首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Among the more than 20 H-2-like genes in the BALB/c mouse genome, there are two classical transplantation antigens (H-2Dd and H-2Ld) encoded at the D-end of the major histocompatibility complex. Here we report the identification of a bacteriophage clone that encodes H-2Dd. The H-2Dd gene was identified by nucleotide sequence analysis and by characterization of the new H-2 antigen expressed when the cloned gene was introduced into mouse L cells by DNA-mediated gene transfer. The previously identified H-2Ld gene was then compared with the H-2Dd gene. The two genes appear to have the same general structure, and for the 854 nucleotides that have been compared, the two genes are 89% homologous. The H-2Ld and H-2Dd antigens expressed on mouse L cells after DNA-mediated gene transfer were examined by immunologic criteria. The stably transformed cell lines express apparently normal levels of H-2Dd and H-2Ld on the cell surface as measured by quantitative immunofluorescence by using monoclonal anti-H-2 antibodies. They synthesize H-2Dd and H-2Ld at normal rates as determined by endogenous labeling and immunoprecipitation of cell extracts. They evoke a strong specific serologic response when used to immunize C3H mice. The newly expressed antigens are able to serve as targets for alloreactive T cells. These cloned genes provide good substrates for examining the evolution of two closely linked H-2 antigen genes. Comparison of the structures of these genes provides clues to the basis for the differential expression of these antigens and their different biologic functions.  相似文献   

2.
To determine why Ld antigens are expressed on the cell surface at levels three to four times lower than Dd or Kd antigens, pulse-chase experiments were used to compare their rates of biosynthesis and processing. Electrophoresis on sodium dodecyl sulfate gradient polyacrylamide gels resolved immunoprecipitates of each of these histocompatibility complex class I molecules into a slower and faster species. During the chase period, the faster migrating species appeared to be converted to the slower migrating species in a time-dependent manner. However, the conversion of Ld from the faster to the slower migrating species proceeded significantly more slowly than did the conversion of either Dd or Kd. Endoglycosidase H sensitivity and cell surface radiolabeling were used to determine the glycosylation state and cell location of each species of Ld and Dd. The results from these experiments, along with the pulse-chase studies and cytofluorometric analyses, suggest that Ld possesses a much slower rate of processing from a faster migrating, high mannose-bearing species to a slower migrating, complex oligosaccharide-bearing species found on the cell surface. Analysis of the beta 2-microglobulin (beta 2-m) association confirmed that Ld is associated with less beta 2-m than Dd. To localize the structures on class I molecules influencing their surface expression, rate of processing, and beta 2-m association, the Ddm1 molecule was analyzed. The Ddm1 molecule of the mutant B10.D2-H-2dm1 has previously been shown to be a chimeric Dd (amino-terminal)/Ld (carboxyl-terminal) polypeptide. The surface expression, processing and beta 2-m association of Ddm1 were found to be similar to Dd rather than Ld, suggesting that each of these phenomena are influenced by protein structure in the amino terminus.  相似文献   

3.
Five different sublines of the BALB/c murine S49.1 T cell lymphoma were found to exhibit distinct patterns of absence of detectable H-2d class I major histocompatibility antigen expression. The results were demonstrated and verified by a) the generation of H-2Kd-, H-2Dd,Ld-, and H-2Ld-specific cytotoxic T lymphocytes that were assayed on S49.1 target cell lines, b) antibody-mediated cytotoxicity with the use of anti-H-2d monoclonal reagents, and c) flow microfluorometry. The five lines investigated were S49.1, T-25, T-25ADH, Thy-1-, and 100/0. None of these lines expressed detectable levels of Ld. S49.1 expressed both Kd and Dd, T-25 and T-25ADH expressed Dd but not Kd or Ld, Thy-1- expressed Kd but not Dd or Ld, and 100.0 did not express any detectable amounts of Kd, Dd, or Ld. These results indicate that K and D (and L) antigens can be expressed independently of each other and suggest that expression of class I antigens is controlled in a locus-specific manner.  相似文献   

4.
Studies of immune recognition of hybrid class I antigens expressed on transfected cells have revealed an apparent general requirement that the N(alpha 1) and C1(alpha 2) domains be derived from the same gene in order to preserve recognition by virus-specific H-2-restricted and allospecific T cells. One exception has been the hybrid DL antigen in which the N domain of H-2Ld has been replaced by that of H-2Dd. Cells bearing this molecule serve as targets for some virus and allospecific CTL. Because cells expressing the reciprocal hybrid LD (N domain of H-2Dd replaced by that of H-2Ld) antigen have not been available, it has not been possible to evaluate whether this exception stemmed from the relatedness of H-2Ld and H-2Dd or whether the DL antigen fortuitously preserved some function of the parent molecule as a rare exception. To assess this question, and to evaluate the contribution of the N and C1 domains of H-2Ld and H-2Dd to serologic and T cell recognition, we have constructed the reciprocal chimeric gene pLD (the N exon of H-2Ld substituted for that of H-2Dd), introduced this into mouse L cells by DNA-mediated gene transfer, and analyzed the expressed product biochemically, serologically, and functionally. Transformant L cells expressing either LD or DL antigens were both reactive with a number of anti-H-2Ld or anti-H-2Dd N/C1-specific monoclonal antibodies, indicating the preservation in the hybrid molecules of determinants controlled by discrete domains. Mab binding was generally greater with cells expressing hybrid DL antigen than with those transformants expressing LD molecules. Moreover, the amount of beta 2M associated with DL antigens was more than that associated with LD. Cells expressing hybrid DL antigens were recognized as targets by bulk and cloned allospecific anti-H-2Dd and anti-H-2Ld CTL, whereas cells expressing LD molecules were not recognized by any of the T cells tested. VSV-specific H-2Ld-restricted CTL failed to lyse VSV-infected targets expressing either DL or LD. These results indicate that T cell reactivity of cells expressing the DL hybrid antigen is an exception to the observed general requirement for class I antigens to possess matched N and C1 domains for functional T cell recognition by T cells restricted to parental antigens.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

5.
A rare D-region recombination event which gave rise to the B10.RQDB major histocompatibility complex haplotype has been examined to ascertain the nature of the crossover and to determine which class I genes are present in the new alignment of D-region genes. Serologic analysis have shown that the B10 . RQDB major histocompatibility complex recombinant mouse inherited the H-2Dd gene from the B10.T(6R) parental line and the H-2Db gene from the B10.A(2R) parental line, representing the first example of an intra-D-region crossover resulting from an intercross. Previous molecular genetic analyses of the d and b haplotypes revealed structural diversity in the organization of their D-region gene clusters. Hence, the D region is comprised of five class I genes in the d haplotype and only one in the b haplotype. Because allelic relationships among the various D-region genes are not defined, either a homologous or nonhomologous alignment of genes has generated the RQDB crossover. Therefore, the possibility that all three D-region antigen-presenting molecules (Dd, Ld, and Db) might be encoded by the RQDB haplotype was examined. Fluorescence-activated cell sorter and cytotoxic T lymphocyte analyses revealed no detectable levels of H-2Ld cell-surface expression, confirming earlier studies with antibody-mediated cytotoxicity and immunoprecipitation. Southern blot analysis localized the recombination point to within a 1-kb region at the centromeric end of the H-2Ld gene on the B10 . T(6R) chromosome in a region of high homology to the H-2Db gene on the B10 . A(2R) chromosome. Together, these studies define the D region of the RQDB haplotype as containing the five class I genes: Dd, D2d, D3d, D4d, and Db. In addition to providing insight into rare recombination events in the D region, the B10.RQDB mouse should be a useful tool for exploring the function of D-region genes.  相似文献   

6.
A highly sensitive cytotoxicity assay was used to detect H-2 antigens on mouse blastocyst stage embryos of the b, a, k, and d haplotypes. The assay was based on the principle that live embryos incorporate 3H-thymidine into DNA whereas embryos killed with antiserum and complement do not. The use of specific alloantisera showed that blastocysts of different haplotypes express different H-2 antigens. Thus, positive evidence was obtained for the expression of Kd and Dk molecules and negative evidence for the expression of Db, Kk, and Dd molecules. Evidence was also obtained that blastocysts express different H-2 antigens than those found on adult lymphocytes. Unexpected cross-reactions were found when some of the alloantisera were tested on blastocysts of different haplotypes. It is proposed that the aberrant expression of H-2 antigens on embryos might facilitate their escape from surveillance by the maternal immune system.  相似文献   

7.
By using a calibrated dual laser cell sorter and monoclonal antibodies directly conjugated to fluorescein and rhodamine and specific for H-2Kk and HLA class I antigens, quantitative cytofluorometric analysis was performed on individual HLA-A3 or -CW3 transformed mouse L cells (H-2k). More than 80% of these cells expressed both HLA class I and H-2Kk molecules. Their respective levels of expression were calculated: a mean of 4 X 10(5) HLA class I and 2.3 X 10(5) H-2Kk molecules per single cell. Quantitative comparison with control untransformed L cells and double fluorescence contour maps showed a positive correlation between the levels of expression of HLA class I and H-2Kk molecules suggesting that expression of foreign class I molecules did not occur at the expense of the endogenous H-2k product.  相似文献   

8.
Detailed serologic and biochemical characterization of D region products of the wild-derived mouse strain B10.GAA37 (Dw16) were performed and compared with previous studies of the D region products of the H-2d,b, and q haplotypes. Serologic analysis revealed that the antigens encoded by the Dw16 region express a unique combination of specificities defined by monoclonal antibodies (mAb) with established activity for the Ld and Dd molecules. Two out of five anti-Ld-reactive mAb reacted with B10.GAA37 cells, whereas one of three anti-Dd mAb showed B10.GAA37 reactivity. Sequential immunoprecipitation of B10.GAA37 antigens demonstrated the existence of at least two antigenically distinct molecules (designated Dw16 and Lw16) encoded by genes associated with the Dw16 region. Peptide map comparisons of the Dw16 and Lw16 molecules defined multiple differences in their primary protein structure, suggesting they are products of separate genes. Structural comparisons of the Lw16 and Dw16 molecules with the Ld and Dd molecules implied a) that the Dw16 and Dd regions did not result from a recent evolutionary divergence of a common primordial haplotype, and b) that the Lw16 and Dw16 molecules are more structurally homologous to each other than the Ld and Dd molecules are. Comparison of these findings with our previous studies of antigens encoded by the D regions suggest that each of these haplotypes has unique properties in terms of the number of gene products expressed and/or the structural relatedness of products of the same region.  相似文献   

9.
We generated nucleotide sequences for H-2Kk and H-2Dk from the C3H mouse, as well as for a genomic clone of H-2Db, in order to conduct an evolutionary analysis of the H-2 genes from three haplotypes, k, d, and b. H-2Kk from both the C3H and AKR strains, H-2Kd, H-2Kb, H-2Dk, H-2Ld, H-2Dd, H-2Db, and H-2Dp DNA sequences were aligned, and the alignments used to construct phylogenetic trees inferring the evolutionary relationships among the nine genes by two independent methods. Both approaches yielded trees with similar topologies. In addition, the sequence alignments revealed patterns of nucleotide substitutions which implicate both point mutation and recombination in the divergence of the H-2 genes. Future considerations for evolutionary analysis of class I genes are discussed.  相似文献   

10.
The results presented here indicate that recombinant murine interferon-gamma can cause a dramatic differential induction of two distinct class I MHC molecules. Thus, IFN-gamma treatment of the murine leukemia virus (MuLV)-induced AKR SL3 tumor, a cell line that normally expresses moderate levels of class I MHC antigens, resulted in a large increase in H-2Dk expression, but no change or a slight decrease in H-2Kk expression as measured by cytofluorography. Explanations of the selective enhancement of Dk expression based on increased Fc receptor display or differential kinetics of induction were ruled out. The phenomenon was observed over a wide range of doses of IFN-gamma and with two different monoclonal antibodies to Kk, the latter finding making it unlikely that an altered form of the Kk molecule was induced. The same differential induction of the Dk antigen was observed for the LBRM.5A4 tumor cell line. Because LBRM.5A4 is also MuLV+ but of congenic B10.BR (H-2k) origin, these results were consistent with the possibility that such differential induction was associated with the H-2k haplotype and/or MuLV. The implications of these results, as a possible mechanism of tumor cell escape from an immune surveillance system monitored by class I MHC-restricted T cells and as a useful model system to dissect the mechanism of IFN-gamma induction of class I MHC antigens, are discussed.  相似文献   

11.
A few cases have been described of antigenic determinants that are broadly presented by multiple class II MHC molecules, especially murine I-E or human DR, in which polymorphism is limited to the beta chain, and the alpha chain is conserved. However, no similar cases have been studied for presentation by class I MHC molecules. Because both domains of the MHC peptide binding site are polymorphic in class I molecules, exploring permissiveness in class I presentation would be of interest, and also such broadly presented antigenic determinants would clearly be useful for vaccine development. We had defined an immunodominant determinant, P18, of the HIV-1 gp160 envelope protein recognized by human and murine CTL. To determine the range of class I MHC molecules that could present this peptide and to determine whether two HIV-1 gp160 Th cell determinants, T1 and HP53, could also be presented by class I MHC molecules, we attempted to generate CTL specific for these three peptides in 10 strains of B10 congenic mice, representing 10 MHC types, and BALB/c mice. P18 was presented by at least four different class I MHC molecules from independent haplotypes (H-2d, p, u, and q to CD8+ CTL. In H-2d and H-2q the presentation was mapped to the D-end class I molecule, and for Dd, a requirement for both the alpha 1 and alpha 2 domains of Dd, not Ld, was found. HP53 was also presented by the same four different class I MHC molecules to CD8+ CTL although at higher concentrations. T1 was presented by class I molecules in three different strains of distinct MHC types (B10.M, H-2f; B10.A, H-2a; and B10, H-2b) to CTL. The CTL specific for P18 and HP53 were shown to be CD8+ and CD4- and to kill targets expressing endogenously synthesized whole gp160 as well as targets pulsed with the corresponding peptide. To compare the site within each peptide presented by the different class I molecules, we used overlapping and substituted peptides and found that the critical regions of each peptide are the similar for all four MHC molecules. Thus, antigenic sites are broadly or permissively presented by class I MHC molecules even without a nonpolymorphic domain as found in DR and I-E, and these sequences may be of broad usefulness in a synthetic vaccine.  相似文献   

12.
Induction of the H-2 D antigen during B cell activation   总被引:1,自引:0,他引:1  
Mitogenic activation causes increased expression of class I Ag of the MHC in mouse B cells. The increased expression was seen in flow cytometry analysis for both K and D in k as well as d haplotypes. A more detailed molecular analysis was carried out for H-2Dd. Increased expression (10- to 20-fold) of the H-2 Dd gene was detected at both protein and messenger RNA levels, and the time course for the accumulation of H-2 Dd protein on the cell surface parallels the increase in the steady-state messenger RNA levels. The increase in H-2 Dd expression in small B cells stimulated with LPS is detectable after 10 h of culture. The present data provide molecular and serologic evidence about alterations in the expression of the H-2 Dd Ag, previously identified as a B cell activation antigen B7.2. Our results indicate a new significance for the function and regulation of the MHC during immune responses, and suggest that the class I molecules may serve some role in the B cell activation process.  相似文献   

13.
14.
Cytotoxic T lymphocyte (CTL) recognition sites on class I major histocompatibility complex molecules have been investigated by several laboratories by using cloned genes expressed on mouse L cells by DNA-mediated gene transfer. Recombinant genes, constructed by restriction endonuclease treatment of cloned H-2Dd and Ld genes and exchange of the N and C1 exons (exon shuffling) have provided an additional tool. These hybrid H-2 molecules expressed on L cells have been used as targets to achieve more precise localization of site(s) recognized by allospecific and virus-specific CTLs. CTL systems were chosen that limit recognition to either the Dd or Ld alloantigen or to virus and Dd or Ld complexes. Using this approach, we were able to map essential restricting site(s) to the N and/or C1 domains. Additional evidence is presented that the cytoplasmic tail of H-2 may be involved in interactions with some viral antigens and effect the formation of an immunogenic complex.  相似文献   

15.
The Ag specificity and MHC restriction of the CTL response to adenovirus 5 (Ad5) in three strains of mice, C57BL/10 (H-2b), BALB/c (H-2d), and C3H/HeJ (H-2k), were tested. Polyclonal Ad5-specific CTL were prepared by priming mice in vivo with live Ad5 virus followed by secondary in vitro stimulation of the spleen cells with virus-infected syngeneic cells. The Ad5-specific CTL were Db restricted in C57BL/10 and Kk restricted in C3H/HeJ. In BALB/c mice both Kd- and Dd/Ld-restricted CTL were detected. The polyclonal Ad5-specific CTL response in C57BL/10 mice is directed exclusively against the products of the E1A region, which comprises only 5% of the Ad5 genome. In BALB/c mice E1A is at best a very minor target Ag and in C3H/HeJ mice E1A is not recognized at all. Using the H-2 congenic mouse strains B10.BR (H-2k) and C3H.SW (H-2b) it was shown that the immunodominance of E1A is H-2 dependent. The 19-kDa glycoprotein encoded in the E3 region of Ad5, which binds to class I MHC in the endoplasmic reticulum and prevents its translocation to the cell surface, does not affect the specificity of the CTL response in C57BL/10 mice toward E1A. However, it affects the MHC restriction of the Ad5-specific response in BALB/c mice, selectively inhibiting generation of Kd-restricted CTL.  相似文献   

16.
MHC class I molecules strongly influence the phenotype and function of mouse NK cells. NK cell-mediated lysis is prevented through the interaction of Ly49 receptors on the effector cell with appropriate MHC class I ligands on the target cell. In addition, host MHC class I molecules have been shown to modulate the in vivo expression of Ly49 receptors. We have previously reported that H-2Dd and H-2Dp MHC class I molecules are able to protect (at the target cell level) from NK cell-mediated lysis and alter the NK cell specificity (at the host level) in a similar manner, although the mechanism behind this was not clear. In this study, we demonstrate that the expression of both H-2Dd and H-2Dp class I molecules in target cells leads to inhibition of B6 (H-2b)-derived Ly49A+ NK cells. This inhibition could in both cases be reversed by anti-Ly49A Abs. Cellular conjugate assays showed that Ly49A-expressing cells indeed bind to cells expressing H-2Dp. The expression of Ly49A and Ly49G2 receptors on NK cells was down-regulated in H-2Dp-transgenic (B6DP) mice compared with nontransgenic B6 mice. However, B6DP mice expressed significantly higher levels of Ly49A compared with H-2Dd-transgenic (D8) mice. We propose that both H-2Dd and H-2Dp MHC class I molecules can act as ligands for Ly49A.  相似文献   

17.
We studied H-2 polymorphisms of five outbred strains, CF1, ddY, ddN, ICR and KUNM, using 15 alloantisera to H-2 class I private antigens. All individuals had at least one private antigen at H-2K and/or H-2D. The number of H-2 class I private antigens in each strain were three in ddY, four in ICR, five in CF1, and seven in ddN and KUNM. The number of H-2 phenotypes were five in ddY, six in CF1 and ICR, twelve in ddN and seventeen in KUNM. Each strain had strain specific antigen(s) which discriminated each strain from the other strains. The CF1 strain had the H-2.23 and H-2.32 antigens controlled by the H-2k haplotype at a frequency of about 70%. The ddN strain had H-2.4 (H-2Dd) at a frequency of 37.8%. The H-2.9 antigen (57%) governed by H-2Df was distributed only in the KUNM strain. Both the ddY and ICR strains possessed H-2.17 and H-2.30 antigens (85-97%) which were controlled by the H-2q haplotype. The H-2 locus will be useful to characterize each strain and distinguish between strains, and for monitoring of outbred strains by H-2 gene frequency.  相似文献   

18.
The role of the recently defined L antigen (a second D region product) in allogeneic and TNP-specific syngeneic primary CML responses has been investigated. The lysis by anti-L specific cytotoxic effector cells was not inhibited when the target cells were pretreated with an antiserum directed against K and D, whereas an antiserum against L completely abrogated this response. Therefore, H-2L products are recognized on the target cell independently of H-2K and H-2D locus products. Both A.SW cells as well as B10 cells were found to respond to Ld alloantigens, in addition to Dd alloantigens when stimulated by cells differing only in the D region. The results of cold target blocking and antiserum inhibition experiments failed to detect cytotoxic cells with specificity of L antigens in association with TNP, under conditions in which TNP-specific effectors to K and D antigens were demonstrable. These findings suggest that there is a more limited involvement of H-2L locus products than the H-2K or H-2D locus products in the induction and specificity of these responses.  相似文献   

19.
Many AKR spontaneous thymomas are reported to express different amounts of the major histocompatibility complex class I H-2Kk molecules. Moreover, H-2Kk-deficient AKR tumor cells are found to be more malignant when compared to tumor cells that express abundant levels of the H-2Kk molecules. To corroborate further the role of H-2Kk in tumorigenesis of AKR leukemia, we have, in this study, expressed antisense H-2Kk RNA in a high-H-2Kk-expressing and poorly tumorigenic AKR thymoma cell line 369. The down-regulation of H-2Kk molecules in the transfected 369 clones rendered them more tumorigenic in syngeneic AKR/J mice. The increase in oncogenicity correlates well with a concomitant reduction in their susceptibility to tumor-specific cytotoxic T lymphocytes in vitro. These results suggest the relevance of H-2Kk molecules in the immune surveillance of AKR tumors.  相似文献   

20.
Cell lines into which cloned H-2 genes had been introduced (i.e., transformants) were used to correlate the genes and their products that are capable of functioning as H-2 restriction elements for hapten-self-(AED and TNP) specific cytotoxic T cells (CTL). These transformants provided a unique system in which major histocompatibility restricted (MHC) T cell recognition could be examined by using cells that express only H-2Ld or only H-2Dd gene products. BALB/c (H-2d) anti AED-self CTL lysed both the H-2Ld and Dd transformants, but not parental, i.e., untransformed, cells. The AED-self lysis of the Ld and Dd transformants was shown to be specifically inhibited by anti-H-2Ld and anti H-2Dd monoclonal antibody, respectively. In contrast to these results, BALB/c anti TNP-self CTL were found to lyse readily the Dd but not Ld transformed lines, supporting reports indicating that H-2Ld-restricted TNP-self CTL could not be detected. The results of this study thus demonstrate that the cell surface products encoded by these transferred MHC class I genes contain self determinants recognized by CTL.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号