首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Whitney Preisser 《Ecography》2019,42(7):1315-1330
The latitudinal diversity gradient (LDG), or the trend of higher species richness at lower latitudes, has been well documented in multiple groups of free‐living organisms. Investigations of the LDG in parasitic organisms are comparatively scarce. Here, I investigated latitudinal patterns of parasite diversity by reviewing published studies and by conducting a novel investigation of the LDG of helminths (parasitic nematodes, trematodes and cestodes) of cricetid rodents (Rodentia: Cricetidae). Using host–parasite records from 175 parasite communities and 60 host species, I tested for the presence and direction of a latitudinal pattern of helminth richness. Additionally, I examined four abiotic factors (mean annual temperature, annual precipitation, annual temperature range and annual precipitation range) and two biotic variables (host body mass and host diet) as potential correlates of parasite richness. The analyses were performed with and without phylogenetic comparative methods, as necessary. In this system, helminths followed the traditional LDG, with increasing species richness with decreasing latitude. Nematode richness appeared to drive this pattern, as cestodes and trematodes exhibited a reverse LDG and no latitudinal pattern, respectively. Overall helminth richness and nematode richness were higher in areas with higher mean annual temperatures, annual precipitation and annual precipitation ranges and lower annual temperature ranges, characteristics that often typify lower latitudes. Cestode richness was higher in areas of lower mean annual temperatures, annual precipitation and annual precipitation ranges and higher annual temperature ranges, while trematode richness showed no relationship with climate variables when phylogenetic comparative methods were used. Host diet was significantly correlated with cestode and trematode species richness, while host body mass was significantly correlated with nematode species richness. Results of this study support a complex association between parasite richness and latitude, and indicate that researchers should carefully consider other factors when trying to understand diversity gradients in parasitic organisms.  相似文献   

2.
The latitudinal diversity gradient (LDG) has been known for over a century, but its origin remains poorly understood. Because both latitude and species richness are broadly related to temperature, environmental temperature has been proposed as a driver of the LDG. Recently, Wang et al. (2009, Proceedings of the National Academy of Sciences USA, 106 ,13388–13392) used datasets compiled from tree distributions in eastern Asia and North America to compare the species richness?temperature relationship between the two regions at several spatial scales and framed their analyses in the context of the metabolic theory of ecology. Here, we show that their datasets lack comparability between eastern Asia and North America and that some aspects of their analyses probably biased their results, casting doubt on some of their conclusions.  相似文献   

3.
1. Ecogeographical rules refer to recurring patterns in nature, including the latitudinal diversity gradient (LDG), Rapoport's rule and Bergmann's rule, amongst others. In the present study, the existence of these rules was examined for diving beetles (Coleoptera: Dytiscidae), a family of aquatic predatory beetles. 2. Assemblage‐level data were analysed for diving beetles, focusing on species richness, local contribution to beta diversity (LCBD), mean range size and mean body size across the biogeographical provinces of Northern Europe. First, each of these variables was correlated with latitude, and then variation in each variable was modelled using actual environmental variables in boosted regression tree analysis. 3. Species richness was found to decrease with latitude, LCBD increased with latitude, mean range size did not show a significant relationship with latitude, and mean body size decreased with latitude. The latter finding was in contrast to Bergmann's rule. The actual environmental variables best predicting variation in these four response variables varied among the models, although they generally included temperature‐related and land use variables as the most influential ones. 4. The results obtained in the present study suggest that diving beetles conformed to the LDG, did not follow Rapoport's rule, and showed a reversed latitudinal gradient in the context of Bergmann's rule. In addition, species‐poor provinces harboured ecologically most unique faunas, suggesting that species richness and LCBD are complementary measures of biodiversity. 5. Even though general support was not found for most of the ecogeographical rules examined, the findings of the present study are interesting because they suggest that aquatic ectothermic invertebrates may show patterns different from those originally described for terrestrial endothermic vertebrates.  相似文献   

4.
Aim  To determine if elevational variation in the proportion of lianas in woody floras parallels the variation observed on latitudinal gradients. This is to be expected if the poleward decrease in the importance of lianas is related to the vulnerability of their wide vessels to freeze embolism.
Location  Coastal ranges of south-central Chile (latitude 37°–40° S) and western South Island of New Zealand (41°–43° S).
Methods  The presence of all woody species was recorded in plots of 2500 m2 (Chile) or 100–400 m2 (New Zealand) on four elevational gradients in temperate rain forest. Each species was classified as a tree, shrub or liana. Original data were obtained from 22 plots at two sites in Chile. In New Zealand, two surveys comprising a total of 296 plots were extracted from the National Vegetation Survey data base.
Results  Liana species richness declined more or less monotonically on all four gradients, whereas richness of trees and shrubs showed more varied elevational patterns. The proportion of woody species contributed by the liana life-form was negatively correlated with elevation on all four gradients, falling from 15 to 35% of the woody flora at c . 200 m a.s.l. to nil well below the tree line. The elevational and latitudinal limits of liana species were marginally significantly correlated in Chile, but not in New Zealand.
Main conclusions  The elevational parallel of the well-documented decline in liana representation with increasing latitude is consistent with the hypothesis that cold intolerance is a strong control on the global distribution of the liana life-form.  相似文献   

5.
The latitudinal diversity gradient (LDG) is an established macroecological pattern, but is poorly studied in microbial organisms, particularly parasites. In this study, we tested whether latitude, elevation, and host species predicted patterns of prevalence, alpha diversity, and community turnover of hemosporidian parasites. We expected parasite diversity to decrease with latitude, alongside the diversity of their hosts and vectors. Similarly, we expected infection prevalence to decrease with latitude as vector abundances decrease. Lastly, we expected parasite community turnover to increase with latitudinal distance and to be higher between rather than within host species. We tested these hypotheses by screening blood and tissue samples of three closely related avian species in a clade of North American songbirds (Turdidae: Catharus, n = 466) across 17.5° of latitude. We used a nested PCR approach to identify parasites in hemosporidian genera that are transmitted by different dipteran vectors. Then, we implemented linear‐mixed effects and generalized dissimilarity models to evaluate the effects of latitude, elevation, and host species on parasite metrics. We found high diversity of hemosporidian parasites in Catharus thrushes (n = 44 lineages) but no evidence of latitudinal gradients in alpha diversity or prevalence. Parasites in the genus Leucocytozoon were most prevalent and lineage rich in this study system; however, there was limited turnover with latitude and host species. Contrastingly, Plasmodium parasites were less prevalent and diverse than Leucocytozoon parasites, yet communities turned over at a higher rate with latitude and host species. Leucocytozoon communities were skewed by the dominance of one or two highly prevalent lineages with broad latitudinal distributions. The few studies that evaluate the hemosporidian LDG do not find consistent patterns of prevalence and diversity, which makes it challenging to predict how they will respond to global climate change.  相似文献   

6.
Aims (i) To describe at the level of local communities latitudinal gradients in the species richness of different families of New World bats and to explore the generality of such gradients. (ii) To characterize the relative effects of changes in the richness of each family to the richness of entire communities. (iii) To determine differences in the rate and direction of latitudinal gradients in species richness within families. (iv) To evaluate how differences among families regarding latitudinal gradients in species richness influence the latitudinal gradient in species richness of entire communities. Location Continental New World ranging from the northern continental United States (Iowa, 42° N) to eastern Paraguay (Canindeyú, 24° S). Methods Data on the species composition of communities came from 32 intensively sampled sites. Analyses focused on species richness of five of nine New World bat families. Multivariate analysis of variance and discriminant function analysis determined and described differences among temperate, subtropical, and tropical climatic zones regarding the species richness of bat families. Simple linear regression described latitudinal gradients in species richness of families. Path analysis was used to describe: (i) the direct effect of latitude on species richness of communities, (ii) the indirect effects of latitude on the species richness of communities through its effect on the species richness of each family, (iii) the relative effects of latitude on the species richness of bat families, and (iv) the relative contribution of each family to variation in the species richness of communities. Results Highly significant differences among climatic zones existed primarily because of a difference between the temperate zone and the tropical and subtropical zones combined. This difference was associated with the high number of vespertilionids in the temperate zone and the high number of phyllostomids in the tropical and subtropical zones. Latitudinal gradients in species richness were contingent on phylogeny. Although only three of the five families exhibited significant gradients, all families except for the Vespertilionidae exhibited indistinguishable increases in species richness with decreases in latitude. The Emballonuridae, Phyllostomidae and Vespertilionidae exhibited significant latitudinal gradients whereby the former two families exhibited the classical increase in species richness with decreasing latitude and the latter family exhibited the opposite pattern. Variation in species richness of all families contributed significantly to variation in the species richness of entire communities. Nonetheless, the Phyllostomidae made a significantly stronger contribution to changes in species richness of communities than did all other families. Much of the latitudinal gradient in species richness of communities could be accounted for by the effects of latitude on the species richness of constituent families. Main conclusions Ecological and evolutionary differences among higher taxonomic units, particularly those differences involving life‐history traits, predispose taxa to exhibit different patterns of diversity along environmental gradients. This may be particularly true along extensive gradients such as latitude. Nonetheless, species rich taxa, by virtue of their greater absolute rates of change, can dominate and therefore define the pattern of diversity at a higher taxonomic level and eclipse differences among less represented taxa in their response to environmental gradients. This is true not only with respect to how bats drive the latitudinal gradient in species richness for all mammals, but also for how the Phyllostomidae drives the latitudinal gradient for all bats in the New World. Better understanding of the mechanistic basis of latitudinal gradients of diversity may come from comparing and contrasting patterns across lower taxonomic levels of a higher taxon and by identifying key ecological and evolutionary traits that are associated with such differences.  相似文献   

7.
We studied the avifaunas of five cloud forest localities at 3000–3350 mas1 on the eastern slope of the Andes of Ecuador A method standardised for area, altitude and effort was the basis for obtaining data on species richness and abundances Richness and abundances (diversity) were unchanged along the limned latitudinal gradient (530 km) studied, whereas there was a considerable turnover in community structure between localities This result has important implications for ranking conservation priorities the total community richness and the dominance/evenness component of diversity does not provide a basis for making priorities along this limited latitudinal gradient Instead, species compositions and species referred to threatened categories (e g, endemics, restricted–range, IUCN threatened/near–threatened, CITES) will be the most meaningful data for making priorities for conservation We compared our results with similar results from the Andean western slope of Ecuador, obtained with the same method and standardised for time of the year The number of species was significantly higher on the eastern slope than on the western slope, a characteristic that can be explained from differences in extension of adjacent source areas and geohistory However, because the species compositions on the two slopes are rather different, it is not recommended to use the difference in richness to rank conservation priorities Abundances were quite similar on both sides of the Andes Contrary to the general belief, the montane avifaunas investigated have tropical and not temperate species richness which agrees with the tropical clutch sizes found among montane birds The avian richness found on the eastern slope of Ecuador near the Equator is definitely among the highest m the world for this altitude  相似文献   

8.
Aim The proportion of alien plant species in floras is increasingly being used to indicate the threat of invasions to native species and/or the homogenization of biodiversity. However, this indicator is only valuable if it is independent of the spatial extent and grain of observation. This study tested the equivalence of native and alien species–area relationships (SARs) in order to assess the support for scale invariance in the proportion of alien species in floras. Location England, UK. Methods Nested SARs were generated by assessing the richness of native and alien plant species drawn from the New atlas of the British and Irish flora for six areas comprising 100, 400, 900, 1600, 2500 and 3600 km2 with each larger area containing all smaller areas. Five replicate sets of nested areas encompassing northern, southern, eastern, western and central regions were chosen. For each set of nested areas, the log‐transformed species richness was regressed on log‐transformed area to fit a power function to the SAR. Results Native and alien plant SARs reveal consistent differences in slope, highlighting that the proportion of alien species is a function of spatial grain. Aliens are more rare than natives and have higher spatial turnover leading to faster accumulation of species as area increases. However, equivalent samples drawn from a larger spatial extent reveal similar alien and native SARs. Main conclusions The significant differential scale dependence in native and alien species richness observed in this study reflects dissimilar influences of regional drivers such as habitat, but potentially also propagule pressure and introduction history, that leads to the relative rarity and high spatial turnover of alien species. Maps of invasion hotspots that identify areas where the proportion of the alien flora is particularly high should therefore be treated with considerable caution since patterns across most grains used for species monitoring will be scale dependent.  相似文献   

9.
Examination of latitudinal patterns in species richness, size, and distributional range of East Atlantic fish, based on a compilation of data encompassing the full latitudinal and depth distribution of 1746 East Atlantic fish species, showed that species richness declined towards higher latitudes at a rate of c 1 % of the number of species present, in five-degree bands, for each degree of latitude for both teleosts and elasmobranchs, regardless of habitat However, the latitudinal patterns in maximum fish size and latitudinal range differed between teleosts and elasmobranchs, and changed with habitat No clear evidence was obtained that the latitudinal range occupied increased with latitude, indicating that Rapoport's rule does not apply to E Atlantic fishes Rather, the latitudinal patterns in species richness, size, and distributional range of benthic Atlantic fish were depth-dependent, because species richness, average maximum size, and the average latitudinal range increased with depth and declined with latitude The importance of accounting for this depth-latitude covariation in the distribution of marine fish demonstrated here, together with recent evidence obtained for deep-sea benthic macrofauna, points to depth and latitude as the main factors in the distribution of marine animals  相似文献   

10.
A decline in species richness moving from equatorial regions to polar regions is a common, but not universal, macroecological pattern. Many studies have focused on this pattern, but few have focused on how the vital rates responsible for species richness patterns, local rates of species extinction and turnover, vary with latitude. We examine patterns of richness, turnover and extinction in North American avian communities inhabiting three ecoregions, using methods that account for failure to detect all species present. We use breeding bird point count data from > 1000 routes in the Breeding Bird Survey collected from 1982 to 2001 to estimate richness, extinction probability and turnover rates. Our analyses differ from others in 1) the use of annual estimates derived at specific locations rather than index data accumulated over numbers of years, 2) the use of estimators that incorporated detection probabilities and 3) a focus on dynamical processes (colonization, extinction) in addition to static patterns (species richness). We find average species richness estimates (48 to 135 species) increasing with latitude for all three regions, contradicting predictions based on the latitudinal diversity gradient. The estimated rates of extinction and turnover declined with latitude across the three ecoregions. We speculate that higher richness might be linked to periods of superabundant food supply in northern areas that support greater numbers of resident and migrant species. Our primary ecological conclusions are that the latitudinal gradient in species richness is reversed for North American birds in the studied ecoregions, and that both local extinction and turnover decrease from southern to northern latitudes. Thus, the vital rates that determine richness show evidence of greater stability and reduced dynamics in northern areas of higher richness. We recommend additional studies examining patterns of colonization, extinction and turnover in communities, that use clearly defined estimators that deal with detection probability.  相似文献   

11.
The greater number of plant species in temperate eastern Asia compared to eastern North America has been ascribed to both local environment and regional characteristics, but the relative contributions of each have not been resolved. In this analysis, we related species richness of flowering plants in mesoscale floras (<104 km2) dominated by temperate forest vegetation to area, elevation, latitude, and several climate variables. When analyses were conducted separately within each region, area and, in eastern Asia, elevation, were the primary determinants of species richness. It appears that the number of species in mesic temperate floras within these regions is largely unrelated to the relatively narrow range of local climate factors associated with these floras. Analysis of covariance of the logarithm of species richness with the logarithm of area (b=0.148) and climate measurements as independent variables revealed a region effect, with species richness in eastern Asia exceeding that in eastern North America by 0.294 log10 units, or a factor of 2.0. Similar regional differences in species richness were apparent in floras compiled from larger areas. Understanding differences in plant species richness between regions requires consideration of regional influences, whose effects should be tested in comparative analyses based on floristic surveys of ecologically characterized small areas.  相似文献   

12.
Geographical patterns of species turnover in aquatic plant communities   总被引:1,自引:0,他引:1  
1. A classic theory in biogeography predicts that high latitude communities are unstable. This may be because of decreased species richness or decreased environmental predictability and productivity towards the poles.
2. We studied latitudinal patterns in long-term community persistence of aquatic vascular plants in 112 Finnish lakes, situated within a 1000-km range from the northernmost to the southernmost lake.
3. Contrary to theoretical predictions, we found that the turnover rate of plant species in 45 years was inversely related to latitude. That is, plant communities in northern lakes were more persistent than communities in southern lakes. When we used multiple regression to find the best predictors of species turnover rate (TR), latitude was the only variable that was highly significantly related to species turnover rate. Area, species number, water transparency, pH and change in transparency did not notably explain the gradient observed.
4. The latitudinal trend was mainly because of lower species immigration rates at higher latitudes, whereas extinction rate did not so strongly decrease with increasing latitude. Immigrations and extinctions in the lakes were not in balance: the species numbers between the 1930s and 1980s increased more strongly in the southern than northern lakes.
5. We suggest that the inverse relationship between latitude and plant species TR in Finland is most probably caused by human influence on lakes, especially eutrophication and immigration of new species in southern latitudes. In addition, although species richness per lake did not decrease towards the north, the total species pool probably does, which means that in the north there are fewer species that can actually immigrate.  相似文献   

13.
Models applying space-for-time substitution, including those projecting ecological responses to climate change, generally assume an elevational and latitudinal equivalence that is rarely tested. However, a mismatch may lead to different capacities for providing climatic refuge to dispersing species. We compiled community data on zooplankton, ectothermic animals that form the consumer basis of most aquatic food webs, from over 1200 mountain lakes and ponds across western North America to assess biodiversity along geographic temperature gradients spanning nearly 3750 m elevation and 30° latitude. Species richness, phylogenetic relationships, and functional diversity all showed contrasting responses across gradients, with richness metrics plateauing at low elevations but exhibiting intermediate latitudinal maxima. The nonmonotonic/hump-shaped diversity trends with latitude emerged from geographic interactions, including weaker latitudinal relationships at higher elevations (i.e. in alpine lakes) linked to different underlying drivers. Here, divergent patterns of phylogenetic and functional trait dispersion indicate shifting roles of environmental filters and limiting similarity in the assembly of communities with increasing elevation and latitude. We further tested whether gradients showed common responses to warmer temperatures and found that mean annual (but not seasonal) temperatures predicted elevational richness patterns but failed to capture consistent trends with latitude, meaning that predictions of how climate change will influence diversity also differ between gradients. Contrasting responses to elevation- and latitude-driven warming suggest different limits on climatic refugia and likely greater barriers to northward range expansion.  相似文献   

14.
For many taxa, diversity, often measured as species richness, decreases with latitude. In this report patterns of diversity (species richness, species diversity, and evenness) in groundfish assemblages were investigated in relation to depth (200–1200 m) and latitude (33–47°N) on the continental slope of the U.S. Pacific coast. The data originated from the 1999–2002 upper continental slope groundfish surveys conducted by the National Marine Fisheries Service. When the data were pooled across depths, species density and evenness were found to decline with latitude. All three diversity measures declined with depth, with the lowest overall diversity in the 600- to 900-m depth range where longspine thornyhead Sebastolobus altivelis constituted close to 70% of the catch. When latitudinal gradients were examined within four depth zones (200–300 m, 400–500 m, 600–900 m, and 1000–1200 m) more complex patterns emerged. At depth species richness and evenness were inversely correlated with latitude as longspine thornyhead dominated catches to the north. However, in shallower areas of the slope, species richness and evenness were positively correlated with latitude. Latitudinal patterns of diversity in the deeper zones and when pooled across depths were positively correlated with temperature and broadly consistent with the Ambient Energy hypothesis discussed by Willig et al. [Annu Rev Ecol System 34:273–309 (2003)].  相似文献   

15.
The consistent decrease in species richness with latitude shows several exceptions among marine organisms. We hypothesize that contrasting latitudinal diversity gradients can be explained by differences in critical life-history attributes, such as mode of larval development (MLD). We deconstructed latitudinal species richness patterns of marine benthic invertebrates according to MLD to elucidate differences in patterns of species richness and to reveal underlying processes. The patterns of species richness were remarkably similar across taxa within MLD but differed between MLD. Species richness decreased polewards in planktotrophic species and increased in direct developers. Temperature explained most of the variation in species richness. Low temperature at high latitudes may generally favour direct developing species, but, together with low chlorophyll- a concentration, limit the distribution of planktotrophic species. The contrasting influence of temperature on different MLDs might be explained by its effect on the length of planktonic life and on brooding costs.  相似文献   

16.
The increase of species richness with sampling area and the decrease with latitude and altitude are two of the most frequently studied patterns in biogeography. However, few studies have simultaneously examined these two patterns to investigate how species–area relationships (SAR) vary with latitude and altitude. In this study, we explore the spatial patterns of SAR in forests in China by investigating numbers of species by life form group (trees, shrubs and herbs) in 32 nested plots from 12 mountains ranging from 18.7°N to 51.9°N in latitude and from 300 to 3150 m in altitude. The slopes of the power law SAR (z‐values) decreased with increasing latitude for all life forms except herbaceous plants, and also decreased with increasing altitude for all life forms but not for shrubs. Latitude and altitude, as well as their interactions, together explained 65.4, 61.8, 48.9 and 45.3% of the variation in z‐values for overall species, trees, shrubs and herbaceous plants, respectively. In addition, actual evapotranspiration affected SAR significantly, but this effect varied significantly among life forms. We concluded that there are significant geographical patterns of SAR for China's forests, which is primarily controlled by energy availability.  相似文献   

17.
Are latitudinal gradients in regional diversity random or biased with respect to body size? Using data for the New World avifauna, I show that the slope of the increase in regional species richness from the Arctic to the equator is not independent of body size. The increase is steepest among small and medium‐sized species, and shallowest among the largest species. This is reflected in latitudinal variation in the shape of frequency distributions of body sizes in regional subsets of the New World avifauna. Because species are added disproportionately in small and medium size classes towards low latitudes, distributions become less widely spread along the body size axis than expected from the number of species. These patterns suggest an interaction between the effects of latitude and body size on species richness, implying that mechanisms which vary with both latitude and body size may be important determinants of high tropical diversity in New World birds.  相似文献   

18.
Beta多样性度量不同时空尺度物种组成的变化,是生物多样性的重要组成部分;理解其地理格局和形成机制已成为当前生物多样性研究的热点问题。基于Alwyn H. Gentry在美洲收集的131个森林样方数据,采用倍性和加性分配方法度量群落beta多样性,检验beta多样性随纬度的变化趋势,并分析其形成机制。研究表明:(1) 美洲森林群落beta多样性随纬度增加显著下降,热带和亚热带地区beta多样性高于温带地区;此格局可由物种分布范围的纬度梯度性和不同粒度(grain)下物种丰富度与纬度回归斜率的差异推论得出;(2) 加性分配方法表明beta多样性对各个温度带森林群落gamma多样性的相对贡献率平均为78.2%,并且随纬度升高而降低;(3) 美洲南半球森林群落beta多样性高于其北半球,这可能反映了区域间物种进化和环境变迁历史的差异。此外,还探讨了不同beta多样性计算方法的适用情景,首次证实了森林生态系统群落水平beta多样性的纬度梯度性,这对研究生物多样性的形成机制和生物多样性保护都具有重要的意义。  相似文献   

19.
Aim We conducted a meta‐analysis of species–area relationships (SARs) by combining several data sets and important covariates such as types of islands, taxonomic groups, latitude and spatial extent, in a hierarchical model framework to study global pattern and local variation in SARs and its consequences for prediction. Location One thousand nine hundred and eighteen islands from 94 SAR studies from around the world. Methods We developed a generalization of the power‐law SAR model, the HSARX model, which allows: (1) the inclusion of multiple focal parameters (intercept, slope, within‐study variance), (2) use of multiple effect modifiers based on a collection of SAR studies, and (3) modelling of the between‐ and within‐study variability. Results The global pattern in the SAR was the average of local SARs and had wide confidence intervals. The global SAR slope was 0.228 with 90% confidence limits of 0.059 and 0.412. The intercept, slope and within‐study variability of local SARs showed great heterogeneity as a result of the interaction of modifying covariates. Confidence intervals for these SAR parameters were narrower when other covariates in addition to area were accounted for, thus increasing the accuracy of the predictions for species richness. The significant effect of latitude and the interaction of latitude, taxa and island type on the SAR slope indicated that the ‘typical’ latitudinal diversity gradient can be reversed in isolated systems. Main conclusions The power‐law relationship underlying the HSARX model provides a good fit for non‐nested SARs across vastly different spatial scales by taking into account other covariates. The HSARX framework allows researchers to explore the complex interactions among SAR parameters and modifying variables, to explicitly study the scale dependence, and to make robust predictions on multiple levels (island, study, global) with associated prediction intervals. From a prediction perspective, it is not the global pattern but the local variation that matters.  相似文献   

20.
Climate change has been predicted to lead to changes in local and regional species richness through species extinctions and latitudinal ranges shifts. Here, we show that species richness of fish in the North Sea, a group of ecological and socio-economical importance, has increased over a 22-year period and that this rise is related to higher water temperatures. Over eight times more fish species displayed increased distribution ranges in the North Sea (mainly small-sized species of southerly origin) compared with those whose range decreased (primarily large and northerly species). This increase in species richness can be explained from the fact that fish species richness in general decreases with latitude. This observation confirms that the interaction between large-scale biogeographical patterns and climate change may lead to increasing species richness at temperate latitudes.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号