共查询到20条相似文献,搜索用时 15 毫秒
1.
Yunkui Zhu C Magnus Sköld Xiangde Liu Hangjun Wang Tadashi Kohyama Fu-Qiang Wen Ronald F Ertl Stephen I Rennard 《Respiratory research》2001,2(5):295-7
Background
Inflammatory cells are believed to play a prominent role during tissue repair and remodeling. Since repair processes develop and mature over extended time frames, the present study was designed to evaluate the effect of monocytes and fibroblasts in prolonged culture in three-dimensional collagen gels. 相似文献2.
The differentiated phenotype of rabbit articular chondrocytes consists primarily of type II collagen and cartilage-specific proteoglycan. During serial monolayer culture this phenotype is lost and replaced by a complex collagen phenotype consisting predominately of type I collagen and a low level of proteoglycan synthesis. Such dedifferentiated chondrocytes reexpress the differentiated phenotype during suspension culture in firm gels of 0.5% low Tm agarose. Approximately 80% of the cells survive this transition from the flattened morphology of anchorage-dependent culture to the spherical morphology of anchorage-independent culture and then deposit characteristic proteoglycan matrix domains. The rates of proteoglycan and collagen synthesis return to those of primary chondrocytes. Using SDS-polyacrylamide gel electrophoresis of intact collagen chains and two-dimensional cyanogen bromide peptide mapping, we demonstrated a complete return to the differentiated collagen phenotype. These results emphasize the primary role of cell shape in the modulation of the chondrocyte phenotype and demonstrate a reversible system for the study of gene expression. 相似文献
3.
Akhouayri O Lafage-Proust MH Rattner A Laroche N Caillot-Augusseau A Alexandre C Vico L 《Journal of cellular biochemistry》1999,76(2):217-230
Studies performed at tissular (three-dimensional, 3-D) or cellular (two-dimensional, 2-D) levels showed that the loading pattern plays a crucial role in the osteoblastic physiology. In this study, we attempted to investigate the response of a 3-D osteoblastic culture submitted to either no external stress or static or dynamic stresses. Rat osteosarcoma cells (ROS 17/2.8) were embedded within collagen type I lattices and studied for 3 weeks. Entrapment and proliferation of cells within the hydrated collagen gel resulted in the generation of contractile forces, which led to contraction of the collagen gel. We used this ability to evaluate the influence of three modes of mechanical stresses on the cell proliferation and differentiation: (1) the freely retracted gels (FRG) were floating in the medium, (2) the tense gels (TG) were stretched statically and isometrically, with contraction prevented in the longitudinal axis, and (3) the dynamic gels (DG) were floating gels submitted to periodic stresses (50 or 25 rpm frequency). Gels showed maximum contraction at day 12 in 50 rpm DG, followed by 25 rpm DG, then FRG (88%, 81%, 70%, respectively) and at day 16 in TG (33%). The proliferation rate was greater in TG than in FRG (+52%) but remained low in both DGs. Gel dimensions were related to the collagen concentration and on a minor extent to cell number. Cells in DG appeared rounder and larger than in other conditions. In TG, cells were elongated and oriented primarily along the tension axis. Scanning electron microscopy (SEM) showed that tension exerted by cells in TG led to reorientation of collagen fibers which, in turn, determined the spatial orientation and morphology of the cells. Transmission electron microscopy (TEM) performed at maximum proliferation showed a vast majority of cells with a distended well-developed RER filled with granular material and numerous mitochondria. Alkaline phosphatase activity peaked close to the proliferation peak in FRG, whereas in TG, a biphasic curve was observed with a small peak at day 4 and the main peak at day 16. In DG, this activity was lower than in the two other conditions. A similar time course was observed for alkaline phosphatase gene expression as assessed by Northern blots. Regardless of the conditions, osteocalcin level showed a triphasic pattern: a first increase at day 2, followed by a decrease from day 4 to 14, and a second increase above initial values at day 18. Microanalysis-x indicated that mineralization occurred after 14 days and TEM showed crystals within the matrix. We showed that static and dynamic mechanical stresses, in concert with 3-D collagen matrices, played a significant role on the phenotypic modulation of osteoblast-like cells. This experimental model provided a tool to investigate the significance and the mechanisms of mechanical activity of the 3-D cultured osteoblast-like cells. 相似文献
4.
Fibroblasts in mechanically stressed collagen lattices assume a "synthetic" phenotype 总被引:10,自引:0,他引:10
Kessler D Dethlefsen S Haase I Plomann M Hirche F Krieg T Eckes B 《The Journal of biological chemistry》2001,276(39):36575-36585
5.
6.
Quantification of human neutrophil motility in three-dimensional collagen gels. Effect of collagen concentration.
下载免费PDF全文

Leukocytes must migrate through tissues to fulfill their role in the immune response, but direct methods for observing and quantifying cell motility have mostly been limited to migration on two-dimensional surfaces. We have now developed methods for examining neutrophil movement in a three-dimensional gel containing 0.1 to 0.7 mg/ml rat tail tendon collagen. Neutrophil-populated collagen gels were formed within flat glass capillary tubes, permitting direct observation with light microscopy. By following the tracks of individual cells over a 13.5-min observation period and comparing them to a stochastic model of cell movement, we quantified cell speed within a given gel by estimating a random motility coefficient (mu) and persistence time (P). The random motility coefficient changed significantly with collagen concentration in the gel, varying from 1.6 to 13.3 x 10(-9) cm2/s, with the maximum occurring at a collagen gel concentration of 0.3 mg/ml. The methods described may be useful for studying tissue dynamics and for evaluating the mechanism of cell movement in three-dimensional gels of extracellular matrix (ECM) molecules. 相似文献
7.
Bovine mammary epithelial cells cultured on floating gels of rat tail collagen showed two principal cell types, columnar and squamous, with ultrastructural features resembling secretory and myoepithelial cells respectively. Cultures of freshly prepared cells released alpha-lactalbumin into the culture medium and in some cases contained fat droplets, although these did not appear to be released. No ultrastructural evidence of casein synthesis was observed. A notable feature was the failure to secrete a continuous basement membrane. Intermediate filaments were present in abundance in squamous epithelial cells. 相似文献
8.
Invasion of mesenchyme into three-dimensional collagen gels: a regional and temporal analysis of interaction in embryonic heart tissue 总被引:12,自引:0,他引:12
In normal heart development the endothelium of the atrioventricular canal, but not the ventricle, produces mesenchymal cells which seed (invade) into the intervening extracellular matrix toward the myocardium at around 64-69 hr of development. We have utilized three-dimensional collagen substrates to examine the initiation of seeding by atrioventricular canal endothelia in vitro and to compare and contrast the responses of the ventricular endothelia. Explants of atrioventricular canals and ventricles from staged embryos were placed on the surfaces of collagen gels prior to the onset of seeding in situ. At varied intervals of incubation, the explant was removed, leaving behind a monolayer on the surface of the gel which consisted of endothelial cells. Subsequently, the endothelial outgrowths were examined for seeded cells. The results confirm the regional endothelial differences seen in vivo. They also show that invasion of the collagen gels is due to an alteration in phenotype mediated by interaction with other components of embryonic heart explant. Lastly, the time course of this tissue interaction in vitro mimics the onset of seeding in vivo. 相似文献
9.
Cytoskeleton in human mammary carcinoma cells forming three-dimensional cellular structures within collagen gels 总被引:1,自引:0,他引:1
Human mammary carcinoma cell line MCF-7 cells grown on type I collagen gels floating in a medium occasionally invaginated into the gels as a cell mass and formed cylindrical or domed structures within it. The 0.05% Triton-insoluble cytoskeleton of such cellular structures sedimented as a white flocculent layer at the boundary between 60 and 70% sucrose layers by ultracentrifugation, and consisted of 4 basal components: 54-kD (beta-tubulin), 45-kD, 42-kD (actin), and 39-kD polypeptides. By contrast, the isolated cytoskeleton of MCF-7 cells grown as monolayers on plastic substratum formed a finer cytoskeletal network with a smaller buoyant density and consisted of two distinct polypeptides with apparent molecular sizes of 80-kD and 65-kD in addition to the 4 basal components found in the morphologically developing cells. The present results indicate that the cytoskeleton of MCF-7 cells forming the three-dimensional cellular structures within collagen gels is lacking in these two polypeptides, and that it has a coarser cytoskeletal network with a greater buoyant density than that of the monolayered cells on plastic. 相似文献
10.
As a first approach to establishing a three-dimensional culture infection model, we studied the growth behavior of the extracellular pathogen Yersinia enterocolitica in three-dimensional collagen gels (3D-CoG). Surprisingly, we observed that plasmidless Y. enterocolitica was motile in the 3D-CoG in contrast to its growth in traditional motility agar at 37 degrees C. Motility at 37 degrees C was abrogated in the presence of the virulence plasmid pYV or the exclusive expression of the pYV-located Yersinia adhesion gene yadA. YadA-producing yersiniae formed densely packed (dp) microcolonies, whereas pYVDelta yadA-carrying yersiniae formed loosely packed microcolonies at 37 degrees C in 3D-CoG. Furthermore, we demonstrated that the packing density of the microcolonies was dependent on the head domain of YadA. Moreover, dp microcolony formation did not depend on the capacity of YadA to bind to collagen fibers, as demonstrated by the use of yersiniae producing collagen nonbinding YadA. By using a yopE-gfp reporter, we demonstrated Ca(2+)-dependent expression of this pYV-localized virulence gene by yersiniae in 3D-CoG. In conclusion, this study revealed unique plasmid-dependent growth behavior of yersiniae in a three-dimensional matrix environment that resembles the behavior of yersiniae (e.g., formation of microcolonies) in infected mouse tissue. Thus, this 3D-CoG model may be a first step to a more complex level of in vitro infection models that mimic living tissue, enabling us to study the dynamics of pathogen-host cell interactions. 相似文献
11.
Yunkui Zhu Xiangde Liu C Magnus Sköld Hangjun Wang Tadashi Kohyama Fu-Qiang Wen Ronald F Ertl Stephen I Rennard 《Respiratory research》2001,2(5):300-7
Background
Extended culture of monocytes and fibroblasts in three-dimensional collagen gels leads to degradation of the gels (see linked study in this issue, "Fibroblasts and monocytes contract and degrade three-dimensional collagen gels in extended co-culture"). The current study, therefore, was designed to evaluate production of matrix-degrading metalloproteinases by these cells in co-culture and to determine if neutrophil elastase could collaborate in the activation of these enzymes. Since co-cultures produce prostaglandin E2 (PGE2), the role of PGE2 in this process was also evaluated. 相似文献12.
Masumi Akita Eiko Murata Katsuji Kaneko J. Ghaida H. -J. Merker 《Cell and tissue research》1993,274(1):91-95
Aortic smooth muscle cells (SMC) grown on conventional plastic culture dishes have morphological and functional properties of dedifferentiated cells in sub-culture. We examined the influence of collagen gels on the cell shape and arrangement. The cells grown on collagen gels showed a multilayered growth with formation of nodules. When the edge of the collagen gels was detached from the culture dish, the shape and arrangement of cells on the edge differed from that of the central, still attached region. The cells grown on floating collagen gels exhibited a spindle-like shape and were arranged in concentric circles. These findings suggest that the physical property of the substrate influences the cell shape and arrangement. 相似文献
13.
Several pathological and disease conditions can alter the mechanical properties of the extracellular matrix (ECM). Conversely, some diseases may arise from changes in the density or rigidity of the ECM. This necessitates the use and development of in vitro models to understand how both biophysical and biochemical signals regulate complex cellular behaviors. T47D breast epithelial cells will differentiate into duct-like tubules when cultured in a floating three-dimensional (3D) collagen gel, but not a 3D collagen gel that is left attached to the culture dish. This paper details several protocols we have developed for analyzing breast cell biology in 3D matrices, including culturing cells in 3D collagen gels, immunostaining cellular structures, and performing biochemical procedures directly from cells embedded in collagen gels. 相似文献
14.
Debabrata Ghosh Keith G. Danielson James T. Alston Susan Heyner 《In vitro cellular & developmental biology. Animal》1991,27(9):713-719
Summary Epithelial cells were isolated from mouse endometrium and cultured on two types of extracellular matrix, namely, rat-tail
collagen (type I) gels and basement membrane extract (BME) derived from the Engelbreth-Holm-Swarm murine sarcoma. Cell attachment
in serum-free medium during the initial 24 h after seeding was approximately twofold higher on BME compared with collagen
type I. Addition of serum to the medium enhanced cell attachment on both matrices. On both collagen and BME, uterine cells
grew as smooth-bordered colonies, and within a week of culture the cells became cuboidal to columnar in shape. Electron microscopy
revealed the presence of apical microvilli associated with a glycocalyx, junctional complexes, tonofilaments, short strands
of undilated endoplasmic reticulum, Golgi complex, and lipid droplets. However, cells on BME showed a higher degree of differentiation
as assessed by occasional formation of small patches of basement membranelike structure subjacent to the flattened basal surface
and formation of glandlike structures within the matrix. Proliferation of these cells as measured by radioactive thymidine
incorporation into DNA was increased threefold by addition of epidermal growth factor (EGF) and insulin to the medium, but
was not changed by 17β-estradiol. The expression of progesterone receptors by uterine epithelial cells grown on both matrices was doubled by addition
of EGF and estradiol to the medium.
This work was supported in part by a Rockefeller Foundation postdoctoral fellowship (D.G.), and NIh grant 23511. 相似文献
15.
Fibroblastic cell cycling in collagen gels 总被引:1,自引:0,他引:1
Abstract. Quiescent C3H10T1/2 mouse fibroblasts resume DNA synthesis and proliferation following incubation in medium containing fresh serum both when grown in monolayer and when grown in a collagen matrix. We observed that the rate of DNA synthesis is reduced at high initial cell densities and low initial collagen concentrations. In a collagen matrix, fibroblasts contract the matrix causing an increase in cell density and collagen concentration. We studied the chronological relationship between the kinetics of DNA synthesis and the collagen matrix contraction. The rate of collagen collection per cell changes in time, dependent on initial cell and collagen concentration. The kinetics of the collagen collection showed a positive correlation with the kinetics of DNA synthesis, 16 h later. 相似文献
16.
Three-dimensional gels of native type I collagen have been used as a substrate for growth and differentiation in 3T3 adipocyte precursors. Such hydrated lattices can support a sustained cell growth leading to several 10-fold increases in cell number within 2 weeks. During this period, the cells condense the hydrated collagen lattice to a tissue-like structure one-fourth of the area of the initial gel. From Days 10 to 12, the cells progressively exhibit morphological characteristics of adipocytes and accumulate lipid droplets as evidenced by Oil Red O staining. Lipoprotein lipase activity appears very early; between Days 8 and 22 it sharply increases 15-fold and then remains stable at a very high level (about 30 nmol/min/10(6) cells). The emergence of glycerophosphate dehydrogenase activity is delayed; it becomes detectable at Day 15 and progressively increases up to 700 nmol/min/10(6) cells at Days 35-40. Thus, this adipose tissue equivalent appears to be a potential model for studying adipocyte function. 相似文献
17.
The vascular endothelium in vivo is a remarkably quiescent cell layer that displays a highly differentiated and tissue-specific phenotype. Once established in culture, endothelial cells (EC) are phenotypically different from their in situ counterparts, displaying altered gene expression, increased mitotic index, and decreased cell density. To determine whether manipulating the microenvironment of cells in vitro would lead to a more differentiated phenotype, we cultured bovine aortic EC on floating collagen gels. EC cultured to confluence on floating gels for 24 or 48 hr display mitotic indices nearly identical to those of quiescent endothelium in vivo, nearly two log orders lower than that of EC cultured to confluence on plastic, and cell density on floating gels also resembles that observed for endothelium in vivo. Culture of EC on floating gels leads to decreased expression of platelet-derived growth factor-B, fibronectin, and fibronectin isoform ED-B, and increased levels of connexin40, relative to cells cultured on plastic. We conclude that culture of bovine aortic EC under standard culture conditions results in a phenotype reminiscent of development and/or wound healing, and that culturing them on a floating collagen gel leads to a more differentiated phenotype, reminiscent of that observed for large vessel EC in vivo. 相似文献
18.
L W Adams G C Priestly J A Witkowski G E Jones 《Cell biology international reports》1986,10(7):509-515
In order to clarify the possible involvement of the cell surface in the pathogenesis of Duchenne muscular dystrophy, we have examined the behaviour of fibroblasts cultured from Duchenne patients in hydrated collagen lattices. No differences could be found between Duchenne and normal skin fibroblasts, either after initial seeding or following prolonged culture within the collagen gel. 相似文献
19.
Cell motility determines form and function of multicellular organisms. Most studies on fibroblast motility have been carried out using cells on the surfaces of culture dishes. In situ, however, the environment for fibroblasts is the three-dimensional extracellular matrix. In the current research, we studied the morphology and motility of human fibroblasts embedded in floating collagen matrices at a cell density below that required for global matrix remodeling (i.e., contraction). Under these conditions, cells were observed to project and retract a dendritic network of extensions. These extensions contained microtubule cores with actin concentrated at the tips resembling growth cones. Platelet-derived growth factor promoted formation of the network; lysophosphatidic acid stimulated its retraction in a Rho and Rho kinase-dependent manner. The dendritic network also supported metabolic coupling between cells. We suggest that the dendritic network provides a mechanism by which fibroblasts explore and become interconnected to each other in three-dimensional space. 相似文献
20.
Fibroblast biology in three-dimensional collagen matrices 总被引:26,自引:0,他引:26
Grinnell F 《Trends in cell biology》2003,13(5):264-269
Research on fibroblast biology in three-dimensional collagen matrices offers new opportunities to understand the reciprocal and adaptive interactions that occur between cells and surrounding matrix in a tissue-like environment. Such interactions are integral to the regulation of connective tissue morphogenesis and dynamics that characterizes tissue homeostasis and wound repair. During fibroblast-collagen matrix remodeling, mechanical signals from the remodeled matrix feed back to modulate cell behavior in an iterative process. As mechanical loading (tension) within the matrix increases, the mechanisms used by cells to remodel the matrix change. Fibroblasts in matrices that are under tension or relaxed respond differently to growth factor stimulation, and switching between mechanically loaded and unloaded conditions influences whether cells acquire proliferative/biosynthetic active or quiescent/resting phenotypes. 相似文献