首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
1. A pure lipid acyl-hydrolase was prepared from potato tubers by acetone precipitation, Sephadex G-100 and DEAE-Sephadex A-50 column chromatography, and by electrofocusing. 2. The purified enzyme was an acidic protein of pI 5.0 and molecular weight of about 70 000. Km values were 0.38 mM for monogalactosyldiacylglycerol and 1.7 mM for phosphatidylcholine. 3. The hydrolytic activity of the enzyme on different substrates was determined. The relative rates were acylsterylglucoside greater than monogalactosyldiacylglycerol greater than monogalactosylmonoacylglycerol greater than digalactosyldiacylglycerol greater than diagalactosylmonoacylglycerol, while the rates for phospholipids were lysophosphatidylcholine greater than phosphatidylcholine greater than lysophosphatidylethanolamine greater than phosphatidylethanolamine. 4. Analyses of enzymatic hydrolysis products suggested that a single enzyme had both galactolipase and phospholipase activities, and for the phospholipids it showed activities similar to phospholipase B and glycerylphosphorylcholine diesterase. 5. A competitive relation was found between monogalactosyldiacylglycerol and phosphatidylcholine as substrates of the enzyme, indicating that the active sites for both substrates may be the same. 6. It was suggested that histidine and probably serine residues were important to the enzymic activity, and that a tyrosine residue might be involved in the activity as an accessory component.  相似文献   

2.
A phospholipase C (PLC) activity that preferentially hydrolyses phosphatidylcholine to diacylglycerol and phosphorylcholine was found to be present in Tetrahymena pyriformis, strain W and most of its activity was recovered in the membrane fraction. This enzyme was extracted with 1% Triton X-100 from the membrane fraction and purified to apparent homogeneity by sequential chromatographies on Fast Q-Sepharose, hydroxyapatite HCA-100S, Mono Q and Superose 12 gel filtration columns. The purified enzyme had specific activity of 2083 nmol of diacylglycerol released/mg of protein/min for dipalmitoylphosphatidylcholine hydrolysis. Its apparent molecular mass was 128 kDa as determined by SDS-polyacrylamide gel electrophoresis and was 127 kDa by gel filtration chromatography, indicating that the enzyme is present in a monomeric form. The enzyme exhibited an optimum pH 7.0 and the apparent Km value was determined to be 166 μM for dipalmitoylphosphatidylcholine. A marked increase was observed in phosphatidylcholine hydrolytic activity in the presence of 0.05% (1.2 mM) deoxycholate. Ca2+ but not Mg2+ enhanced the activity at a concentration of 2 mM. This purified phospholipase C exhibited a preferential hydrolytic activity for phosphatidylcholine but much less activity was observed for phosphatidylinositol (~ 9%) and phosphatidylethanolamine (~ 2%).  相似文献   

3.
A soluble inositolphospholipid-specific phospholipase C (PI-phospholipase C) has been purified 5,800-fold from the cytosolic fraction of calf thymocytes. The purification was achieved by sequential column chromatographies on DEAE-Sepharose CL-6B, heparin-Sepharose CL-6B, Sephacryl S-300, Mono S, and Superose 12, followed by column chromatography on Sephadex G-100 in the presence of 1% sodium cholate. The enzyme thus purified was found to be homogeneous on sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE). The molecular weight of the enzyme was estimated to be 68 kDa by SDS-PAGE. The enzyme is specific for inositol phospholipids. Phosphatidylinositol and phosphatidylinositol 4,5-bisphosphate (PIP2) were hydrolyzed, but phosphatidylcholine and phosphatidylethanolamine were not affected by the enzyme. GTP gamma S-binding activity was detected in the enzyme fractions after all the purification steps, but not in the final enzyme preparation. The PI-phospholipase C and GTP gamma S-binding activities in the partially purified enzyme preparation could be separated by the column chromatography on Sephadex G-100 only in the presence of 1% sodium cholate. Thus, the soluble PI-phospholipase C has affinity to a GTP-binding protein. SDS-PAGE of the GTP-binding fractions eluted from the Sephadex G-100 column gave three visible bands of 54, 41, and 27 kDa polypeptide was specifically ADP-ribosylated by pertussis toxin. Furthermore, it was found that GTP and GTP gamma S (10 microM and 1 mM) could enhance the PIP2 hydrolysis activity of the partially purified enzyme in the presence of 3 mM EGTA, but the purified enzyme after separation from the GTP-binding activity was not affected by GTP and GTP gamma S. The soluble PI-phospholipase C of calf thymocytes may be not only physically but also functionally associated with a GTP-binding protein.  相似文献   

4.
The aminopeptidase which had been shown to be present in Mycoplasma salivarium was found to be associated with the cell membranes of the organism. The enzyme was solubilized in water by papain digestion of the membranes pretreated with Triton X-100 and purified approximately 130-fold by ion-exchange chromatography on DEAE-Sephadex A-50, affinity chromatography on L-leucylglycine-AH-Sepharose 4B, and gel filtration on Sepharose CL-6B. The purified enzyme had a molecular mass of 397 kilodaltons, estimated by gel filtration through Sepharose CL-6B, and gave two bands of activity in analytical disc polyacrylamide gel electrophoresis: a dense, diffuse band and a less dense, narrow one, accounting for 90 and 5% of stained proteins in the gel, respectively. The purified protein revealed two bands with molecular masses of 50 and 46 kilodaltons by sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The enzyme catalyzed selectively the cleavage of the N-terminal arginine and leucine residues of peptides; had a pH optimum at 8.5; and was inhibited remarkably by bestatin, o-phenanthroline, EDTA, and L-cysteine, but was activated nine- and twofold by MnCl2 and MgCl2, respectively. The enzyme pretreated with MnCl2 had much higher maximum velocity (Vmax) for L-leucine-p-nitroanilide than the one not treated. That is, the Michaelis constant (Km) and Vmax values of the pretreated enzyme were 10.5 mM and 12.1 microM/min, respectively, whereas those of the untreated enzyme were 5.8 mM and 1.6 microM/min, respectively.  相似文献   

5.
Digestion of dietary sphingomyelin (SM) is catalyzed by intestinal alkaline sphingomyelinase (SMase) and may have important implications in colonic tumorigenesis. Previous studies demonstrated that the digestion and absorption of dietary SM was slow and incomplete and that the colon was exposed to SM and its hydrolytic products including ceramide. In the present work, we studied the influences of glycerophospholipids and hydrolytic products of phosphatidylcholine (PC; i.e., lyso-PC, fatty acid, diacylglycerol, and phosphorylcholine) on SM hydrolysis induced by purified rat intestinal alkaline SMase in the presence of 10 mM taurocholate. It was found that various phospholipids including PC, phosphatidylserine (PS), phosphatidylinositol (PI), phosphatidylethanolamine (PE), and phosphatidic acid (PA) inhibit alkaline SMase activity in a dose-dependent manner, with the degree of inhibition being in the order PA > PS > PI > PC > PE. Similar inhibition was also seen in a buffer of pH 7.4, which is close to the physiologic pH in the middle of the small intestine. When the effects of hydrolytic products of PC were studied, lyso-PC, oleic acid, and 1,2-dioleoyl glycerol also inhibited alkaline SMase activity, whereas phosphorylcholine enhanced SMase activity. However, in the absence of bile salt, acid phospholipids including PA, PS, and PI mildly stimulated alkaline SMase activity whereas PC and PE had no effect. It is concluded that in the presence of bile salts, glycerophospholipids and their hydrolytic products inhibit intestinal alkaline SMase activity. This may contribute to the slow rate of SM digestion in the upper small intestine.  相似文献   

6.
The hydrolysis and transphosphatidylation of lysophosphatidylcholine (LPC), with a partially purified preparation of phospholipase D (PL D) from Savoy cabbage, was investigated. These reactions were about 20 times slower than the hydrolysis of phosphatidylcholine (PC) in a micellar system. For the transfer reaction, 2 M glycerol was included in the media, which suppressed the hydrolytic reaction. Both reactions presented similar V(max) values, suggesting that the formation of the phosphatidyl-enzyme intermediate is the rate-limiting step. The enzyme had an absolute requirement for Ca(2+), and the optimum concentration was approximately 40 mM CaCl(2). K(Ca)(app) was calculated to be 8.6+/-0.74 mM for the hydrolytic and 10+/-0.97 mM for the transphosphatidylation reaction. Both activities reached a maximum at pH 5.5, independent of Ca(2+) concentration. Kinetic studies showed that the Km(app) for the glycerol in the transphosphatidylation reaction is 388+/-37 mM. Km(app) for the lysophosphatidylcholine depended on Ca(2+) concentration and fell between 1 and 3 mM at CaCl(2) concentrations from 4 to 40 mM. SDS, TX-100, and CTAB did not activate the enzyme as reported for phosphatidylcholine hydrolysis; on the contrary, reaction rates decreased at detergent concentrations at or above that of lysophosphatidylcholine.  相似文献   

7.
Triacylglycerol ester hydrolase was isolated from bat adipose tissue and characterized. The partially purified enzyme had pH optimum of 8.6 and a Km value of 0.6 mM. The enzyme was denaturated upon freezing and thawing, which was prevented by 25% glycerol. The enzyme was activated by EDTA and NaCl, while it was inhibited by serum and bovine serum albumin. Heparin, sodium fluoride and diisopropyl fluorophosphate had no effect on triacylglycerol ester hydrolase activity. It hydrolyzed triglycerides partially. Triacylglycerol ester hydrolase lost its activity during delipidation but it was reactivated by endogenous lipids and phospholipids, viz. phosphatidyl ethanolamine, phosphatidyl choline and sphingomyelin. The enzyme shows kinetic properties altogether different from lipoprotein lipase and hormone sensitive lipase  相似文献   

8.
On the substrate specificity of rat liver phospholipase A1   总被引:1,自引:0,他引:1  
The substrate specificity of purified phospholipase A1 was studied using mixed micelles of phospholipid and Triton X-100. The kinetic analysis employed determined Vmax, Ks (a dissociation constant for the phospholipase A1-mixed micelle complex), and Km (the Michaelis constant for the catalytic step which reflects the binding of the enzyme to the substrate in the interface). The order of Vmax values was phosphatidic acid greater than phosphatidylethanolamine greater than phosphatidylcholine greater than phosphatidylserine. The order of Ks values was phosphatidylcholine greater than phosphatidylethanolamine greater than phosphatidic acid greater than phosphatidylserine; the order of Km values was phosphatidic acid greater than phosphatidylethanolamine = phosphatidylserine greater than phosphatidylcholine. When present together, phosphatidylcholine inhibited the hydrolysis of phosphatidylethanolamine but phosphatidylethanolamine did not affect the hydrolysis of phosphatidylcholine. Sphingomyelin, phosphatidylcholine plasmalogen, and phosphatidylethanolamine plasmalogen had no effect on the hydrolysis of phosphatidylethanolamine. The effects of the reaction products, lysolipids and/or fatty acids, were also considered for their influence on phosphatidylethanolamine hydrolysis catalyzed by phospholipase A1. Free fatty acid was found to inhibit, whereas lysophospholipids stimulated hydrolysis of phosphatidylethanolamine. In a mixture of 1,2- and 1,3-diacylglycerides in mixed micelles, only the acyl chain at the sn-1 position of the 1,2 compound was hydrolyzed. Surface charge did not modulate the hydrolysis of phosphatidylcholine vesicles or mixed micelles. In conclusion, it is hypothesized that steric hindrance at position 3 of the glycerol regulates substrate binding in the active site and that an acyl group in position 1 is favored over a vinyl ether linkage for binding.  相似文献   

9.
The cholinephosphotransferase reaction is shown to be catalyzed by an enzyme which has no hydrolytic activity and which is different from a phospholipase C type activity also present in these plasma membrane preparations. Diacylglycerols and sphingosine, at a concentration above 0.4 mM, are effective inhibitors of sphingomyelin formation in the presence of 0.3 mM free ceramide, the true acceptor in this reaction. Free sphingosine is not an acceptor for the cholinephosphate group, as the anticipated reaction product, sphingosylphosphocholine , could not be detected. Sphingosine inhibition may result from its structural similarity to the natural substrates of the reaction, ceramide and diacylglycerols. From the data obtained with cholesterol, triacylglycerols, acetylated ( triacetyl ) sphingosine and acetylated ceramides used as potential inhibitors of the reaction it is concluded that the free hydroxyl group at C1 of the sphingosine backbone or of the glycerol moiety of diacylglycerols and a non-polar residue consisting of an aliphatic chain were prerequisites for inhibitory activity. These results are discussed in terms of substrate specificity of the enzyme catalyzing the transfer reaction. Some of the factors influencing the regulation of the phosphatidylcholine/sphingomyelin ratio in the plasma membrane were related to the topography of sphingomyelin in the outer half-layer of the plasma membrane.  相似文献   

10.
An activator stimulating the enzymatic hydrolysis of phospholipids was purified to a homogeneous state from autolyzed Torulaspora delbrueckii cell washings. Autolyzed cell washings were extracted with chloroform and ethanol, and the activator was purified about 130-fold by sequential column chromatographies on DEAE-Sephacel, Sephacryl S-300, and TSK gel G 3000 SW (high performance liquid chromatography, HPLC). The molecular weight of the activator was about 175,000 as estimated by gel filtration on HPLC. However, the purified activator gave two protein bands corresponding to molecular weights from 102,000 to 129,000 and from 71,000 to 88,000, respectively, on SDS- polyacrylamide gel electrophoresis, when stained with silver stain reagent and periodic acid-Shiff (PAS) reagent. The activator was sensitive to heat treatment at 70°C for lOmin. The purified activator had no enzymatic activity, but stimulated the hydrolysis of phospholipids by water-soluble and membrane-bound phospholipases B if the substrates were pre-incubated with the activator. No stimulation of hydrolysis by the enzyme was observed when the activator was pre-incubated with the enzyme. The hydrolytic rate of phosphatidylcholine by the enzyme at acidic pH (pH 2.6) depended upon the amount of activator added. On the other hand, the hydrolytic rate at alkaline pH (pH 7.6) was stimulated greatly by more than 0.04 nmol of the activator.  相似文献   

11.
A particulate NMN glycohydrolase of rabbit spleen was solubilized with Triton X100 and purified approximately 100-fold. The enzyme was shown to have a pH maximum of 6.5, a Km of 0.25 mM, a Vmax of 5.3 mumol/min/mg protein, an activation energy of 7.9 kcal/mol, and a molecular weight of approximately 400,000. Both of the purified and the particulate enzymes exhibited identical catalytic properties with respect to substrate specificity, activation energy, pH profile and exchange reaction with nicotinic acid, except that the purified enzyme was highly activated with Triton X100 as compared with the particulate enzyme; it appears that the purified enzyme possesses the same catalytic properties as the enzyme present in the tissue and that solubilization does not significantly alter the native protein. In addition to catalytic activity with NMN, the rabbit spleen enzyme catalyzed an irreversible hydrolysis with NAD and NADP, exhibiting catalyzing activity ratios of NMN:NAD:NADP = 1.00:1.45:0.44 and Vmax/Km ratios of 1.00:1.7:2.3, respectively. These ratios of activity remained constant throughout purification of the enzyme and no separation of these activities was detected. Mutually competitive inhibition of the enzyme with Ki values similar to Km, and identical rates of thermal denaturation of the enzyme and activity-pH profiles with NMN or NAD indicated the hydrolysis of the C-N glycosidic linkage of the pyridine nucleotides to be catalyzed by the same enzyme. The enzyme was less specific for the purine structure of the substrate dinucleotides but was stereospecific for the glycosidic linkage cleaved. Nicotinamide riboside, the nicotinic acid analogs and the reduced forms were not hydrolyzed. A linear noncompetitive inhibition of NMN hydrolysis with nicotinamide indicated an ordered Uni-Bi mechanism in which nicotinamide was the first product released from the enzyme. A property that the rabbit spleen enzyme appears to share with other NAD glycohydrolases is the transglycosidation reaction. The ratio of transglycosidation reaction vs. hydrolysis catalyzed by the enzyme in the presence of NMN and nicotinic acid indicated that the enzyme could function as a primary transglycosidase rather than a hydrolytic enzyme in vivo.  相似文献   

12.
Membrane-bound and cytosolic phosphatidylinositol (PI)-specific phospholipases C in murine thymocytes have been partially purified and characterized. The membrane-bound enzyme was extracted from microsomes with sodium cholate and purified by sequential column chromatographies on Sephadex G-100, heparin-Sepharose CL-6B, and Sephadex G-100. The cytosolic enzyme was purified from the cytosol by sequential column chromatographies on Sephadex G-100 and FPLC-Mono S. Specific activities of the membrane-bound enzyme and the cytosolic enzyme increased more than 1,800- and 1,400-fold, respectively, compared with those of microsomes and the cytosol. The molecular weights of the both enzymes were estimated to be about 70,000 by gel filtration. These purified enzymes also hydrolyzed phosphatidylinositol 4,5-bisphosphate (PIP2). At neutral pH and low Ca2+ concentrations, the membrane-bound enzyme hydrolyzed PIP2 in preference to PI and showed higher activity than the cytosolic enzyme. These activities were also affected differently by various lipids. For PIP2 hydrolysis, all lipids investigated except lysophosphatidylcholine enhanced the activity of the membrane-bound enzyme, while phosphatidylcholine (PC) and phosphatidylserine (PS) did not significantly affect the activity of the cytosolic enzyme. PC, PE, and PS inhibited the activities of the membrane-bound and cytosolic enzymes for PI hydrolysis. The physiological implications of these results are discussed.  相似文献   

13.
The apparent activity of phospholipase C[EC 3.1.4.3] of Clostridium novyi type A toward phosphatidylcholine, sphingomyelin, and phosphatidylethanolamine increased in the presence of sodium deoxycholate (SDC). The effects of divalent cations on phospholipase C activity were examined in detail at various concentrations of these cations. These effects varied with substrate. Hydrolysis of phosphatidylcholine by this enzyme significantly increased in the presence of Mg2+ or Ca2+. Hydrolysis of sphingomyelin was inhibited by Ca2+, but increased in the presence of Mg2+. Phosphatidylethanolamine-hydrolyzing activity increased only slightly in the presence of Mg2+ and Ca2+. Zn2+ rather inhibited hydrolysis of these substrates. The effects of divalent cations and detergent appear to be directly related to the physical state of the phospholipid micelles used as substrates. When phosphatidylcholine, sphingomyelin, or phosphatidylethanolamine was used as a substrate, phospholipase C activity was completely inhibited by 2.5 mM EDTA or o-phenanthroline (concentration in the final incubation mixture: 0.5 mM), and was fully restored by Zn2+ alone. Both Ca2+ and Mg2+ were ineffective for reactivation. The isoelectric point of the enzyme was 7.1 +/- 0.1.  相似文献   

14.
Abstract— Properties of both a transglucosylation reaction and the hydrolytic activity of a partially purified calf brain β -glucosidase were investigated. Sodium taurocholate and a 'Gaucher factor' stimulated both activities. A purified 'stimulatory' factor from human liver did not appear to significantly affect the hydrolytic activity towards either 4-methylumbelliferone- β - d -glucoside or [14C]glucosyl ceramide. Several compounds were found to be competitive inhibitors of the hydrolytic activity, conduritol B epoxide and norjirimycin being the most effective. Glucosyl ceramide hydrolysis was more sensitive to inhibition by p -chloromercuribenzenesulfonate than 4-methylumbelliferone- β -glucoside cleavage. The partially purified enzyme preparation catalyzed the formation of [14C]glucosyl ceramide with N -[14C]oleoyl sphingosine as the acceptor and several β -glucosides as the donor.  相似文献   

15.
The activity for the hydrolysis of succinyl trialanine-4-nitroanilide was higher in kidney homogenates of female rats and mice than in those of male rats and mice. An enzyme hydrolyzing the above substrate was extracted from female rat kidney homogenate and partially purified by means of gel filtration on Sepharose 4B, anion-exchange chromatography on DEAE-Sepharose CL-6B and affinity chromatography on carbobenzoxy-L-Ala-L-Ala-D-Ala-polylysine-agarose. The purified enzyme cleaved the bond between succinyl dialanine and alanine-4-nitroanilide of the substrate and showed a Km value of 3.3 mM at the optimal pH of 7.5. The activity was increased by Ca2+ and Mg2+, but inhibited by EDTA. With oxidized insulin B chain as a substrate, the enzyme cleaved the carbonyl bonds of Ala-14, Tyr-16 and Gly-23 efficiently, and those of His-5 and His-10 less efficiently.  相似文献   

16.
A cellulose hydrolytic enzyme was isolated from the stomach juice of Ampullaria crossean, a kind of herbivorous mollusca. The enzyme was purified 45.3-fold to homogenety by ammonium sulfate precipitation, DEAE-Sephadex A-50 column, Bio-gel P-100 gel filtration column, and phenyl-Sepharose CL-4B column chromatography. The enzyme was designated as cellulase EGX. The purified enzyme is a multi-functional enzyme with the activities of exo-beta-1,4-glucanase (14.84 U/mg for p-nitrophenyl beta-D-cellobioside), endo-beta-1,4-glucanase (40.3 U/mg for carboxymethyl cellulose), and endo-beta-1,4-xylanase (196 U/mg for soluble xylan from birchwood). The monovalent anions such as F(-), Cl(-), Br(-), I(-), and NO(3)(-) are essential for its exo-beta-1,4-glucanase activity but have no effect on the activity for xylan, while I(-) higher than 5mM would inhibit the exo-beta-1,4-glucanase activity. The monovalent anions Cl(-) and Br(-) activate its endo-beta-1,4-glucanase activity. Binding of Cl(-) enhances the thermostability of EGX, but does not affect its fluorescence emission spectrum. The molecular mass of EGX is 41.5 kDa, as determined by SDS-PAGE. The pI value is about pH 7.35. The xylan hydrolytic activity of EGX reaches to the maximum between pH 4.8 and 6.0 and the pNPC hydrolytic activity reaches the maximum between pH 4.8 and 5.6, while that for CMC hydrolytic activity is between pH 4.4 and 4.8. Preliminary results showed that the enzyme was secreted by the mollusca itself.  相似文献   

17.
It was found that the cytoplasm of light-grown cells of Rhodospirillum rubrum could catalyze the reduction of methyl viologen (MV) (Em, 7 = -0.44 V) by NADH and NADPH. In the present study, the enzyme capable of catalyzing MV reduction by NADH (NADH-MV reductase) was purified 1,500-fold from an extract of cells with a yield of 4.4%. The purification procedure comprised (NH4)2SO4 fractionation, and chromatographies on Sepharose CL-6B, DEAE-Sepharose CL-6B, phenyl-Sepharose CL-4B, Blue-Cellulofine, and TSK-Gel G3000SW. Two NADPH-MV reductases were separated during the purification. The NADH-MV reductase obtained was nearly homogeneous, as judged on polyacrylamide gel electrophoresis both in the presence and absence of sodium dodecyl sulfate. The enzyme has a molecular weight of 220,000 and an isoelectric point of 4.8; it is composed of four subunits with a molecular weight of 57,000, and is bound with about 1 mol FAD/mol subunit. The activity is optimum at pH 8. The Km values for NADH and MV are 115 microM and 1.3 mM, respectively, with a molecular activity of 13,000 min-1. The activity was stimulated 2.4-fold in the presence of 20-100 mM ammonium ions. The enzyme also catalyzed the reduction of benzyl viologen, methylene blue and 2,6-dichlorophenol-indophenol (Em, 7 = -0.36, +0.011, and +0.217 V, respectively) at comparable rates. The ratios of the activity with NADH to that with NADPH were 80, 133, 41, and 5.5 with MV, benzyl viologen, methylene blue and 2,6-dichlorophenolindophenol, respectively. The enzyme was significantly stable in the presence of both 5mM 2-mercaptoethanol and 20% (w/v) glycerol. The activity was not appreciably influenced by the presence of 2 M urea, although the reagent caused dissociation to the subunits.  相似文献   

18.
Characterization of dehydropeptidase I in the rat lung   总被引:1,自引:0,他引:1  
The activity of dehydropeptidase I in rat tissues decreases in the order of lung greater than kidney greater than liver-spleen greater than other tissues, while aminopeptidase activity is high in the kidney, and lower in the lung than in other tissues. Dehydropeptidase I was solubilized from the membrane fraction of rat lung by treatment with papain and purified by DEAE-cellulose column chromatography, affinity chromatography on concanavalin-A-Sepharose and high-performance liquid chromatography gel filtration. The purified preparation was found to be homogeneous on sodium dodecyl sulfate/polyacrylamide gel electrophoresis. The relative molecular mass was estimated to be 150,000 by gel filtration, comprising a homodimer of two 80,000-Mr subunits. The enzyme activity was inhibited by cilastatin, o-phenanthroline and ATP. This enzyme catalyzed the hydrolysis of S(substituent)-L-cysteinyl-glycine adducts such as L-cystinyl-bis(glycine) and N-ethylmaleimide-S-L-cysteinyl-glycine, as well as the conversion of leukotriene D4 to E4. Furthermore it catalyzed a hydrolytic splitting of L-Leu-L-Leu, but not S-benzyl-L-cysteine p-nitroanilide, which is a good substrate for aminopeptidase. Our enzyme preparation was immunologically identical to the rat renal dehydropeptidase I. The physiological significance of the pulmonary dehydropeptidase I on the metabolism of glutathione and its adducts is discussed.  相似文献   

19.
Oviductal secretions include an ATPase (EC 3.6.1.3) that is transferred from the outer surface of the secretory cells to the surface of the ovulated oocyte. The enzyme has been purified and is a highly labile, very high molecular weight lipoprotein complex (greater than 4-10(6)). It consists of 47% protein and 53% lipid. Lipid composition is limited to phosphatidylcholine, phosphatidylethanolamine and sphingomyelin. The basic protein subunit has a molecular weight of 170 000. The enzyme exhibits many of the characteristics of ectoenzyme ATPase. The enzyme is Mg2+ or Ca2+ dependent; the Mg2+-ATPase has pH optima at 6.0 and 7.8 and the Ca2+-ATPase at 9.0. Substrate specificity is limited to ATP with lesser activity towards GTP, CTP, UPT and ADP. Km for ATP is 0.88 mM and the enzyme is inhibited at substrate concentrations greater than 3 mM ATP.  相似文献   

20.
Sphingomyelinase of Bacillus cereus proved to be specifically adsorbed onto mammalian erythrocyte membranes in the presence of either Ca2+ or Ca2+ plus Mg2+ in the order of sphingomyelin content; i.e., sheep, bovine greater than porcine greater than rat erythrocytes. No appreciable adsorption was observed in the presence of Mg2+ alone nor in the absence of divalent metal ions. The enzyme adsorption onto bovine erythrocytes was dependent upon the incubation temperature. By shifting the temperature from 37 to 0 degrees C, sphingomyelinase once adsorbed onto the surface of bovine erythrocytes was released into the supernatant. Ca2+ proved to be an essential factor for the enzyme adsorption: The addition of 1 mM Ca2+ enhanced the adsorptive process, but inhibited sphingomyelin hydrolysis and hot or hot-cold hemolysis of erythrocytes, while the addition of 1 mM Ca2+ plus 1 mM Mg2+ enhanced sphingomyelin breakdown and hemolysis as well as the enzyme adsorption. However, when the amount of sphingomyelin fell off to 0.2-0.7 nmol/ml or less by the action of sphingomyelinase, the enzyme once adsorbed was completely released from the surface of erythrocytes. The result indicates that the major binding site for sphingomyelinase is sphingomyelin. In the presence of 1 mM Mg2+ alone, the enzymatic hydrolysis of sphingomyelin and hemolysis proceeded whereas the enzyme adsorption was not encountered during 60 min incubation at 37 degrees C. The change in the molar ratio of Ca2+ to Mg2+ affected the enzyme adsorption and sphingomyelin breakdown; the higher Ca2+ enhanced the adsorption whereas the higher Mg2+ stimulated sphingomyelin hydrolysis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号