首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The butyrate-degradingSyntrophospora bryantii degrades butyrate and a propionate-degrading strain (MPOB) degrades propionate in coculture with the hydrogen- and formate-utilizingMethanospirillum hungatii orMethanobacterium formicicum. However, the substrates are not degraded in constructed cocultures with twoMethanobrevibacter arboriphilus strains which are only able to consume hydrogen. Pure cultures of the acetogenic bacteria form both hydrogen and formate during butyrate oxidation with pentenoate as electron acceptor and during propionate oxidation with fumarate as electron acceptor. Using the highest hydrogen and formate levels which can be reached by the acetogens and the lowest hydrogen and formate levels which can be maintained by the methanogens it appeared that the calculated formate diffusion rates are about 100 times higher than the calculated hydrogen diffusion rates.  相似文献   

2.

Climate change and environmental issues compel us to find alternatives to the production of molecules of interest from petrochemistry. This study aims at understanding the production of butyrate, hydrogen, and CO2 from the oxidation of lactate with acetate in Clostridium tyrobutyricum and thus proposes an alternative carbon source to glucose. This specie is known to produce more butyrate than the other butyrate-producing clostridia species due to a lack of solvent genesis phase. The recent discoveries on flavin-based electron bifurcation and confurcation mechanism as a mode of energy conservation led us to suggest a new metabolic scheme for the formation of butyrate from lactate-acetate co-metabolism. While searching for genes encoding for EtfAB complexes and neighboring genes in the genome of C. tyrobutyricum, we identified a cluster of genes involved in butyrate formation and another cluster involved in lactate oxidation homologous to Acetobacterium woodii. A phylogenetic approach encompassing other butyrate-producing and/or lactate-oxidizing species based on EtfAB complexes confirmed these results. A metabolic scheme on the production of butyrate, hydrogen, and CO2 from the lactate-acetate co-metabolism in C. tyrobutyricum was constructed and then confirmed with data of steady-state continuous culture. This in silico metabolic carbon flux analysis model showed the coherence of the scheme from the carbon recovery, the cofactor ratio, and the ATP yield. This study improves our understanding of the lactate oxidation metabolic pathways and the role of acetate and intracellular redox balance, and paves the way for the production of molecules of interest as butyrate and hydrogen with C. tyrobutyricum.

  相似文献   

3.
Syntrophomonas wolfei and Syntrophus buswellii were grown with butyrate or benzoate in a defined binary coculture with Methanospirillum hungatei. Both strains also grew independent of the partner bacteria with crotonate as substrate. Localization of enzymes involved in butyrate oxidation by S. wolfei revealed that ATP synthase, hydrogenase, and butyryl-CoA dehydrogenase were at least partially membrane-associated whereas 3-hydroxybutyryl-CoA dehydrogenase and crotonase were entirely cytoplasmic. Inhibition experiments with copper chloride indicated that hydrogenase faced the outer surface of the cytoplasmic membrane. Suspensions of butyrate-or benzoate-grown cells of either strain accumulated hydrogen during oxidation of butyrate or benzoate to a low concentration that was thermodynamically in equilibrium with calculated reaction energetics. The protonophore carbonylcyanide m-chlorophenyl-hydrazone (CCCP) and the proton-translocating ATPase inhibitor N,Ndicyclohexylcarbodiimide (DCCD) both specifically inhibited hydrogen formation from butyrate or benzoate at low concentrations, whereas hydrogen formation from crotonate was not affected. A menaquinone was extracted from cells of S. wolfei and S. buswellii grown syntrophically in a binary methanogenic culture. The results indicate that a proton-potential-driven process is involved in hydrogen release from butyrate or benzoate oxidation.Abbreviations BES Bromoethanesulfonate - CCCP Carbonyl cyanide-m-chlorophenyl-hydrazone - DCCD N,Ndicyclohexylcarbodiimide - DCPIP Dichlorophenol indophenol - PMS Phenazine methosulfate  相似文献   

4.
The effects of acetate and butyrate during glycerol fermentation to 1,3-propanediol at pH 7.0 by Clostridium butyricum CNCM 1211 were studied. At pH 7.0, the calculated quantities of undissociated acetic and butyric acids were insufficient to inhibit bacterial growth. The initial addition of acetate or butyrate at concentrations of 2.5 to 15 gL−1 had distinct effects on the metabolism and growth of Clostridium butyricum. Acetate increased the biomass and butyrate production, reducing the lag time and 1,3-propanediol production. In contrast, the addition of butyrate induced an increase in 1,3-propanediol production (yield: 0.75 mol/mol glycerol, versus 0.68 mol/mol in the butyrate-free culture), and reduced the biomass and butyrate production. It was calculated that reduction of butyrate production could provide sufficient NADH to increase 1,3-propanediol production. The effects of acetate and butyrate highlight the metabolic flexibility of Cl. butyricum CNCM 1211 during glycerol fermentation. Received: 2 January 2001 / Accepted: 6 February 2001  相似文献   

5.
H2 production and xylose utilization were investigated using the fermentative culture Clostridium beijerinckii NCIMB 8052. Adding anthrahydroquinone-2,6-disulfonate (AH2QDS) increased the extent of xylose utilization by 56% and hydrogen molar yield by 24–37%. Enhanced hydrogen molar yield correlated with increased xylose utilization and increases in the acetate/butyrate product ratio. An electron balance indicated that AH2QDS shifted the electrons from the butyric acid pathway (NADH-dependent pathway) to the acetic acid pathway (non-NADH-dependent pathway), putatively creating a surplus of reducing equivalents that were then available for hydrogen production. These data demonstrate that hydrogen yield and xylose utilization can be manipulated by amending redox active molecules into growing cultures. This will impact biohydrogen/biofuel production by allowing physiological manipulations of growing cells for increased (or decreased) output of selected metabolites using amendments that are not consumed during the reactions. Although the current yield increases are small, they suggest a target for cellular alterations. In addition, increased xylose utilization will be critical to the fermentation of pretreated lignocellulosic feedstocks, which may have higher xylose content.  相似文献   

6.
A stable, syntrophic benzoate-degrading bacterial consortium was enriched from sewage sludge. It oxidized benzoate or 3-phenylpropionate to acetate, H2 and CO2. As hydrogen scavengers Methanospirillum hungatei and Desulfovibrio sp. were present. The benzoate-degrading bacteria of this syntrophic culture and of Syntrophus buswelli were able to grow with benzoate/crotonate or crotonate alone in the absence of a hydrogen-utilizing partner organism. If crotonate was the only substrate, acetate and butyrate were produced, while during growth on benzoate or 3-phenylpropionate crotonate served as a reducible co-substrate and was exclusively converted to butyrate. In the presence of crotonate interspecies hydrogen transfer was not necessary as a hydrogen sink. The benzoate degrader was isolated as a pure culture with crotonate as the only carbon source. The pure culture could also grow with benzoate/crotonate or 3-phenylpropionate/crotonate. The effect of high concentrations of crotonate and of acetate or butyrate on growth of the benzoate degrader was investigated. The benzoate degrader was compared with S. buswellii for its morphology, physiology and DNA base composition. Except for the fact that S. buswellii was also able to grow on cinnamate, no differences between the two organisms were detected. The isolate is named S. buswelli, strain GA.  相似文献   

7.
Eubacterium limosum KIST612 is one of the few acetogenic bacteria that has the genes encoding for butyrate synthesis from acetyl-CoA, and indeed, E. limosum KIST612 is known to produce butyrate from CO but not from H2 + CO2. Butyrate production from CO was only seen in bioreactors with cell recycling or in batch cultures with addition of acetate. Here, we present detailed study on growth of E. limosum KIST612 on different carbon and energy sources with the goal, to find other substrates that lead to butyrate formation. Batch fermentations in serum bottles revealed that acetate was the major product under all conditions investigated. Butyrate formation from the C1 compounds carbon dioxide and hydrogen, carbon monoxide or formate was not observed. However, growth on glucose led to butyrate formation, but only in the stationary growth phase. A maximum of 4.3 mM butyrate was observed, corresponding to a butyrate:glucose ratio of 0.21:1 and a butyrate:acetate ratio of 0.14:1. Interestingly, growth on the C1 substrate methanol also led to butyrate formation in the stationary growth phase with a butyrate:methanol ratio of 0.17:1 and a butyrate:acetate ratio of 0.33:1. Since methanol can be produced chemically from carbon dioxide, this offers the possibility for a combined chemical-biochemical production of butyrate from H2 + CO2 using this acetogenic biocatalyst. With the advent of genetic methods in acetogens, butanol production from methanol maybe possible as well.  相似文献   

8.
Anaerobic biodegradability of wastewater (3,000 mg CODcr/l) containing 300 mg/l Reactive Blue 4, with different co-substrates, glucose, butyrate and propionate by a bacterial consortium of Salmonella subterranea and Paenibacillus polymyxa, concomitantly with hydrogen production was investigated at 35°C. The accumulative hydrogen production at 3,067 mg CODcr/l was obtained after 7 days of incubation with glucose, sludge, the bacterial consortium. The volatile fatty acids, residual glucose and the total organic carbon were correlated to hydrogen obtained. Interestingly, the bacterial consortium possess decolorization ability showing approximately 24% dye removal after 24 h incubation using glucose as a co-substrate, which was about two and eight times those of butyrate (10%), propionate (12%) and control (3%), respectively. RB4 decolorization occurred through acidogenesis, as high volatile fatty acids but low methane was detected. The bacterial consortium will be the bacterial strains of interest for further decolorization and hydrogen production of industrial waste water.  相似文献   

9.
The effect of formate and hydrogen on isomerization and syntrophic degradation of butyrate and isobutyrate was investigated using a defined methanogenic culture, consisting of syntrophic isobutyrate-butyrate degrader strain IB, Methanobacterium formicicum strain T1N, and Methanosarcina mazeii strain T18. Formate and hydrogen were used to perturb syntrophic butyrate and isobutyrate degradation by the culture. The reversible isomerization between isobutyrate and butyrate was inhibited by the addition of either formate or hydrogen, indicating that the isomerization was coupled with syntrophic butyrate degradation for the culture studied. Energetic analysis indicates that the direction of isomerization between isobutyrate and butyrate is controlled by the ratio between the two acids, and the most thermodynamically favorable condition for the degradation of butyrate or isobutyrate in conjunction with the isomerization is at almost equal concentrations of isobutyrate and butyrate. The degradation of isobutyrate and butyrate was completely inhibited in the presence of a high hydrogen partial pressure (>2000 Pa) or a measurable level of formate (10 muM or higher). Significant formate (more than 1 mM) was detected during the perturbation with hydrogen (17 to 40 kPa). Resumption of butyrate and isobutyrate degradation was related to the removal of formate. Energetic analysis supported that formate was another electron carrier, besides hydrogen, during syntrophic isobutyrate-butyrate degradation by this culture. (c) 1996 John Wiley & Sons, Inc.  相似文献   

10.
Ilyobacter delafieldii produced an extracellular poly--hydroxybutyrate (PHB) depolymerase when grown on PHB; activity was not detected in cultures grown on 3-hydroxybutyrate, crotonate, pyruvate or lactate. PHB depolymerase activity was largely associated with the PHB granules (supplied as growth substrate), and only 16% was detected free in the culture supernatant. Monomeric 3-hydroxybutyrate was detectable as a product of depolymerase activity. The monomer was fermented to acetate, butyrate and H2. After activation by coenzyme A transfer from acetyl-CoA or butyryl-CoA, the resultant 3-hydroxybutyryl-CoA was oxidized to acetoacetyl-CoA (producing NADH), followed by thiolytic cleavage to yield acetyl-CoA which was further metabolized to acetyl-phosphate, then to acetate with concomitant ATP production. The reducing equivalents (NADH) could be disposed of by the evolution of H2, or by a reductive pathway in which 3-hydroxybutyryl-CoA was dehydrated to crotonyl-CoA and reduced to butyryl-CoA. In cocultures ofI. delafieldii withDesulfovibrio vulgaris on PHB, the H2 partial pressure was much lower than in the pure cultures, and sulfide was produced. Thus interspecies hydrogen transfer caused a shift to increased acetate and H2 production at the expense of butyrate.  相似文献   

11.
Clostridium butyricum, a well known H2 producing bacterium, produces lactate, butyrate, acetate, ethanol, and CO2 as its main by‐products from glucose. The conversion of pyruvate to lactate, butyrate and ethanol involves oxidation of NADH. It was hypothesized that the NADH could be increased if the formation of these by‐products could be eliminated, resulting in enhancing H2 yield. Herein, this study aimed to establish a genetic and metabolic approach for enhancing H2 yield via redirection of metabolic pathways of a C. butyricum strain. The ethanol formation pathway was blocked by disruption of aad (encoding aldehyde‐alcohol dehydrogenase) using a ClosTron plasmid. Although elimination of ethanol formation alone did not increase hydrogen production, the resulting aad‐deficient mutant showed approximately 20% enhanced performance in hydrogen production with the addition of sodium acetate. This work demonstrated the possibility of improving hydrogen yield by eliminating the unfavorable by‐products ethanol and lactate. Biotechnol. Bioeng. 2013; 110: 338–342. © 2012 Wiley Periodicals, Inc.  相似文献   

12.
The metabolism of Clostridium kluyveri has been extensively studied, but the range of substrates C. kluyveri can use for growth has not been fully explored. The use of propanol and succinate as growth substrates were established. C. kluyveri grows on acetate with propanol replacing ethanol. The principle carbon containing products were propionate, valerate, butyrate and hexanoate with traces of heptanoate. When grown with ethanol and succinate the principle carbon-containing products were acetate, butyrate and hexanoate. Hexanol was found as a product when incubated with ethanol and succinate 4-hydroxybutyrate or 3-butenoate. 5-Hexenoate was also a product of 3-butenoate and ethanol metabolism. The splitting of succinate into 2 acetates was indicated with ethanol providing the necessary reducing equivalents. Hydrogen was also found as a source of reducing equivalents but could not replace ethanol. A mechanism of succinate metabolism to acetate was proposed which accounts for growth yield, energetics considerations, carbon balances, production of side products and intermediates.Contribution No. 3619  相似文献   

13.
Electron mediators and electron supply through a cathode were examined to enhance the reducing power for butyrate production by an acidogenic clostridium strain, Clostridium tyrobutyricum BAS 7. Among the tested electron mediators, methyl viologen (MV)‐amended cultures showed an increase of butyrate productivity (1.3 times), final concentration (1.4 times), and yield (1.3 times). The electron flow altered by MV addition from the ferredoxin pool to the NADH pool was shown by one electron model, implying that more available NADH increased butyrate production. In the cathode compartment poised at ?400 mV versus the Ag/AgCl electrode, the neutral red (NR)‐amended cultures of Clostridium tyrobutyricum BAS 7 increased butyrate concentration (from 5 to 8.8 g/L) and yield (from 0.33 up to 0.44 g/g) with no acetate production at all. Given that electrically reduced NR (NRred, yellow) by the cathode was re‐oxidized (NRox, red) in the cells on the basis of color change, electron flow from NRred to NAD+ (i.e., NADH generation) induced an increase in butyrate production. This is the first report to show the increase of butyric acid production by electrically driven acidogenesis. These results show that the electron flow altered NADH formation by electron mediators and by the cathodic electron donor, increasing the yield and selectivity of reduced end‐products like butyrate. Biotechnol. Bioeng. 2012; 109: 2494–2502. © 2012 Wiley Periodicals, Inc.  相似文献   

14.
Various anaerobic hydrolytic and methanogenic bacteria active in cattle dung biogas plants are reported in the literature. Anaerobic bacteria with ability to use volatile fatty acids constitute a vital bridge between hydrolytic bacteria and methanogenic bacteria. The present paper describes the isolation ofSyntrophobacter wolinii a propionate degrading bacterium in co-culture with a hydrogen utilizing methanogenviz.,Methanobacterium formicicum from the fermenting slurry of cattle dung biogas plant. Earlier studies on propionate and butyrate degradation indicatedMethanospirillum hungatei as the hydrogen utilizing partner of the co-culture whereas in the present studies this was not the case. Temperature 35° C, pH 7.5 and 20 mM of propionate were found optimal for growth and activity of co-culture.  相似文献   

15.
Seven strains ofEubacterium (Cillobacterium) cellulosolvens isolated from the bovine rumen are described and their characteristics compared with those of strains described in the literature. On the basis of fermentation products two groups can be distinguished within this species. One group includes the type strain and is almost completely homofermentative. The other group includes strains that produce hydrogen, formate, butyrate and valerate in addition to lactate.  相似文献   

16.
Desulfomonile tiedjei is the key dechlorinating organism in a three-tiered bacterial consortium that grows on the methanogenic degradation of 3-chlorobenzoate. 2,5-Dichlorobenzoate, however, is only converted to 2-chlorobenzoate and is not a methanogenic substrate for the consortium. The dechlorinator uses hydrogen produced from benzoate by the benzoate degrading member of consortium as its source of reducing equivalents for the dechlorination reaction. Incubation of 3-chlorobenzoate grown consortium cells with 2,5-dichlorobenzoate resulted in the consumption of acetate concurrent with the formation of 2-chlorobenzoate indicating that acetate can serve as an alternative source of reducing equivalents for reductive dechlorination. This interpretation was confirmed by the finding that the formation of 14CO2 from 2-14C-labeled acetate was stoichiometric. The addition of hydrogen to 2,5-dichlorobenzoate metabolizing cells resulted in (i) an 2.7-fold increase in the rate of dechlorination, and (ii) a drop in the amount of label recovered as CO2+CH4 from methyl 14C-labeled acetate, indicating that hydrogen was the preferred source of reducing equivalents for reductive dechlorination. Benzoate, an indirect source of H2 in the consortium, also inhibited the oxidation of acetate, while glucose, methanol, and butyrate did not affect labeled gas production and therefore were not suitable electron donors. Concomittant to dechlorination of 2,5-dichlorobenzoate 3- and 4-methoxybenzoate were converted to 3- and 4-hydroxybenzoate respectively. These conversions stimulated the rate of dechlorination 2-fold. Demethylation of 4-methoxybenzoate stimulated, but demethylation of 3-methoxybenzoate inhibited the oxidation of benzoate during the dechlorination of 2,5-dichlorobenzoate, suggesting that these isomers are metabolized through different pathways. Experiments with benzoate, 3-chlorobenzoate and 2,5-dichlorobenzoate metabolizing cells amended with 14CO2 showed that actively dechlorinating cells catalyzed an exchange reaction between CO2 and acetate.  相似文献   

17.
Studies on product inhibition of a thermophilic butyrate-degrading bacterium in syntrophic association with Methanobacterium thermoautotrophicum showed that a gas phase containing more than 2 × 10−2 atm (2.03 kPa) of hydrogen prevented growth and butyrate consumption, while a lower hydrogen partial pressure of 1 × 10−3 to 2 × 10−2 atm (0.1 to 2.03 kPa) gradually inhibited the butyrate consumption of the coculture. No inhibition of butyrate consumption was found on the addition of 0.75 × 10−3 atm (76 Pa) of hydrogen to the gas phase. A slight inhibition of butyrate consumption by the coculture occurred at an acetate concentration of 16.4 mM. Inhibition gradually increased with increasing acetate concentration up to 81.4 mM, when complete inhibition of butyrate consumption occurred. When the culture contained an acetate-utilizing methanogen in addition to M. thermoautotrophicum, the inhibition of the triculture by acetate was gradually reversed as the acetate concentration was lowered by the aceticlastic methanogen. The results show that optimal growth conditions for the thermophilic butyrate-degrading bacterium depend on both hydrogen and acetate removal.  相似文献   

18.
Polyphenol extract from barley bran (BPE) induced nitro blue tetrazolium (NBT) reducing activity and alpha-naphthyl butyrate esterase activity in HL60 human myeloid leukemia cells. Because BPE induced the biochemical markers of HL60 cell differentiation, we investigated the effects of proanthocyanidins isolated from BPE on the HL60 cell differentiation of HL60 cells. Prodelphinidin B-3, T1, T2, and T3 induced 26-40% NBT-positive cells and 22-32% alpha-naphthyl butyrate esterase-positive cells. Proanthocyanidins potentiated retinoic acid (all-trans-retinoic acid)-induced granulocytic and sodium butyrate-induced monocytic differentiation in HL60 cells.  相似文献   

19.
Kinetics of butyrate, acetate, and hydrogen metabolism were determined with butyrate-limited, chemostat-grown tricultures of a thermophilic butyrate-utilizing bacterium together with Methanobacterium thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic rod. Kinetic parameters were determined from progress curves fitted to the integrated form of the Michaelis-Menten equation. The apparent half-saturation constants, Km, for butyrate, acetate, and dissolved hydrogen were 76 μM, 0.4 mM, and 8.5 μM, respectively. Butyrate and hydrogen were metabolized to a concentration of less than 1 μM, whereas acetate uptake usually ceased at a concentration of 25 to 75 μM, indicating a threshold level for acetate uptake. No significant differences in Km values for butyrate degradation were found between chemostat- and batch-grown tricultures, although the maximum growth rate was somewhat higher in the batch cultures in which the medium was supplemented with yeast extract. Acetate utilization was found to be the rate-limiting reaction for complete degradation of butyrate to methane and carbon dioxide in continuous culture. Increasing the dilution rate resulted in a gradual accumulation of acetate. The results explain the low concentrations of butyrate and hydrogen normally found during anaerobic digestion and the observation that acetate is the first volatile fatty acid to accumulate upon a decrease in retention time or increase in organic loading of a digestor.  相似文献   

20.
We studied syntrophic butyrate degradation in thermophilic mixed cultures containing a butyrate-degrading bacterium isolated in coculture with Methanobacterium thermoautotrophicum or in triculture with M. thermoautotrophicum and the TAM organism, a thermophilic acetate-utilizing methanogenic bacterium. Butyrate was beta-oxidized to acetate with protons as the electron acceptors. Acetate was used concurrently with its production in the triculture. We found a higher butyrate degradation rate in the triculture, in which both hydrogen and acetate were utilized, than in the coculture, in which acetate accumulated. Yeast extract, rumen fluid, and clarified digestor fluid stimulated butyrate degradation, while the effect of Trypticase was less pronounced. Penicillin G, d-cycloserine, and vancomycin caused complete inhibition of butyrate utilization by the cultures. No growth or degradation of butyrate occurred when 2-bromoethanesulfonic acid or chloroform, specific inhibitors of methanogenic bacteria, was added to the cultures and common electron acceptors such as sulfate, nitrate, and fumarate were not used with butyrate as the electron donor. Addition of hydrogen or oxygen to the gas phase immediately stopped growth and butyrate degradation by the cultures. Butyrate was, however, metabolized at approximately the same rate when hydrogen was removed from the cultures and was metabolized at a reduced rate in the cultures previously exposed to hydrogen.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号