首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 625 毫秒
1.
Trypanosoma brucei brucei contained a S-adenosyl-L-methionine decarboxylase (AdoMetDC) strongly activated by putrescine. The enzyme was also activated to a lesser extent by cadaverine and 1,3-diaminopropane. Spermidine and spermine had no effect on basal activity of the enzyme. However, they interfered with putrescine activation of trypanosomal AdoMetDC. The trypanosomal enzyme could not be precipitated with antiserum against human AdoMetDC. The trypanosomal AdoMetDC enzyme subunit was labeled by reaction with 35S-decarboxylated AdoMet in the presence of NaCNBH4, and found to have a molecular weight of 34 kDa on sodium dodecyl sulfate-polyacrylamide gel electrophoresis. The subunit was readily degraded on storage to a form with a molecular weight of 26 kDa. The specificity of labeling of AdoMetDC by this procedure was confirmed by the prevention of 35S-decarboxylated S-adenosylmethionine (AdoMet) binding in the presence of specific AdoMetDC inhibitors [either methylglyoxal bis(guanylhydrazone (MGBG), a reversible inhibitor, or 5-deoxy-5-[(2-hydrazinoethyl)methylamino]adenosine (MHZEA), an irreversible inactivator]. As compared to human AdoMetDC, the trypanosomal enzyme showed weaker binding to a column of MGBG-Sepharose and also was significantly less sensitive to inhibition by MGBG and its congener ethylglyoxal bis(guanylhydrazone) (EGBG). Thus, the trypanosomal AdoMetDC differs significantly from its mammalian and bacterial counterparts and may therefore be exploited as a specific target for chemotherapy of trypanosomiasis.  相似文献   

2.
S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes the formation of decarboxylated AdoMetDC, a precursor of the polyamines spermidine and spermine. The enzyme is derived from a proenzyme by autocatalytic cleavage. We report the cloning and regulation of the gene for AdoMetDC in Neurospora crassa, spe-2, and the effect of putrescine on enzyme maturation and activity. The gene was cloned from a genomic library by complementation of a spe-2 mutant. Like other AdoMetDCs, that of Neurospora is derived by cleavage of a proenzyme. The deduced sequence of the Neurospora proenzyme (503 codons) is over 100 codons longer than any other AdoMetDC sequence available in genomic databases. The additional amino acids are found only in the AdoMetDC of another fungus, Aspergillus nidulans, a cDNA for which we also sequenced. Despite the conserved processing site and four acidic residues required for putrescine stimulation of human proenzyme processing, putrescine has no effect on the rate (t 0.5∼10 min) of processing of the Neurospora gene product. However, putrescine is absolutely required for activity of the Neurospora enzyme (K 0.5∼100 μM). The abundance of spe-2 mRNA and enzyme activity is regulated 2- to 4-fold by spermidine. Received: 4 August 1999 / Accepted: 14 February 2000  相似文献   

3.
Heby O  Persson L  Rentala M 《Amino acids》2007,33(2):359-366
Summary. Trypanosomatids depend on spermidine for growth and survival. Consequently, enzymes involved in spermidine synthesis and utilization, i.e. arginase, ornithine decarboxylase (ODC), S-adenosylmethionine decarboxylase (AdoMetDC), spermidine synthase, trypanothione synthetase (TryS), and trypanothione reductase (TryR), are promising targets for drug development. The ODC inhibitor α-difluoromethylornithine (DFMO) is about to become a first-line drug against human late-stage gambiense sleeping sickness. Another ODC inhibitor, 3-aminooxy-1-aminopropane (APA), is considerably more effective than DFMO against Leishmania promastigotes and amastigotes multiplying in macrophages. AdoMetDC inhibitors can cure animals infected with isolates from patients with rhodesiense sleeping sickness and leishmaniasis, but have not been tested on humans. The antiparasitic effects of inhibitors of polyamine and trypanothione formation, reviewed here, emphasize the relevance of these enzymes as drug targets. By taking advantage of the differences in enzyme structure between parasite and host, it should be possible to design new drugs that can selectively kill the parasites.  相似文献   

4.
Human African trypanosomiasis is caused by a single-celled protozoan parasite, Trypanosoma brucei. Polyamine biosynthesis is a clinically validated target for the treatment of human African trypanosomiasis. Metabolic differences between the parasite and the human polyamine pathway are thought to contribute to species selectivity of pathway inhibitors. S-adenosylmethionine decarboxylase (AdoMetDC) catalyzes a key step in the production of the polyamine spermidine. We previously showed that trypanosomatid AdoMetDC differs from other eukaryotic enzymes in that it is regulated by heterodimer formation with a catalytically dead paralog, designated prozyme, which binds with high affinity to the enzyme and increases its activity by up to 103-fold. Herein, we examine the role of specific residues involved in AdoMetDC activation by prozyme through deletion and site-directed mutagenesis. Results indicate that 12 key amino acids at the N terminus of AdoMetDC are essential for prozyme-mediated activation with Leu-8, Leu-10, Met-11, and Met-13 identified as the key residues. These N-terminal residues are fully conserved in the trypanosomatids but are absent from other eukaryotic homologs lacking the prozyme mechanism, suggesting co-evolution of these residues with the prozyme mechanism. Heterodimer formation between AdoMetDC and prozyme was not impaired by mutation of Leu-8 and Leu-10 to Ala, suggesting that these residues are involved in a conformational change that is essential for activation. Our findings provide the first insight into the mechanisms that influence catalytic regulation of AdoMetDC and may have potential implications for the development of new inhibitors against this enzyme.  相似文献   

5.

Background  

The Argonaute protein is the core component of the RNA-induced silencing complex, playing the central role of cleaving the mRNA target. Visual inspection of static crystal structures already has enabled researchers to suggest conformational changes of Argonaute that might occur during RNA interference. We have taken the next step by performing an all-atom normal mode analysis of the Pyrococcus furiosus and Aquifex aeolicus Argonaute crystal structures, allowing us to quantitatively assess the feasibility of these conformational changes. To perform the analysis, we begin with the energy-minimized X-ray structures. Normal modes are then calculated using an all-atom molecular mechanics force field.  相似文献   

6.
7.
The CCA‐adding enzyme synthesizes the CCA sequence at the 3′ end of tRNA without a nucleic acid template. The crystal structures of class II Thermotoga maritima CCA‐adding enzyme and its complexes with CTP or ATP were determined. The structure‐based replacement of both the catalytic heads and nucleobase‐interacting neck domains of the phylogenetically closely related Aquifex aeolicus A‐adding enzyme by the corresponding domains of the T. maritima CCA‐adding enzyme allowed the A‐adding enzyme to add CCA in vivo and in vitro. However, the replacement of only the catalytic head domain did not allow the A‐adding enzyme to add CCA, and the enzyme exhibited (A, C)‐adding activity. We identified the region in the neck domain that prevents (A, C)‐adding activity and defines the number of nucleotide incorporations and the specificity for correct CCA addition. We also identified the region in the head domain that defines the terminal A addition after CC addition. The results collectively suggest that, in the class II CCA‐adding enzyme, the head and neck domains collaboratively and dynamically define the number of nucleotide additions and the specificity of nucleotide selection.  相似文献   

8.
Sulfur oxygenase reductase (SOR) enzyme is responsible for the initial oxidation step of elemental sulfur in archaea. Curiously, Aquifex aeolicus, a hyperthermophilic, chemolithoautotrophic and microaerophilic bacterium, has the SOR-encoding gene in its genome. We showed, for the first time the presence of the SOR enzyme in A. aeolicus, its gene was cloned and recombinantly expressed in Escherichia coli and the protein was purified and characterised. It is a 16 homo-oligomer of approximately 600 kDa that contains iron atoms indispensable for the enzyme activity. The optimal temperature of SOR activity is 80°C and it is inactive at 20°C. Studies of the factors involved in getting the fully active molecule at high temperature show clearly that (1) incubation at high temperature induces more homogeneous form of the enzyme, (2) conformational changes observed at high temperature are required to get the fully active molecule and (3) acquisition of an active conformation induced by the temperature seems to be more important than the subunit number. Differences between A. aeolicus SOR and the archaea SORs are described.  相似文献   

9.
A gene encoding galactose 1-phosphate uridylyltransferase (GalT) was identified in the hyperthermophilic archaeon Pyrobaculum aerophilum. The gene was overexpressed in Escherichia coli, after which its product was purified and characterized. The expressed enzyme was highly thermostable and retained about 90% of its activity after incubation for 10 minutes at temperatures up to 90°C. Two different crystal structures of P. aerophilum GalT were determined: the substrate-free enzyme at 2.33 Å and the UDP-bound H140F mutant enzyme at 1.78 Å. The main-chain coordinates of the P. aerophilum GalT monomer were similar to those in the structures of the E. coli and human GalTs, as was the dimeric arrangement. However, there was a striking topological difference between P. aerophilum GalT and the other two enzymes. In the E. coli and human enzymes, the N-terminal chain extends from one subunit into the other and forms part of the substrate-binding pocket in the neighboring subunit. By contrast, the N-terminal chain in P. aerophilum GalT extends to the substrate-binding site in the same subunit. Amino acid sequence alignment showed that a shorter surface loop in the N-terminal region contributes to the unique topology of P. aerophilum GalT. Structural comparison of the substrate-free enzyme with UDP-bound H140F suggests that binding of the glucose moiety of the substrate, but not the UDP moiety, gives rise to a large structural change around the active site. This may in turn provide an appropriate environment for the enzyme reaction.  相似文献   

10.
Abstract

Glucan branching enzymes are responsible for the synthesis of α(1→6) glycosidic bonds in glycogen and amylopectin. The glucan branching enzyme of the hyperthermophile Aquifex aeolicus is the most thermoactive and thermostable glucan branching enzyme described. The gene encoding this glucan branching enzyme was overexpressed in E. coli and purified using γ-cyclodextrin affinity chromatography. Subsequently, the enzyme was stable up to 90°C. Its thermostability may be explained by the relatively high number of aromatic amino acid residues present, in combination with a relatively low number glutamine/asparagine residues. The Km for amylose was 4µM and the Vmax was 4.9 U/mg of protein (at optimal pH and temperature). The side-chain distribution of the branched glucan formed from amylose was determined.  相似文献   

11.
The electrochemistry of membrane-bound [NiFe] hydrogenase I ([NiFe]-hase I) from the hyperthermophilic bacterium Aquifex aeolicus was investigated at gold and graphite electrodes. Direct and mediated H2 oxidation were proved to be efficient in a temperature range of 25–70 °C, describing a potential window for H2 oxidation similar to that of O2-tolerant hydrogenases. Search for enhancement of current densities and enzyme stability was achieved by the use of carbon nanotube coatings. We report high catalytic currents for H2 oxidation up to 1 mA cm−2, 10 times higher than at the bare electrode. Interestingly, high stability of the direct catalytic process was observed when encapsulating A. aeolicus [NiFe]-hase I into a carboxylic functionalized single walled carbon nanotube network. This suggests a peculiar interaction between the enzyme and the electrode material. The parameters that governed the orientation of the enzyme before electron transfer were thus investigated using self-assembled-monolayer gold electrodes. No control of the orientation by the charge or the hydrophobicity of the interface was demonstrated. This behavior was explained on the basis of a structural comparison between A. aeolicus [NiFe]-hase I and Desulfovibrio fructosovorans [NiFe] hydrogenase, which revealed the absence of acidic residues and an additional loop in the environment of the [4Fe–4S] distal cluster in A. aeolicus [NiFe]-hase I. Finally, the effect of inhibitors on the direct oxidation of H2 by A. aeolicus [NiFe]-hase I encapsulated in a single walled carbon nanotube network was investigated. No inhibition by CO and tolerance toward O2 were observed. Discussion of the reasons for such tolerance was undertaken on the basis of structural comparison with hydrogenases from aerobic bacteria.  相似文献   

12.
Rhodaneses (thiosulfate cyanide sulfurtransferases) are enzymes involved in the production of the sulfur in sulfane form, which has been suggested to be the relevant biologically active sulfur species. Rhodanese domains occur in the three major domains of life. We have characterized a new periplasmic single-domain rhodanese from a hyperthermophile bacterium, Aquifex aeolicus, with thiosulfate:cyanide transferase activity, Aq-1599. The oligomeric organization of the enzyme is stabilized by a disulfide bridge. To date this is the first characterization from a hyperthermophilic bacterium of a periplasmic sulfurtransferase with a disulfide bridge. The aq-1599 gene belongs to an operon that also contains a gene for a prepilin peptidase and that is up-regulated when sulfur is used as electron acceptor. Finally, we have observed a sulfur-dependent bacterial adherence linked to an absence of flagellin suggesting a possible role for sulfur detection by A. aeolicus.  相似文献   

13.
The CphAII protein from the hyperthermophile Aquifex aeolicus shows the five conserved motifs of the metallo-β-lactamase (MBL) superfamily and presents 28% identity with the Aeromonas hydrophila subclass B2 CphA MBL. The gene encoding CphAII was amplified by PCR from the A. aeolicus genomic DNA and overexpressed in Escherichia coli using a pLex-based expression system. The recombinant CphAII protein was purified by a combination of heating (to denature E. coli proteins) and two steps of immobilized metal affinity chromatography. The purified enzyme preparation did not exhibit a β-lactamase activity but showed a metal-dependent phosphodiesterase activity versus bis-p-nitrophenyl phosphate and thymidine 5′-monophosphate p-nitrophenyl ester, with an optimum at 85°C. The circular dichroism spectrum was in agreement with the percentage of secondary structures characteristic of the MBL αββα fold.  相似文献   

14.
S-adenosylmethionine decarboxylase (AdoMetDC) is a critical regulatory enzyme of the polyamine biosynthetic pathway and belongs to a small class of pyruvoyl-dependent amino acid decarboxylases. Structural elucidation of the prokaryotic AdoMetDC is of substantial interest in order to determine the relationship between the eukaryotic and prokaryotic forms of the enzyme. Although both forms utilize pyruvoyl groups, there is no detectable sequence similarity except at the site of pyruvoyl group formation. The x-ray structure of the Thermatoga maritima AdoMetDC proenzyme reveals a dimeric protein fold that is remarkably similar to the eukaryotic AdoMetDC protomer, suggesting an evolutionary link between the two forms of the enzyme. Three key active site residues (Ser55, His68, and Cys83) involved in substrate binding, catalysis or proenzyme processing that were identified in the human and potato AdoMet-DCs are structurally conserved in the T. maritima AdoMetDC despite very limited primary sequence identity. The role of Ser55, His68, and Cys83 in the self-processing reaction was investigated through site-directed mutagenesis. A homology model for the Escherichia coli AdoMetDC was generated based on the structures of the T. maritima and human AdoMetDCs.  相似文献   

15.
The crenarchaeon Sulfolobus solfataricus uses arginine to produce putrescine for polyamine biosynthesis. However, genome sequences from S. solfataricus and most crenarchaea have no known homologs of the previously characterized pyridoxal 5'-phosphate or pyruvoyl-dependent arginine decarboxylases that catalyze the first step in this pathway. Instead they have two paralogs of the S-adenosylmethionine decarboxylase (AdoMetDC). The gene at locus SSO0585 produces an AdoMetDC enzyme, whereas the gene at locus SSO0536 produces a novel arginine decarboxylase (ArgDC). Both thermostable enzymes self-cleave at conserved serine residues to form amino-terminal beta-domains and carboxyl-terminal alpha-domains with reactive pyruvoyl cofactors. The ArgDC enzyme specifically catalyzed arginine decarboxylation more efficiently than previously studied pyruvoyl enzymes. alpha-Difluoromethylarginine significantly reduced the ArgDC activity of purified enzyme, and treating growing S. solfataricus cells with this inhibitor reduced the cells' ratio of spermidine to norspermine by decreasing the putrescine pool. The crenarchaeal ArgDC had no AdoMetDC activity, whereas its AdoMetDC paralog had no ArgDC activity. A chimeric protein containing the beta-subunit of SSO0536 and the alpha-subunit of SSO0585 had ArgDC activity, implicating residues responsible for substrate specificity in the amino-terminal domain. This crenarchaeal ArgDC is the first example of alternative substrate specificity in the AdoMetDC family. ArgDC activity has evolved through convergent evolution at least five times, demonstrating the utility of this enzyme and the plasticity of amino acid decarboxylases.  相似文献   

16.
Many bacteria form Gln-tRNAGln and Asn-tRNAAsn by conversion of the misacylated Glu-tRNAGln and Asp-tRNAAsn species catalyzed by the GatCAB amidotransferase in the presence of ATP and an amide donor (glutamine or asparagine). Here, we report the crystal structures of GatCAB from the hyperthermophilic bacterium Aquifex aeolicus, complexed with glutamine, asparagine, aspartate, ADP, or ATP. In contrast to the Staphylococcus aureus GatCAB, the A. aeolicus enzyme formed acyl-enzyme intermediates with either glutamine or asparagine, in line with the equally facile use by the amidotransferase of these amino acids as amide donors in the transamidation reaction.A water-filled ammonia channel is open throughout the length of the A. aeolicus GatCAB from the GatA active site to the synthetase catalytic pocket in the B-subunit. A non-catalytic Zn2+ site in the A. aeolicus GatB stabilizes subunit contacts and the ammonia channel. Judged from sequence conservation in the known GatCAB sequences, the Zn2+ binding motif was likely present in the primordial GatB/E, but became lost in certain lineages (e.g., S. aureus GatB). Two divalent metal binding sites, one permanent and the other transient, are present in the catalytic pocket of the A. aeolicus GatB. The two sites enable GatCAB to first phosphorylate the misacylated tRNA substrate and then amidate the activated intermediate to form the cognate products, Gln-tRNAGln or Asn-tRNAAsn.  相似文献   

17.
18.
11β‐Hydroxysteroid dehydrogenase type 1 (11β‐HSD1) is a key enzyme in the conversion of cortisone to the functional glucocorticoid hormone cortisol. This activation has been implicated in several human disorders, notably the metabolic syndrome where 11β‐HSD1 has been identified as a novel target for potential therapeutic drugs. Recent crystal structures have revealed the presence of a pronounced hydrophobic surface patch lying on two helices at the C‐terminus. The physiological significance of this region has been attributed to facilitating substrate access by allowing interactions with the endoplasmic reticulum membrane. Here, we report that single mutations that alter the hydrophobicity of this patch (I275E, L266E, F278E, and L279E in the human enzyme and I275E, Y266E, F278E, and L279E in the guinea pig enzyme) result in greatly increased yields of soluble protein on expression in E. coli. Kinetic analyses of both reductase and dehydrogenase reactions indicate that the F278E mutant has unaltered Km values for steroids and an unaltered or increased kcat. Analytical ultracentrifugation shows that this mutation also decreases aggregation of both the human and guinea pig enzymes, resulting in greater monodispersity. One of the mutants (guinea pig F278E) has proven easy to crystallize and has been shown to have a virtually identical structure to that previously reported for the wild‐type enzyme. The human F278E enzyme is shown to be a suitable background for analyzing the effects of naturally occurring mutations (R137C, K187N) on enzyme activity and stability. Hence, the F278E mutants should be useful for many future biochemical and biophysical studies of the enzyme.  相似文献   

19.
The 21st amino acid, selenocysteine (Sec), is incorporated translationally into proteins and is synthesized on its specific tRNA (tRNASec). In Bacteria, the selenocysteine synthase SelA converts Ser-tRNASec, formed by seryl-tRNA synthetase, to Sec-tRNASec. SelA, a member of the fold-type-I pyridoxal 5′-phosphate-dependent enzyme superfamily, has an exceptional homodecameric quaternary structure with a molecular mass of about 500 kDa. Our previously determined crystal structures of Aquifex aeolicus SelA complexed with tRNASec revealed that the ring-shaped decamer is composed of pentamerized SelA dimers, with two SelA dimers arranged to collaboratively interact with one Ser-tRNASec. The SelA catalytic site is close to the dimer–dimer interface, but the significance of the dimer pentamerization in the catalytic site formation remained elusive. In the present study, we examined the quaternary interactions and demonstrated their importance for SelA activity by systematic mutagenesis. Furthermore, we determined the crystal structures of “depentamerized” SelA variants with mutations at the dimer–dimer interface that prevent pentamerization. These dimeric SelA variants formed a distorted and inactivated catalytic site and confirmed that the pentamer interactions are essential for productive catalytic site formation. Intriguingly, the conformation of the non-functional active site of dimeric SelA shares structural features with other fold-type-I pyridoxal 5′-phosphate-dependent enzymes with native dimer or tetramer (dimer-of-dimers) quaternary structures.  相似文献   

20.
S-Adenosylmethionine decarboxylase (AdoMetDC) is a key enzyme in the biosynthesis of polyamines. We have previously identified a mouse AdoMetDC gene that exhibits the hallmarks of a retroposon; that is, it has no introns, is flanked by direct repeats, and has a poly(dA) tract at its 3′-end. This gene, termed Amd-2, is not a processed pseudogene; rather, it is transcribed in a variety of mouse tissues and encodes a functional enzyme. In the current report, we present the sequence of a 6.7-kb genomic segment of the Amd-2 locus. Several sequences of interest, including an intercisternal A particle (IAP) element, a transposon-related sequence, and several expressed sequence tags (ESTs), were found within or near Amd-2. We also show, through analysis of an interspecific backcross, that Amd-2 is located on Chr 12, tightly linked to the gene (Odc) that encodes ornithine decarboxylase, another key enzyme in polyamine synthesis. Finally, we show that Amd-2 is present among several divergent species of the genus Mus. Thus, the integration event that generated Amd-2 may have occurred early during Mus evolution. Received: 1 December 1998 / Accepted: 31 March 1999  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号