphatidylinositol (PI) and increase calcium fluxes across cell membranes. To determine if breakdown of PI is required for neuronal calcium uptake, we tested inhibitors of PI-specific phospholipase C on depolarization-dependent uptake of calcium by isolated brain synaptosomes. At a concentration of 0.1 mM these inhibitors reduced calcium uptake produced by depolarization for 1 to 3 sec, but did not affect uptake due to more prolonged depolarization. Exogenous PA also stimulated calcium accumulation by synaptosomes and this uptake was not reduced by the enzyme inhibitors. These results suggest that the rapid calcium influx produced by neuronal depolarization may be mediated by the breakdown of PI.  相似文献   

13.
The interaction of copper(II) with adenosine, 2'-deoxyadenosine, 1-methyladenosine, 7-deazaadenosine and AMP was studied by spectroscopic and magnetochemical methods. In non-aqueous medium, copper(II) interacts with adenosine and AMP at N-7 and N-1, and with 1-methyladenosine at N-7 and N-3. The copper ion is not bound to the NH2 group. In aqueous solution, copper(II) interacts both with N-7 and N-1 of adenosine, and in AMP additionally with the phosphate group. The interaction of copper(II) with the heterocyclic part, but not withthe phosphate group, is dependent on the extent of protonation of the molecular. A crystalline AMP-copper(II) complex [Cu(C10H12N5O7P).(H2O)2] was obtained; the phosphate group and probably N-7 are involved in the complex formation.  相似文献   

14.
Interaction of copper(II) with guanosine, 2'-deoxyguanosine, 1-methylguanosine, 7-methylguanosine and GMP was studied withe use of spectroscopic and magneto-chemical methods. The main site of copper(II) binding in guanosine is nitrogen N-7; participation of N-1 is not excluded. The involvement of carbonyl oxygen in copper binding or copper chelation to N-7 and 0-6 is rather unlikely. A crystalline complex of copper(II) with GMP [Cu(C10H12O8N5P) .(H2O)3] was obtained, and it was demonstrated that copper(II) is bound with N-7 and the phosphate group.  相似文献   

15.
The effect of bivalent cations on phosphate uptake by Saccharomyces cerevisiae was investigated. Phosphate uptake via the Na+-dependent transport system at pH 7.2 is stimulated by bivalent cations. The apparent affinity of phosphate for the transport mechanism is increased, but the apparent affinity for Na+ is decreased. Uptake of phosphate via the Na+-independent transport system is accompanied by a net proton influx of 2H+ and an efflux of 1 K+ for each phosphate ion taken up. At pH 4.5 phosphate uptake via the Na+-independent system is stimulated by bivalent cations, whereas at pH 7.2 uptake is inhibited. The effect of bivalent cations on phosphate uptake can be ascribed to a decrease in the surface potential.  相似文献   

16.
This report describes the uptake of high molecular weight RNA by Ehrlich ascites tumor cells treated with enzymes and polycations which reduce cell net negative surface charge density. Enzyme treatment had little effect on RNA uptake, but treatment with poly- -lysine resulted in increased binding and uptake of RNA. Present data indicate that decreased cell surface charge, increased availability of positive surface sites, and cell death, all contribute to increased RNA uptake. The individual contributions of these factors has been partially resolved. A possible mechanism for polyanion uptake by cells is proposed.  相似文献   

17.
We have investigated the effects of altered gravity on the kinetic parameters of glutamate transport activity. We observed no differences in Km values for cerebellum and cerebral hemisphere nerve terminals (synaptosomes) between control rats- 18,2 +/- 7,6 micromoles (cerebellum), 10,7 +/- 2,5 micromoles (cerebral hemispheres) and animals exposed to hypergravity- 23,3 +/- 6,9 micromoles (cerebellum), 6,7 +/- 1,5 micromoles (cerebral hemispheres). The similarity of this parameter for the two studied groups of animals showed that affinity of glutamate transporter to substrate in cerebellum and cerebral hemispheres was not sensitive to hypergravity stress. The maximal velocity of L-[14C]-glutamate uptake (Vmax) reduced for cerebellum synaptosomes from 9,6 +/- 3,9 nmol/min/mg of protein in control group to 7,4 +/- 2,0 nmol/min/mg of protein in animals, exposed to hypergravity stress. For cerebral hemisphere synaptosomes the maximal velocity significantly decreased from 12,5 +/- 3,2 nmol/min/mg of protein to 5,6 +/- 0,9 nmol/min/mg of protein, respectively.  相似文献   

18.
19.
The porphyrin photosensitizer, meso-Tetra (4-N-methylpyridyl) porphine tetraperchlorate binds to calf thymus DNA by intercalation and by external electrostatic association. This was concluded from the results of measruements involving Scatchard analysis, viscometry, thermal denaturation, and circular dichroism.  相似文献   

20.
Macrophage-stimulating protein (MSP) and hepatocyte growth factor/scatter factor (HGF/SF) are plasminogen-related growth and motility factors that interact with cell-surface protein tyrosine kinase receptors. Each one is a heterodimeric protein comprising a disulfide-linked alpha chain and a serine protease-like beta chain. Despite structural similarities between MSP and HGF, the primary receptor binding site is located on the alpha chain of HGF/SF but on the beta chain of MSP. To obtain insight into the structural basis for MSP beta chain binding, beta chain structure was modeled from coordinates of an existing model of the HGF beta chain. The model revealed that the region corresponding to the S1 specificity pocket in trypsin is filled by the Asn(682)/Glu(648) interacting pair, leaving a shallow cavity for possible beta chain interaction with the receptor. Mutants in this region were created, and their binding characteristics were determined. A double mutation of Asn(682)/Glu(648) caused diminished binding of the beta chain to the MSP receptor, and a single mutation of neighboring Arg(683) completely abolished binding. Thus, this region of the molecule is critical for binding. We also found that at equimolar concentrations of free alpha and beta chains, alpha chain binding to receptor was detectable, at levels considerably lower than beta chain binding. The EC(50) values determined by quantitative enzyme-linked immunosorbent assay are 0.25 and 16.9 nM for beta and alpha chain, respectively. The data suggest that MSP has two independent binding sites with high and low affinities located in beta and alpha chain, respectively, and that the two sites together mediate receptor dimerization and subsequent activation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号