共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Caspase家族在细胞凋亡中的研究进展 总被引:4,自引:0,他引:4
半胱氨酸蛋白酶(caspase)家族成员是近两年来发现的在细胞凋亡过程中起关键作用的酶,对其深入研究有助于揭示细胞凋亡的发生机制,阐明不同疾病的发病机理。本文介绍了Caspase家族及其在细胞凋亡中的研究近况。 相似文献
3.
4.
Prisco M Liguoro A Comitato R Cardone A D'Onghia B Ricchiari L Angelini F Andreuccetti P 《Molecular reproduction and development》2003,64(3):341-348
This article is a cytological and molecular investigation on the occurrence of apoptosis during spermatogenesis in Torpedo, a cartilaginous fish characterised by a typical cystic testis. Using DNA fragmentation and Bak gene expression, it demonstrated that germ cells undergo apoptosis only at the stages of spermatocyte and spermatid, and degeneration also involves Sertoli but not Leydig cells. In immature cysts, this cellular process probably occurs when the ratio of germ cells to the only Sertoli cell (SC) forming the spermatoblast changes. Apoptosis also takes place in mature cysts after sperm release to eliminate most of the SCs. Few of them, however, become cytoplasts and probably continue secreting androgens so as to control the final events of spermatogenesis, i.e., passage of spermatozoa through the ductus deferentes. Finally, the present investigation demonstrated that, in Torpedo testis, Bak mRNA is expressed during spermatogenesis, thus suggesting that the mitochondrial pathway might be active. This observation in one of the oldest vertebrate classes indicates that, in all vertebrates, the apoptotic process during spermatogenesis is conserved, contributing to testicular homeostasis. 相似文献
5.
Nichollas E Scott Lindsay D Rogers Anna Prudova Nat F Brown Nikolaus Fortelny Christopher M Overall Leonard J Foster 《Molecular systems biology》2017,13(1)
Protein–protein interaction networks (interactomes) define the functionality of all biological systems. In apoptosis, proteolysis by caspases is thought to initiate disassembly of protein complexes and cell death. Here we used a quantitative proteomics approach, protein correlation profiling (PCP), to explore changes in cytoplasmic and mitochondrial interactomes in response to apoptosis initiation as a function of caspase activity. We measured the response to initiation of Fas‐mediated apoptosis in 17,991 interactions among 2,779 proteins, comprising the largest dynamic interactome to date. The majority of interactions were unaffected early in apoptosis, but multiple complexes containing known caspase targets were disassembled. Nonetheless, proteome‐wide analysis of proteolytic processing by terminal amine isotopic labeling of substrates (TAILS) revealed little correlation between proteolytic and interactome changes. Our findings show that, in apoptosis, significant interactome alterations occur before and independently of caspase activity. Thus, apoptosis initiation includes a tight program of interactome rearrangement, leading to disassembly of relatively few, select complexes. These early interactome alterations occur independently of cleavage of these protein by caspases. 相似文献
6.
Imre G Heering J Takeda AN Husmann M Thiede B zu Heringdorf DM Green DR van der Goot FG Sinha B Dötsch V Rajalingam K 《The EMBO journal》2012,31(11):2615-2628
Bacterial pathogens modulate host cell apoptosis to establish a successful infection. Pore-forming toxins (PFTs) secreted by pathogenic bacteria are major virulence factors and have been shown to induce various forms of cell death in infected cells. Here we demonstrate that the highly conserved caspase-2 is required for PFT-mediated apoptosis. Despite being the second mammalian caspase to be identified, the role of caspase-2 during apoptosis remains enigmatic. We show that caspase-2 functions as an initiator caspase during Staphylococcus aureus α-toxin- and Aeromonas aerolysin-mediated apoptosis in epithelial cells. Downregulation of caspase-2 leads to a strong inhibition of PFT-mediated apoptosis. Activation of caspase-2 is PIDDosome-independent, and endogenous caspase-2 is recruited to a high-molecular-weight complex in α-toxin-treated cells. Interestingly, prevention of PFT-induced potassium efflux inhibits the formation of caspase-2 complex, leading to its inactivation, thus resisting apoptosis. These results revealed a thus far unknown, obligatory role for caspase-2 as an initiator caspase during PFT-mediated apoptosis. 相似文献
7.
G Robert A Puissant M Dufies S Marchetti A Jacquel T Cluzeau P Colosetti N Belhacene P Kahle C A Da Costa F Luciano F Checler P Auberger 《Cell death and differentiation》2012,19(11):1769-1778
In pathological conditions, the amount of DJ-1 determines whether a cell can survive or engage a cell death program. This is exemplified in epithelial cancers, in which DJ-1 expression is increased, while autosomal recessive early onset Parkinson''s disease mutations of DJ-1 generally lead to decreased stability and expression of the protein. We have shown previously that DJ-1 is cleaved by caspase-6 during induction of apoptosis. We demonstrate here that the N-terminal cleaved fragment of DJ-1 (DJ-1 Nt) is specifically expressed in the nucleus and promotes apoptosis in SH-SY5Y neuroblastoma cell lines. In addition, overexpression of DJ-1 Nt in different cell lines leads to a loss of clonogenic potential and sensitizes to staurosporin and 1-methyl-4-phenylpyridinium (MPP+)-mediated caspase activation and apoptosis. Importantly, inhibition of endogenous DJ-1 expression with sh-RNA or DJ-1 deficiency mimics the effect of DJ-1 Nt on cell growth and apoptosis. Moreover, overexpression of DJ-1 Nt increases reactive oxygen species (ROS) production, and sensitizes to MPP+-mediated apoptosis and DJ-1 oxidation. Finally, specific exclusion of DJ-1 Nt from the nucleus abrogates its pro-apoptotic effect. Taken together, our findings identify an original pathway by which generation of a nuclear fragment of DJ-1 through caspase 6-mediated cleavage induces ROS-dependent amplification of apoptosis. 相似文献
8.
The potential role(s) of DNA topoiosmerase II (topo II) during chromatin changes that characterize different stages of spermatogenesis was investigated in the rat by an analysis of the expression and localization of topo II mRNA and protein in individual spermatogenic cells. Expression of topo II was restricted to spermatogonia, spermatocytes, and round and early-elongating spermatids. Two protein bands of 177 and 170 kDa were detected in immunoblots of spermatocytes and round spermatids, while bands of 148 and 142 kDa were prominent in preparations of elongating spermatids. Topo II levels and distribution patterns, as observed by immunofluorescent microscopy, exhibited cell type-specific variations. Differences in topo II staining patterns were also apparent when nuclear matrices of spermatogenic cells were prepared with different extraction conditions. In addition to its possible function as a structural component, topo II, associated with nuclear matrix preparations from spermatogenic cells, possessed catalytic activity. These observations indicate that both the 177 and 170 kDa and the 148 and 142 kDa forms of topo II share similar structural and functional properties. Topo IIβ mRNA was transcribed in rat spermatogenic cells at 6.2 kb. Relative levels of topo IIβ mRNA were high in spermatogonia and spermatocytes, and decreased in both round and early-elongating spermatids. Changes in topo II expression levels and localization patterns represent distinct stage-specific markers for the maturation of spermatogenic cells, and are consistent with the involvement of topo II in mediating DNA modifications and chromatin changes during spermatogenesis. © 1996 Wiley-Liss, Inc. 相似文献
9.
《Biotechnic & histochemistry》2013,88(3):181-187
AbstractApoptosis is an important phenomenon for investigating the efficacy of anti-cancer drug candidates. The conventional assays for cellular apoptosis, such as enzyme-linked immunosorbent assay, absorbance monitoring for the activity of caspase, and flow cytometric assay, have focused only on biochemical events. We investigated the staurosporine (STS)-induced apoptosis of the murine macrophage RAW-264.7 cell using a cell based bioimaging technique. Using time-lapse confocal microscopy, we monitored caspase-3 activation during apoptosis by imaging the translocation of green fluorescent protein from the cytosol to the nuclei. Five hours after 1 μM STS treatment, caspase-3 was observed to be activated and membrane blebbing was observed simultaneously. Also, the loss of phosphatidylserine (PS) asymmetry in the phospholipid bilayer of plasma membrane during early apoptosis was monitored by imaging annexin-V labeled with fluorescein isocyanate binding to the externalized PS at various concentrations of STS. Moreover, disintegration of the plasma membrane during late apoptosis was confirmed using a nuclear dye, propidium iodide. The single cell based bioimaging data agreed well with those of the biochemical assays for caspase activation and morphological observation for membrane integrity. 相似文献
10.
Inhibition of apoptosis and clonogenic survival of cells expressing crmA variants: optimal caspase substrates are not necessarily optimal inhibitors. 总被引:2,自引:1,他引:2 下载免费PDF全文
To study the role of various caspases during apoptosis, we have designed a series of caspase inhibitors based on the cowpox virus cytokine response modifier A (crmA) protein. Wild-type crmA inhibits caspases 1 and 8 and thereby protects cells from apoptosis triggered by ligation of CD95 or tumour necrosis factor (TNF) receptors, but it does not protect against death mediated by other caspases. By replacing the tetrapeptide pseudosubstrate region of crmA (LVAD) with tetrapeptides that are optimal substrates for the different families of caspases, or with the four residues from the cleavage site of the baculovirus protein p35 (DQMD), we have generated a family of caspase inhibitors that show altered ability to protect against cell death. Although DEVD is the optimal substrate for caspase 3, crmA DEVD was degraded rapidly and was a weaker inhibitor than crmA DQMD, which was not degraded. Unlike wild-type crmA and crmA DEVD, crmA DQMD was able to inhibit apoptosis caused by direct activation of caspase 3 and protected lymphoid cells from death induced by radiation and dexamethasone. Significantly, the protected cells were capable of sustained growth. 相似文献
11.
Shiga toxins have been shown to induce apoptosis on primary cultures, but not passaged ones, of human umbilical vein endothelial cells, independent of cytokine pre-treatment. Here, a peculiar pattern of caspase activation was observed; caspase-3 and -2, but not conventional upstream caspases, were activated at the initial phase of 6 hr, whereas a broad range inhibitor of caspases, VAD-fmk, but not mono-specific ones, suppressed DNA fragmentation and cell death. These results suggest additional analogous molecules, which have yet to be delineated, are involved. The requirement of retrograde uptake of toxins was also proved by the intervening effect of brefeldin A. 相似文献
12.
Ying Liu Baoquan Song Yimeng Wei Fang Chen Ying Chi Huifang Fan Na Liu Zongjin Li Zhongchao Han Fengxia Ma 《Cytotherapy》2018,20(2):181-188
Background aims
Imatinib (IM), a tyrosine kinase inhibitor targeting the BCR-ABL oncoprotein, remains a major therapeutic strategy for patients with chronic myelogenous leukemia (CML). However, IM resistance is still a challenge in the treatment of CML. Recently, it was reported that exosomes (Exo) were involved in drug resistance. Therefore, the present study investigated whether Exo secreted by human umbilical cord mesenchymal stromal cells (hUC-MSC-Exo) affected the sensitivity of K562 cells to IM.Methods
hUC-MSC-Exo were isolated and identified. K562 cells were then treated or not with IM (1?µmol/L) in combination with hUC-MSC-Exo (50?µg/mL). Cell viability and apoptosis were determined by cell counting kit 8 (CCK-8) and annexin V/propidium iodide (PI) double staining, respectively. Apoptotic proteins, caspase and their cleaved forms were detected by Western blot.Results
It was shown that hUC-MSC-Exo alone had no effect on cell viability and apoptosis of K562 cells. However, hUC-MSC-Exo promoted IM-induced cell viability inhibition and apoptosis. Moreover, hUC-MSC-Exo enhanced the increased Bax expression and the decreased Bcl-2 expression that were induced by IM. Compared with IM alone, caspase-9 and caspase-3 were further activated by combination of hUC-MSC-Exo with IM. Finally, the effects of hUC-MSC-Exo on K562 cells could be reversed by pretreatment of K562 cells with caspase inhibitor Z-VAD-FMK (30?µmol/L)Discussion
These results indicate that hUC-MSC-Exo enhanced the sensitivity of K562 cells to IM via activation of caspase signaling pathway. Therefore, combining IM with hUC-MSC-Exo could be a promising approach to improve the efficacy of CML treatment. 相似文献13.
E D Crawford J E Seaman A E Barber II D C David P C Babbitt A L Burlingame J A Wells 《Cell death and differentiation》2012,19(12):2040-2048
Caspases, cysteine proteases with aspartate specificity, are key players in programmed cell death across the metazoan lineage. Hundreds of apoptotic caspase substrates have been identified in human cells. Some have been extensively characterized, revealing key functional nodes for apoptosis signaling and important drug targets in cancer. But the functional significance of most cuts remains mysterious. We set out to better understand the importance of caspase cleavage specificity in apoptosis by asking which cleavage events are conserved across metazoan model species. Using N-terminal labeling followed by mass spectrometry, we identified 257 caspase cleavage sites in mouse, 130 in Drosophila, and 50 in Caenorhabditis elegans. The large majority of the caspase cut sites identified in mouse proteins were found conserved in human orthologs. However, while many of the same proteins targeted in the more distantly related species were cleaved in human orthologs, the exact sites were often different. Furthermore, similar functional pathways are targeted by caspases in all four species. Our data suggest a model for the evolution of apoptotic caspase specificity that highlights the hierarchical importance of functional pathways over specific proteins, and proteins over their specific cleavage site motifs. 相似文献
14.
Keller P Schaumburg F Fischer SF Häcker G Gross U Lüder CG 《FEMS microbiology letters》2006,258(2):312-319
The intracellular parasite Toxoplasma gondii is known to inhibit apoptosis of its host cell. The molecular mechanisms of this interference are, however, not yet completely understood. We show here that viable parasites prominently inhibited the activation of caspase 3/7 induced by cytochrome c, dATP and dithiothreitol in cytosolic extracts of human-derived Jurkat leukemic T cells. In contrast, granzyme B-induced caspase activity was only slightly diminished. De novo protein biosynthesis by T. gondii was dispensable for the inhibition of cytochrome c-induced caspase activation. Furthermore, a complete parasite lysate or, more importantly, molecules released by extracellular parasites mediated the interaction with the caspase cascade. The cell-free system applied here is thus a valuable tool to study the interaction of T. gondii and possibly other intracellular pathogens with host cell apoptosis. 相似文献
15.
16.
Caserta TM Smith AN Gultice AD Reedy MA Brown TL 《Apoptosis : an international journal on programmed cell death》2003,8(4):345-352
In recent years, several inhibitors that prevent caspase activation and apoptosis have emerged. At high doses, however, these inhibitors can have nonspecific effects and/or become cytotoxic. In this study, we determined the effectiveness of broad spectrum caspase inhibitors to prevent apoptosis. A carboxy terminal phenoxy group conjugated to the amino acids valine and aspartate (Q-VD-OPh) potently inhibited apoptosis. Q-VD-OPh was significantly more effective in preventing apoptosis than the widely used inhibitors, ZVAD-fmk and Boc-D-fmk, and was also equally effective in preventing apoptosis mediated by the three major apoptotic pathways, caspase 9/3, caspase 8/10, and caspase 12. In addition to the increased effectiveness, Q-VD-OPh was not toxic to cells even at extremely high concentrations. Our data indicate that the specificity, effectiveness, and reduced toxicity of caspase inhibitors can be significantly enhanced using carboxyterminal o-phenoxy groups and may have important uses in vivo. 相似文献
17.
18.
19.
The induction of apoptotic cell death by cadmium was investigated in eight mammalian cell lines. Great differences in the cytotoxicity of cadmium were found with different cell lines: Rat C6 glioma cells turned out to be most sensitive with an IC50-value of 0.7 M, while human A549 adenocarcinoma cells were relatively resistant with an IC50-value of 164 M CdCl2. The mode of cadmium-induced cellular death was identified to involve apoptotic DNA fragmentation in three cell lines, i.e., in C6 glioma cells, E367 neuroblastoma cells and NIH3T3 fibroblasts. In C6 glioma cells, this process was investigated in detail. Internucleosomal DNA-fragmentation occurred 40 h after application of CdCl2 and was concentration-dependent between 1–100 M CdCl2, followed by a decrease at higher concentrations due to necrotic processes. Apoptotic chromatin-condensation and nuclear fragmentation was observed 48 h after application of 2.5 M CdCl2. Furthermore, cadmium (1 M, 48 h) caused a breakdown of the mitochondrial membrane potential as shown by the decline in mitochondrial uptake of rhodamine 123. Also, we found an activation of caspase 9, a protease known to be activated in apoptotic processes following mitochondrial damage. Besides Cd2+, other toxic heavy metal ions (Hg2+, Pb2+, Ni2+, Fe2+, CrO4
2–, Cu2+ or Co2+) did not induce apoptotic DNA fragmentation in C6 cells. The only exception was Zn2+ which caused apotosis at high concentrations (>150 M) whereas it protected against cadmium-induced apoptosis at low concentrations (10–50 M). 相似文献
20.
Samuel B Burnett Lauren S Vaughn Joelle M Strom Ashley Francois Rekha C. Patel 《Journal of cellular biochemistry》2019,120(11):19004-19018
P rotein Act ivator (PACT) activates the interferon (IFN)-induced double-stranded (ds) RNA-activated protein kinase (PKR) in response to stress signals. Oxidative stress and endoplasmic reticulum (ER) stress causes PACT-mediated PKR activation, which leads to phosphorylation of translation initiation factor eIF2α, inhibition of protein synthesis, and apoptosis. A dominantly inherited form of early-onset dystonia 16 (DYT16) has been identified to arise due to a frameshift (FS) mutation in PACT. To examine the effect of the resulting truncated mutant PACT protein on the PKR pathway, we examined the biochemical properties of the mutant protein and its effect on mammalian cells. Our results indicate that the FS mutant protein loses its ability to bind dsRNA as well as its ability to interact with PKR while surprisingly retaining the ability to interact with PACT and PKR-inhibitory protein TRBP. The truncated FS mutant protein, when expressed as a fusion protein with a N-terminal fluorescent mCherry tag aggregates in mammalian cells to induce apoptosis via activation of caspases both in a PKR- and PACT-dependent as well as independent manner. Our results indicate that interaction of FS mutant protein with PKR inhibitor TRBP can dissociate PACT from the TRBP-PACT complex resulting in PKR activation and consequent apoptosis. These findings are relevant to diseases resulting from protein aggregation especially since the PKR activation is a characteristic of several neurodegenerative conditions. 相似文献