首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Mahoganoid (Mgrn1(md)) is a mutation of the mahogunin (Mgrn1) gene. The hypomorphic allele suppresses the yellow pigmentation and obesity of the A(y) mouse that ubiquitously overexpresses agouti signaling protein (ASP). To assess the physiological effects of MGRN1 on energy and glucose homeostasis, we generated animals doubly mutant for Mgrn1(md) and A(y), Lep(ob), or a null allele of Mc4r, and diet-induced obesity (DIO) mice segregating for Mgrn1(md). Mgrn1(md) suppressed the obesity, hyperglycemia, and hyperinsulinemia of A(y) mice. Mgrn1(md) suppressed A(y)-induced obesity by reducing food intake, and reduced adiposity in Lep(ob)/Lep(ob) females, but did not alter the body weight or body composition of mice fed a high-fat diet. There was no effect of Mgrn1(md) on weight gain, body composition, energy intake, or energy expenditure in Mc4r-null animals. Mgrn1(md) reduced circulating insulin concentrations in DIO, A(y), and Mc4r-null but not Lep(ob)/Lep(ob) mice. The effect of Mgrn1(md) on circulating insulin concentrations was not due primarily to reductions in fat mass, since the plasma insulin concentrations of Mgrn1(md) mice segregating for either A(y) or Mc4r-null alleles, adjusted for fat mass and plasma glucose, were reduced compared with A(y) and Mc4r mice, respectively. The effect of Mgrn1(md) on insulin sensitivity of Mc4r-null mice suggests that Mgrn1(md) may be increasing insulin sensitivity via the hypothalamic melanocortin-3 receptor pathway.  相似文献   

2.
3.
4.
The factors underlying cardiovascular risk in patients with diabetes have not been clearly elucidated. Efforts to study this in mice have been hindered because the usual atherogenic diets that contain fat and cholesterol also lead to obesity and insulin resistance. We compared plasma glucose, insulin, and atherosclerotic lesion formation in LDL receptor knockout (Ldlr(-/-)) mice fed diets with varying fat and cholesterol content that induced similar lipoprotein profiles. Ldlr(-/-) mice fed a high-fat diet developed obesity, mild hyperglycemia, hyperinsulinemia, and hypertriglyceridemia. Quantitative and qualitative assessments of atherosclerosis were unchanged in diabetic Ldlr(-/-) mice fed a high-fat diet compared with lean nondiabetic control mice after 20 weeks of diet. Although one group of mice fed diets for 40 weeks had larger lesions at the aortic root, this was associated with a more atherogenic lipoprotein profile. The presence of a human aldose reductase transgene had no effect on atherosclerosis in fat-fed Ldlr(-/-) mice with mild diabetes. Our data suggest that when lipoprotein profiles are similar, addition of fat to a cholesterol-rich diet does not increase atherosclerotic lesion formation in Ldlr(-/-) mice.  相似文献   

5.
Obesity, a major health concern, results from an imbalance between energy intake and expenditure. Leptin-deficient ob/ob mice are paradigmatic of obesity, resulting from excess energy intake and storage. Mice lacking acyl-CoA oxidase 1 (Acox1), the first enzyme of the peroxisomal fatty acid β-oxidation system, are characterized by increased energy expenditure and a lean body phenotype caused by sustained activation of peroxisome proliferator-activated receptor α (PPARα) by endogenous ligands in liver that remain unmetabolized in the absence of Acox1. We generated ob/ob mice deficient in Acox1 (Acox1(-/-)) to determine how the activation of PPARα by endogenous ligands might affect the obesity of ob/ob mice. In contrast to Acox1(-/-) (14.3±1.2 g at 6 mo) and the Acox1-deficient (ob/ob) double-mutant mice (23.8±4.6 g at 6 mo), the ob/ob mice are severely obese (54.3±3.2 g at 6 mo) and had significantly more (P<0.01) epididymal fat content. The resistance of Acox1(-/-)/ob/ob mice to obesity is due to increased PPARα-mediated up-regulation of genes involved in fatty acid oxidation in liver. Activation of PPARα in Acox1-deficient ob/ob mice also reduces serum glucose and insulin (P<0.05) and improves glucose tolerance and insulin sensitivity. Further, PPARα activation reduces hepatic steatosis and increases hepatocellular regenerative response in Acox1(-/-)/ob/ob mice at a more accelerated pace than in mice lacking only Acox1. However, Acox1(-/-)/ob/ob mice manifest hepatic endoplasmic reticulum (ER) stress and also develop hepatocellular carcinomas (8 of 8 mice) similar to those observed in Acox1(-/-) mice (10 of 10 mice), but unlike in ob/ob (0 of 14 mice) and OB/OB (0 of 6 mice) mice, suggesting that superimposed ER stress and PPARα activation contribute to carcinogenesis in a fatty liver. Finally, absence of Acox1 in ob/ob mice can impart resistance to high-fat diet (60% fat)-induced obesity, and their liver had significantly (P<0.01) more cell proliferation. These studies with Acox1(-/-)/ob/ob mice indicate that sustained activation of lipid-sensing nuclear receptor PPARα attenuates obesity and restores glucose homeostasis by ameliorating insulin resistance but increases the risk for liver cancer development, in part related to excess energy combustion.  相似文献   

6.
The gut hormone gastric inhibitory polypeptide (GIP) plays a key role in glucose homeostasis and lipid metabolism. This study investigated the effects of administration of a stable and specific GIP receptor antagonist, (Pro(3))GIP, in mice previously fed a high-fat diet for 160 days to induce obesity and related diabetes. Daily intraperitoneal injection of (Pro(3))GIP over 50 days significantly decreased body weight compared with saline-treated controls, with a modest increase in locomotor activity but no change of high-fat diet intake. Plasma glucose, glycated hemoglobin, and pancreatic insulin were restored to levels of chow-fed mice, and circulating triglyceride and cholesterol were significantly decreased. (Pro(3))GIP treatment also significantly decreased circulating glucagon and corticosterone, but concentrations of GLP-1, GIP, resistin, and adiponectin were unchanged. Adipose tissue mass, adipocyte hypertrophy, and deposition of triglyceride in liver and muscle were significantly decreased. These changes were accompanied by significant improvement of insulin sensitivity, meal tolerance, and normalization of glucose tolerance in (Pro(3))GIP-treated high-fat-fed mice. (Pro(3))GIP concentrations peaked rapidly and remained elevated 24 h after injection. These data indicate that GIP receptor antagonism using (Pro(3))GIP provides an effective means of countering obesity and related diabetes induced by consumption of a high-fat, energy-rich diet.  相似文献   

7.
Hormone-sensitive lipase (HSL) plays a crucial role in the hydrolysis of triacylglycerol and cholesteryl ester in various tissues including adipose tissues. To explore the role of HSL in the metabolism of fat and carbohydrate, we have generated mice lacking both leptin and HSL (Lep(ob/ob)/HSL(-/-)) by cross-breeding HSL(-/-) mice with genetically obese Lep(ob/ob) mice. Unexpectedly, Lep(ob/ob)/HSL(-/-) mice ate less food, gained less weight, and had lower adiposity than Lep(ob/ob)/HSL(+/+) mice. Lep(ob/ob)/HSL(-/-) mice had massive accumulation of preadipocytes in white adipose tissues with increased expression of preadipocyte-specific genes (CAAT/enhancer-binding protein beta and adipose differentiation-related protein) and decreased expression of genes characteristic of mature adipocytes (CCAAT/enhancer-binding protein alpha, peroxisome proliferator activator receptor gamma, and adipocyte determination and differentiation factor 1/sterol regulatory element-binding protein-1). Consistent with the reduced food intake, hypothalamic expression of neuropeptide Y and agouti-related peptide was decreased. Since HSL is expressed in hypothalamus, we speculate that defective generation of free fatty acids in the hypothalamus due to the absence of HSL mediates the altered expression of these orexigenic neuropeptides. Thus, deficiency of both leptin and HSL has unmasked novel roles of HSL in adipogenesis as well as in feeding behavior.  相似文献   

8.
Resistin has been linked to components of the metabolic syndrome, including obesity, insulin resistance, and hyperlipidemia. We hypothesized that resistin deficiency would reverse hyperlipidemia in genetic obesity. C57Bl/6J mice lacking resistin [resistin knockout (RKO)] had similar body weight and fat as wild-type mice when fed standard rodent chow or a high-fat diet. Nonetheless, hepatic steatosis, serum cholesterol, and very low-density lipoprotein (VLDL) secretion were decreased in diet-induced obese RKO mice. Resistin deficiency exacerbated obesity in ob/ob mice, but hepatic steatosis was drastically attenuated. Moreover, the levels of triglycerides, cholesterol, insulin, and glucose were reduced in ob/ob-RKO mice. The antisteatotic effect of resistin deficiency was related to reductions in the expression of genes involved in hepatic lipogenesis and VLDL export. Together, these results demonstrate a crucial role of resistin in promoting hepatic steatosis and hyperlipidemia in obese mice.  相似文献   

9.
10.
Role of PYK2 in the development of obesity and insulin resistance   总被引:3,自引:0,他引:3  
Non-receptor proline-rich tyrosine kinase-2 (PYK2), which is activated by phosphorylation of one or more of its tyrosine residues, has been implicated in the regulation of GLUT4 glucose transporter translocation and glucose transport. Some data favor a positive role of PYK2 in stimulating glucose transport, whereas other studies suggest that PYK2 may participate in the induction of insulin resistance. To ascertain the importance of PYK2 in the setting of obesity and insulin resistance, we (1) evaluated the regulation of PYK2 in mice fed a high-fat diet and (2) characterized body and glucose homeostasis in wild type (WT) and PYK2(-/-) mice on different diets. We found that both PYK2 expression and phosphorylation were significantly increased in liver and adipose tissues harvested from high-fat diet fed mice. Wild type and PYK2(-/-) mice were fed a high-fat diet for 8 weeks to induce insulin resistance/obesity. Surprisingly, in response to this diet PYK2(-/-) mice gained significantly more weight than WT mice (18.7+/-1.2g vs. 9.5+/-0.6g). Fasting serum leptin and insulin and blood glucose levels were significantly increased in high-fat diet fed mice irrespective of the presence of PYK2 protein. There was a close correlation between serum leptin and body weight. Intraperitoneal glucose tolerance tests revealed that as expected, the high-fat diet resulted in increased blood glucose levels following glucose administration in wild type mice compared to those fed normal chow. An even greater increase in blood glucose levels was observed in PYK2(-/-) mice compared to wild type mice. These results demonstrate that a lack of PYK2 exacerbates weight gain and development of glucose intolerance/insulin resistance induced by a high-fat diet, suggesting that PYK2 may play a role in slowing the development of obesity, insulin resistance, and/or frank diabetes.  相似文献   

11.
Irwin N  Hunter K  Flatt PR 《Peptides》2008,29(6):1036-1041
GIP receptor antagonism with (Pro3)GIP protects against obesity, insulin resistance, glucose intolerance and associated disturbances in mice fed high-fat diet. Furthermore, cannabinoid CB1 receptor antagonism with AM251 reduces appetite and body weight gain in mice. The present study has examined and compared the effects of chronic daily administrations of (Pro3)GIP (25 nmol/kg body weight), AM251 (6 mg/kg body weight) and a combination of both drugs in high-fat fed mice. Daily i.p. injection of (Pro3)GIP, AM251 or combined drug administration over 22 days significantly (P < 0.05 to <0.01) decreased body weight compared with saline-treated controls. This was associated with a significant (P < 0.05 to <0.01) reduction of food intake in mice treated with AM251. Plasma glucose levels and glucose tolerance were significantly (P < 0.05) lowered by 22 days (Pro3)GIP, AM251 or combined drug treatment. These changes were accompanied by a significant (P < 0.05) improvement of insulin sensitivity in all treatment groups. In contrast, AM251 lacked effects on glucose tolerance, metabolic response to feeding and insulin sensitivity in high-fat mice when administered acutely. These data indicate that chemical blockade of GIP- or CB1-receptor signaling using (Pro3)GIP or AM251, respectively provides an effective means of countering obesity and related abnormalities induced by consumption of high-fat energy-rich diet. AM251 lacks acute effects on glucose homeostasis and there was no evidence of a synergistic effect of combined treatment with (Pro3)GIP.  相似文献   

12.
Gut hormone gastric inhibitory polypeptide (GIP) stimulates insulin secretion from pancreatic β-cells upon ingestion of nutrients. Inhibition of GIP signaling prevents the onset of obesity and consequent insulin resistance induced by high-fat diet. In this study, we investigated the role of GIP in accumulation of triglycerides into adipocytes and in fat oxidation peripherally using insulin receptor substrate (IRS)-1-deficient mice and revealed that IRS-1−/−GIPR−/− mice exhibited both reduced adiposity and ameliorated insulin resistance. Furthermore, increased gene expression of CD36 and UCP2 in liver, and increased expression and enzyme activity of 3-hydroxyacyl-CoA dehydrogenase in skeletal muscle of IRS-1−/−GIPR−/− mice might contribute to the lower respiratory quotient and the higher fat oxidation in light phase. These results suggest that GIP plays a crucial role in switching from fat oxidation to fat accumulation under the diminished insulin action as a potential target for secondary prevention of insulin resistance.  相似文献   

13.
Partial leptin deficiency is not uncommon in the general population. We hypothesized that leptin insufficiency could favor obesity, nonalcoholic steatohepatitis (NASH), and other metabolic abnormalities, particularly under high calorie intake. Thus, mice partially deficient in leptin (ob/+) and their wild-type (+/+) littermates were fed for 4 mo with a standard-calorie (SC) or a high-calorie (HC) diet. Some ob/+ mice fed the HC diet were also treated weekly with leptin. Our results showed that, when fed the SC diet, ob/+ mice did not present significant metabolic abnormalities except for elevated levels of plasma adiponectin. Under high-fat feeding, increased body fat mass, hepatic steatosis, higher plasma total cholesterol, and glucose intolerance were observed in +/+ mice, and these abnormalities were further enhanced in ob/+ mice. Furthermore, some metabolic disturbances, such as blunted plasma levels of leptin and adiponectin, reduced UCP1 expression in brown adipose tissue, increased plasma liver enzymes, beta-hydroxybutyrate and triglycerides, and slight insulin resistance, were observed only in ob/+ mice fed the HC diet. Whereas de novo fatty acid synthesis in liver was decreased in +/+ mice fed the HC diet, it was disinhibited in ob/+ mice along with the restoration of the expression of several lipogenic genes. Enhanced expression of several genes involved in fatty acid oxidation was also observed only in ob/+ animals. Leptin supplementation alleviated most of the metabolic abnormalities observed in ob/+ fed the HC diet. Hence, leptin insufficiency could increase the risk of obesity, NASH, glucose intolerance, and hyperlipidemia in a context of calorie overconsumption.  相似文献   

14.
Irwin N  Hunter K  Flatt PR 《Peptides》2007,28(11):2192-2198
Glucose-dependent insulinotropic polypeptide (GIP) and peptide YY (PYY) are secreted from the intestinal K- and L-cells, respectively, following a meal. Both peptides are believed to play a key role in glucose homeostasis and energy expenditure. This study investigated the effects of daily administration of the stable and specific GIP-R antagonist, (Pro(3))GIP (25 nmol/kg) and the endogenous truncated form of PYY, PYY(3-36) (50 nmol/kg), in mice fed with a high fat diet. Daily i.p. injection of (Pro(3))GIP, PYY(3-36) or combined peptide administration over 24 days significantly (P<0.05-0.01) decreased body weight compared with saline-treated controls without change in food intake. Plasma glucose levels and glucose tolerance were significantly (P<0.05) lowered by (Pro(3))GIP treatment alone, and in combination with PYY(3-36). These changes were accompanied by a slight improvement of insulin sensitivity in all of the treatment groups. (Pro(3))GIP treatment significantly reduced plasma corticosterone (P<0.05), while combined administration with PYY(3-36) significantly lowered serum glucagon (P<0.05). No appreciable changes were observed in either circulating or glucose-stimulated insulin secretion in all treatment groups. (Pro(3))GIP-treated mice had significantly (P<0.01) lowered fasting glucose levels and an improved (P<0.05) glycemic response to feeding. These comparative data indicate that chemical ablation of GIP receptor action using (Pro(3))GIP provides an especially effective means of countering obesity and related abnormalities induced by consumption of high fat energy rich diet.  相似文献   

15.
Group 1B phospholipase A2 (PLA2) is an abundant lipolytic enzyme that is well characterized biochemically and structurally. Because of its high level of expression in the pancreas, it has been presumed that PLA2 plays a role in the digestion of dietary lipids, but in vivo data have been lacking to support this theory. Our initial study on mice lacking PLA2 demonstrated no abnormalities in dietary lipid absorption in mice consuming a chow diet. However, the effects of PLA2 deficiency on animals consuming a high-fat diet have not been studied. To investigate this, PLA2(+/+) and PLA2(-/-) mice were fed a western diet for 16 wk. The results showed that PLA2(-/-) mice were resistant to high-fat diet-induced obesity. This observed weight difference was due to decreased adiposity present in the PLA2(-/-) mice. Compared with PLA2(+/+) mice, the PLA2(-/-) mice had 60% lower plasma insulin and 72% lower plasma leptin levels after high-fat diet feeding. The PLA2(-/-) mice also did not exhibit impaired glucose tolerance associated with the development of obesity-related insulin resistance as observed in the PLA2(+/+) mice. To investigate the mechanism by which PLA(2)(-/-) mice exhibit decreased weight gain while on a high-fat diet, fat absorption studies were performed. The PLA(2)(-/-) mice displayed 50 and 35% decreased plasma [(3)H]triglyceride concentrations 4 and 6 h, respectively, after feeding on a lipid-rich meal containing [(3)H]triolein. The PLA(2)(-/-) mice also displayed increased lipid content in the stool, thus indicating decreased fat absorption in these animals. These results suggest a novel role for PLA(2) in the protection against diet-induced obesity and obesity-related insulin resistance, thereby offering a new target for treatment of obesity and diabetes.  相似文献   

16.
Obesity and insulin resistance cause serious consequences to human health. To study effects of skeletal muscle growth on obesity prevention, we focused on a key gene of skeletal muscle named myostatin, which plays an inhibitory role in muscle growth and development. We generated transgenic mice through muscle-specific expression of the cDNA sequence (5'-region 886 nucleotides) encoding for the propeptide of myostatin. The transgene effectively depressed myostatin function. Transgenic mice showed dramatic growth and muscle mass by 9 weeks of age. Here we reported that individual major muscles of transgenic mice were 45-115% heavier than those of wild-type mice, maintained normal blood glucose, insulin sensitivity, and fat mass after a 2-month regimen with a high-fat diet (45% kcal fat). In contrast, high-fat diet induced wild-type mice with 170-214% more fat mass than transgenic mice and developed impaired glucose tolerance and insulin resistance. Insulin signaling, measured by Akt phosphorylation, was significantly elevated by 144% in transgenic mice over wild-type mice fed a high-fat diet. Interestingly, high-fat diet significantly increased adiponectin secretion while blood insulin, resistin, and leptin levels remained normal in the transgenic mice. The results suggest that disruption of myostatin function by its propeptide favours dietary fat utilization for muscle growth and maintenance. An increased secretion of adiponectin may promote energy partition toward skeletal muscles, suggesting that a beneficial interaction between muscle and adipose tissue play a role in preventing obesity and insulin resistance.  相似文献   

17.
A perturbation of zinc metabolism has been noted in numerous laboratory animals with diabetes and obesity. The effects of zinc supplementation on body fat deposition in two types of experimental obese mice: genetically obese (ob/ob) mice and high-fat diet-induced ICR obese (HF) mice were investigated in this study. Their lean controls were +/? mice, and ICR on basal diet, respectively. The mice in the zinc-supplemented groups were administered 200 mg/kg zinc in their diets for 6 wk. Both the ob/ob mice and the HF mice, that were fed a diet containing a marginal zinc dosage (4–6 mg/kg), had lower zinc levels in their serum and carcass, and higher body fat content than their respective lean controls (p<0.01). After zinc supplementation, ob/ob mice and the HF mice significnatly (p<0.05) increased their body fat by 49.4% and 18.9%, respectively. This study revealed that body fat deposition can be aggravated by zinc supplementation in both types of obese mice. Zinc may be associated with the energy homeostasis of obesity, via its interaction with dietary fat consumption.  相似文献   

18.
Fatty acid binding protein-4 (FABP4) and FABP5 are two closely related FA binding proteins expressed primarily in adipose tissue and/or macrophages. The small-molecule FABP4 inhibitor BMS309403 was previously reported to improve insulin sensitivity in leptin-deficient Lep(ob)/Lep(ob) (ob/ob) mice. However, this compound was not extensively characterized in the more physiologically relevant animal model of mice with diet-induced obesity (DIO). Here, we report the discovery and characterization of a novel series of FABP4/5 dual inhibitors represented by Compounds 1-3. Compared with BMS309403, the compounds had significant in vitro potency toward both FABP4 and FABP5. In cell-based assays, Compounds 2 and 3 were more potent than BMS309403 to inhibit lipolysis in 3T3-L1 adipocytes and in primary human adipocytes. They also inhibited MCP-1 release from THP-1 macrophages as well as from primary human macrophages. When chronically administered to DIO mice, BMS309403 and Compound 3 reduced plasma triglyceride and free FA levels. Compound 3 reduced plasma free FAs at a lower dose level than BMS309403. However, no significant change was observed in insulin, glucose, or glucose tolerance. Our results indicate that the FABP4/5 inhibitors ameliorate dyslipidemia but not insulin resistance in DIO mice.  相似文献   

19.
Leptin-deficient Lep(ob)/Lep(ob)mice hypersecrete insulin in response to acetylcholine stimulation of the phospholipase C-protein kinase C (PLC-PKC) pathway, and leptin constrains this hypersecretion. Leptin has been reported to activate phosphatidylinositol 3-kinase (PI 3-K) and subsequently phosphodiesterase (PDE) to impair protein kinase A (PKA)-induced insulin secretion from cultured islets of neonatal rats. We determined if PKA-induced insulin secretion was also hyperresponsive in islets from Lep(ob)/Lep(ob)mice, and if leptin impaired this pathway in islets from these mice. Additionally, the possible role for PI 3-K and PDE in leptin-induced control of acetylcholine-induced insulin secretion was examined. Stimulation of insulin secretion with GLP-1, forskolin (an activator of adenylyl cyclase), or IBMX (an inhibitor of PDE) did not cause hypersecretion of insulin from islets of young Lep(ob)/Lep(ob)mice, and leptin did not inhibit GLP-1-induced insulin secretion from islets of these mice. Inhibition of PDE with IBMX also did not block leptin-induced inhibition of acetylcholine-mediated insulin secretion from islets of Lep(ob)/Lep(ob)mice. But, preincubation of islets with wortmannin, an inhibitor of PI 3-K activity, blocked the ability of leptin to constrain acetylcholine-induced insulin secretion from islets of Lep(ob)/Lep(ob)mice. We conclude that the capacity of the PKA pathway to stimulate insulin secretion is not increased in islets from young Lep(ob)/Lep(ob)mice, and that leptin does not regulate this pathway in islets from mice. Leptin may stimulate PI 3-K to constrain PLC-PKC-induced insulin secretion from islets of Lep(ob)/Lep(ob)mice.  相似文献   

20.
Leptin-deficient Lep(ob)/Lep(ob) mice exhibit elevations in plasma insulin early in development. The present study tested the hypothesis that absence of leptin during neonatal development permanently programs islets from these mice to hypersecrete insulin. Administration of leptin for 8 days to young adult Lep(ob)/Lep(ob) mice normalized their food intake, plasma insulin concentration, and insulin secretion in response to glucose, acetylcholine, and leptin. Restriction of food intake per se of Lep(ob)/Lep(ob) mice lowered, but did not normalize, plasma insulin concentrations. Food-restricted Lep(ob)/Lep(ob) mice continued to hypersecrete insulin in response to glucose, but islets from these mice did not hyperrespond to acetylcholine or respond to leptin as occurs in ad libitum-fed Lep(ob)/Lep(ob) mice. We conclude that neonatal leptin deficiency does not permanently program islets from mice to hypersecrete insulin. The hyperphagia associated with leptin deficiency contributes substantially to the hypersecretion of insulin, but leptin also appears to have more direct effects on regulation of insulin secretion.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号