共查询到20条相似文献,搜索用时 15 毫秒
1.
Vibrio cholerae is the causative organism of the disease cholera. The lipopolysaccharide (LPS) of V. cholerae plays an important role in eliciting the antibacterial immune response of the host and in classifying the vibrios into some 200 or more serogroups. This review presents an account of our up-to-date knowledge of the physical and chemical characteristics of the three constituents, lipid-A, core-polysaccharide (core-PS) and O-antigen polysaccharide (O-PS), of the LPS of V. cholerae of different serogroups including the disease-causing ones, O1 and O139. The structure and occurrence of the capsular polysaccharide (CPS) on V. cholerae O139 have been discussed as a relevant topic. Similarity and dissimilarity between the structures of LPS of different serogroups, and particularly between O22 and O139, have been analysed with a view to learning their role in the causation of the epidemic form of the disease by avoiding the host defence mechanism and in the evolution of the newer pathogenic strains in future. An idea of the emerging trends of research involving the use of immunogens prepared from synthetic oligosaccharides that mimic terminal epitopes of the O-PS of V. cholerae O1 in the development of a conjugate anti cholera vaccine is also discussed. 相似文献
2.
3.
Myosin purified from the abdominal flexor muscle of the lobster, Homarus americanus, has a number average length of 1559 +/- 218 A, a rod like tail 1335 A long and a globular head 225 X 45 A as determined from electron microscopic observations on platinum shadowed preparations. The mass of the molecule was determined to be ca. 486,000 daltons from high speed equilibrium centrifugation studies at neutral and alkaline pH, and by SDS-acrylamide gel electrophoresis. Both sedimentation equilibrium centrifuge studies at alkaline pH and SDS-acrylamide gel electrophoresis experiments, indicate that the molecule contains a heavy chain core (two polypeptide chains weighing ca. 210,000 daltons each) and ca. four light chains of two weight classes (ca. 16,000 and 20,000 daltons). The amino acid composition of the myosin was determined. The specific activities of the Mg2+ -activated, K+/EDTA-activated, and Ca2+ -activated ATPases of the myosin were determined. Kinetic analysis of the digestion of lobster myosin with trypsin suggests that lobster myosin contains three classes of lysine and arginine residues; slowly split (k = 2.07 +/- 0.31 X 10(-2) moles/min2), rapidly split (k = 11.0 +/- 1.83 X 10(-2) moles/min2) and trypsin insensitive. There are 187 +/- 22 slowly split residues, 280 +/- 35 rapidly split residues, and 144 +/- 41 trypsin insensitive bonds per molecule. Comparison of these molecular parameters with those for the vertebrate skeletal muscle myosin indicates that the two myosins are similar in terms of mass, shape and overall polypeptide chain composition but may be considerably different in terms of local polypeptide chain conformation or composition. 相似文献
4.
5.
The substructure of the cardiac myosin molecule was examined by the limited proteolytic digestion of the parent molecule with (dialdehyde starch)-methylenedianiline-mercuripapain, S-MDA-mercuripapain, at low temperatures and neutral pH, using moderate enzyme to myosin rations. Pertinent properties of the insoluble enzyme complex were also examined. Kinetic, ultracentrifugal, and chromatographic observations of the fragmentation process revealed that a single type of lytic reaction occurs during the early stages, predominately releasing heavy meromyosin subfragment 1 (HMM-S1) and myosin rods. With further time digestion, the rods are additionally cleaved yielding light meromyosin and HMM-S2, and HMM-S1 is found to be partially degraded. The major proteolytic subfragments were isolated, purified, and characterized with respect to their enzymatic, optical, amino acid, and physicochemical properties. Only HMM-S1 exhibited Ca-2+-activated ATPase activity, and at a level three- to fourfold higher than that of native myosin. Moreover, its hydrohynamic properties suggest that it is globular in structure. On the other hand, light meromyosin-A (LMM-A) (which consists mainly of rods), and HMM-S2 appear to be highly asymmetric, rigid, alpha-helical molecules devoid of the amino acid proline. Strong similarities were evident in all aspects upon comparison of these results with documented information concerning the skeletal system. On the basis of the physical and chemical properties of the proteolytic subfragments relative to that of native myosin, it was further concluded that the cardiac myosin molecule is a double-stranded, alpha-helical rod ending in tow subfragment 1 globules, of which only one may be enzymatically active at a time. 相似文献
6.
P Dutartre D Mougin M Bride 《Comptes rendus des séances de la Société de biologie et de ses filiales》1983,177(1):45-50
Electrophoresis in non dissociating conditions of native cardiac myosin was adapted to the study of Amphibian myosin. Utilization of potassium ion has allowed to obtain a good separation of myosin isoenzymes. An evolution of isoenzymic composition of cardiac myosin during metamorphosis and aging in Xenopus laevis (Daudin) was observed. 相似文献
7.
8.
Substructure of the myosin molecule. II. The light chains of myosin 总被引:30,自引:0,他引:30
9.
Purification and characterization of bovine cardiac calmodulin-dependent myosin light chain kinase. 总被引:16,自引:0,他引:16
M P Walsh B Vallet F Autric J G Demaille 《The Journal of biological chemistry》1979,254(23):12136-12144
Myosin light chain kinase, which is located primarily in the soluble fraction of bovine myocardium, has been isolated and purified approximately 1200-fold with 16% yield by a three-step procedure. The approximate content of soluble myosin light chain kinase in heart is calculated to be 0.63 microM. The isolated kinase is active only as a ternary complex consisting of the kinase, calmodulin, and Ca2+; the apparent Kd for calmodulin is 1.3 nM. The enzyme also exhibits a requirement for Mg2+ ions. Myosin light chain kinase is a monomeric enzyme with Mr = 85,000. The enzyme exhibits a Km for ATP of 175 microM, and a K0.5 for the regulatory light chain of cardiac myosin of 21 microM. The optimum pH is 8.1. Kinase activity is specific for the regulatory light chain of myosin. The specific activity of the isolated enzyme (30 nmol 32P/min/mg of protein) is considerably less than and corresponding values reported for the skeletal and smooth muscle light chain kinases. This is probably due to proteolysis during extraction of the myocardium, a phenomenon which has, as yet, proven impossible to eliminate. In contrast to the smooth muscle enzyme (Adelstein, R.S., Conti, M.A., Hathaway, D.R., and Klee, C.B. (1978) J. Biol. Chem. 253, 8347-8350), the cardiac kinase is not phosphorylated by the catalytic subunit of cAMP-dependent protein kinase. 相似文献
10.
11.
A detailed physicochemical characterization of purified homoserine dehydrogenase of Rhodospirillum rubrum is presented. The enzyme has a molecular weight of 110000 and consists of two subunits of identical molecular weight of 55000. Depending on the ionic strength and protein concentration it is possible for the native enzyme to dimerize to produce an enzymatically active species of molecular weight 220000. Titrations of the native and detergent-treated enzyme with a variety of sulfhydryl reagents show 2 mol free--SH groups per 110000 g, one of which is buried in the protein interior. L-Threonine and/or high concentrations of salt can expose the buried--SH group, and this--SH group is essential for the catalytic activity of the enzyme. Two independent lines of evidence show that extensive polymerization of the enzyme caused by L-threonine and/or high concentrations of salt does not involve the formation of intermolecular disulfide bonds. 相似文献
12.
Atomic force microscopy (AFM) has been used to study the structure of rabbit skeletal muscle myosin deposited onto a mica substrate from glycerol solution. Images of the myosin molecule have been obtained using contact mode AFM with the sample immersed in propanol. The molecules have two heads at one end of a long tail and have an appearance similar to those prepared by glycerol deposition techniques for electron microscopy, except that the separation of the two heads is not so well defined. The average length of the tail (155 +/- 5 nm) agrees well with previous studies. Bends in the myosin tail have been observed at locations similar to those observed in the electron microscope. By raising the applied force, it has been possible locally to separate the two strands of the alpha-helical coiled-coil tail. We conclude that the glycerol-mica technique is a useful tool for the preparation of fibrous proteins for examination by scanning probe microscopy. 相似文献
13.
14.
Substructure of the myosin molecule. 3. Preparation of single-headed derivatives of myosin 总被引:8,自引:0,他引:8
Native myosin has two globular regions attached to an a-helical rod. Papain is able to cleave the globular “heads” from the rod, leading to the formation of a variety of single-headed molecules. Among these subfragments are isolated globules (HMM S-1) and single globules attached to helical rods of lengths varying from 500 to 1400 Å. These subfragments can be separated from the other products of the proteolytic digestion by salt elution from a DEAE-cellulose column. Some of the properties of single-headed heavy meromyosin and myosin have been determined by hydrodynamic methods, and shadow-cast preparations of these subfragments have been directly visualized by electron microscopy. In addition to providing further evidence for the presence of two similar halves in myosin, these new subfragments can be used in studies related to the question of why myosin has two active “heads”. 相似文献
15.
16.
S L Woo J M Rosen C D Liarakos Y C Choi H Busch A R Means 《The Journal of biological chemistry》1975,250(17):7027-7039
Preparative agarose gel electrophoresis under denaturing conditions has been successfully employed to purify large quantities of ovalbumin mRNA from hen oviducts. The mRNA thus prepared is physically homogeneous based on its migration as a single component on electrophoresis in both analytical acid-urea agarose gels and formamide-containing, neutral polyacrylaminde gels; it also sediments as a single peak in sucrose gradients containing 70% formamide. The mRNA is chemically free of ribosomal RNA contamination since its oligonucleotide fingerprint map after complete T1 ribonuclease digestion contains no detectable specific large oligonucleotide markers of ribosomal RNAs. It is also not contaminated by other biologically active messenger RNAs because, when it is added to the cell-free wheat germ translation system, the only protein product synthesized is ovalbumin as analyzed by polyacrylamide gel electrophoresis in the presence of sodium dodecyl sulfate and specific immunoprecipitation. Ovalbumin mRNA has a nucleotide composition of 32.3% A, 21.0% G, 25.7% U, and 20.7% C [(A+U)/(G+C) equal 1.41]. The mRNA contains a heterogeneous poly(A) tract ranging from 20 to 140 residues with a number average chain length of 62 adenylate residues. The molecular weight of the sodium salt of the purified mRNA is approximately 650,000 +/- 63,000, corresponding to a chain length of 1890 +/- 180 nucleotides, as determined by electron microscopy under completely denaturing conditions. This value is in close agreement with the values obtained from: (a) sucrose gradient centrifugation in the presence of 70% formamide; (b) evaluation of poly(A) content in the mRNA and the number average chain length of its poly(A) tract; and (c) sedimentation velocity studies in the presence of 3% formaldehyde. When 125I-labeled ovalbumin mRNA is allowed to hybridize with a large excess of chick DNA, the observed kinetics of hybridization reveal no appreciable reaction between the mRNA and the repeated sequences of the chick DNA, although the mRNA appears to be approximately 600 nucleotides longer than necessary to code for ovalbumin. It thus appears that the entire ovalbumin mRNA is primarily transcribed from a unique sequence in the chick genome. 相似文献
17.
J Gulick A Subramaniam J Neumann J Robbins 《The Journal of biological chemistry》1991,266(14):9180-9185
18.
Polarity of the myosin molecule 总被引:10,自引:0,他引:10
19.
20.