首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
On mild acid degradation of the lipopolysaccharide of the marine microorganism Pseudoalteromonas nigrifaciens KMM 161 an O-specific polysaccharide containing D-galactose, 2-acetamido-2-deoxy-D-glucose, 3,6-dideoxy-3-(4-hydroxybutyramido)-D-galactose, and 2-acetamido-2-deoxy-L-guluronic acid residues was obtained. From the results of Smith degradation, O-deacetylation of the polysaccharide, and NMR spectroscopy the following structure of the tetrasaccharide repeating unit of the O-specific polysaccharide was established [see reaction]. It should be noted that the same structure occurs in the antigenic polysaccharide of Pseudoalteromonas nigrifaciens KMM 158 described earlier as Alteromonas macleodii 2MM6.  相似文献   

2.
A specific acidic polysaccharide was isolated from Sh. boydii type 8 antigenic lipopolysaccharide after mild hydrolysis followed by chromatography on Sephadex G-50. The polysaccharide consists of D-glucuronic acid, D-galacturonic acid, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose and 2-amino-1,3-propanediol residues in 1:1:1:1:1 ratio. From the results of methylation analysis, partial acid hydrolysis and Smith degradation, the structure of the repeating unit of the specific polysaccharide was deduced as: (Formula: see text). The 13C NMR spectra of native, O-deacetylated and carboxyl-reduced polysaccharides, as well as the spectrum of oligosaccharide produced by Smith degradation were interpreted. The 13C NMR data fully confirmed the structure of the polysaccharide repeating unit.  相似文献   

3.
The secondary cell wall polymer (SCWP) from Geobacillus stearothermophilus PV72/p2, which is involved in the anchoring of the surface-layer protein to the bacterial cell wall layer, is composed of 2-amino-2-deoxy- and 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-mannose, and 2-acetamido-2-deoxy-D-mannuronic acid. The primary structure of the acid-degraded polysaccharide--liberated by HF-treatment from the cell wall--was determined by high-field NMR spectroscopy and mass spectrometry using N-acetylated and hydrolyzed polysaccharide derivatives as well as Smith-degradation. The polysaccharide was shown to consist of a tetrasaccharide repeating unit containing a pyruvic acid acetal at a side-chain 2-acetamido-2-deoxy-alpha-D-mannopyranosyl residue. Substoichiometric substitutions of the repeating unit were observed concerning the degree of N-acetylation of glucosamine residues and the presence of side-chain linked 2-acetamido-2-deoxy-beta-D-glucopyranosyl units: [Formula: see text].  相似文献   

4.
A neutral polysaccharide containing D-galactose, 2-acetamido-2-deoxy-D-glucose, and 3-acetamido-3,6-dideoxy-D-glucose (Qui3NAc) in the ratios 2:1:1 was obtained by mild acid degradation of lipopolysaccharide of the bacterium Providencia alcalifaciens O5 followed by gel chromatography and ion-exchange chromatography or treatment with anhydrous hydrogen fluoride. On the basis of full acid hydrolysis, methylation, and 1H- and 13C-NMR spectroscopy, including two-dimensional correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), H-detected heteronuclear 1H,13C single-quantum coherence (HSQC), and nuclear Overhauser effect spectroscopy (NOESY), the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established:  相似文献   

5.
The O-polysaccharide of Vibriocholerae O43 was studied using chemical analyses, triflic acid solvolysis and 2D NMR spectroscopy, including 1H/1H COSY, TOCSY, NOESY and 1H/13C gradient-selected HSQC experiments. The following structure of the tetrasaccharide repeating unit of the polysaccharide was established:→3)-β-d-Quip4NAcyl-(1→3)-α-d-GalpNAcA-(1→4)-α-d-GalpNAc-(1→3)-α-d-QuipNAc-(1→where d-QuiNAc stands for 2-acetamido-2,6-dideoxy-d-glucose, d-Qui4NAcyl for 4-(N-acetyl-l-allothreonyl)amino-4,6-dideoxy-d-glucose and d-GalNAcA for 2-acetamido-2-deoxy-d-galacturonic acid.  相似文献   

6.
Acidic O-specific polysaccharide containing D-glucose, D-glucuronic acid, L-fucose, and 2-acetamido-2-deoxy-D-glucose was obtained by mild acid degradation of lipopolysaccharide from Providencia alcalifaciens O46. The following structure of the hexasaccharide repeating unit of the O-specific polysaccharide was established using methylation analysis along with 1H and 13C NMR spectroscopy, including 2D 1H, 1H-COSY, TOCSY, ROESY, 1H, 13C-HSQC, and HMQC-TOCSY experiments:
  相似文献   

7.
Acid hydrolysis of the antigenic lipopolysaccharide from Shigella boydii type 7 afforded a specific polysaccharide composed of 2-acetamido-2-deoxy-D-glucose, D-glucose, D-galactose, 5-acetamido-3,5,7,9-tetradeoxy-7-[(3R)-3-hydroxybutyramido]-L- glycero-L-manno-nonulosonic acid (NonN2A) and acetic acid residues in the 1:1:2:1:1 ratio. From the results of methylation analysis, hydrogen fluoride solvolysis and Smith degradation, the structure of the repeating unit of the specific polysaccharide was dedused as: -2) Galf (beta 1-3)GlcNAcp (alpha 1-8)NonN2A (beta 2-6) Galp (alpha 1-6) Glcp (alpha 1-4 increases Ac. The 13C NMR spectrum of the polysaccharide was interpreted, and the spectral data fully confirmed the structure of the polysaccharide repeating unit.  相似文献   

8.
An acidic O-specific polysaccharide was obtained by mild acid degradation of the Shewanella algae strain BrY lipopolysaccharide and was found to contain L-rhamnose, 2-acetamido-4-[D-3-hydroxybutyramido)]-2,4,6-trideoxy-D-glucose (D-BacNAc4NHbu), and 2-amino-2,6-dideoxy-L-galactose, N-acylated by the 4-carboxyl group of L-malic acid (L-malyl-(4-->2)-alpha-L-FucN) in the ratio 2:1:1. 1H and 13C NMR spectroscopy was applied to the intact polysaccharide, and the following structure of the repeating unit was established:-3)-alpha-D-BacNAc4NHbu-(1-->3)-alpha-L-Rha-(1-->2)-alpha-L-Rha-(1-->2)-L-malyl-(4-->2)-alpha-L-FucN-(1-. The repeating unit includes linkage via the residue of malic acid, reported here for the first time as a component of bacterial polysaccharides.  相似文献   

9.
The O-specific polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of the marine bacterium Arenibacter palladensis type strain KMM 3961T and studied by chemical methods and 1H and 13C NMR spectroscopy including 2D COSY, TOCSY, 1H,13C HSQC, and HMBC experiments. The polysaccharide was shown to consist of tetrasaccharide repeating units containing two mannose residues (Man), one 2-acetamido-2-deoxy-D-galactose residue (D-GalNAc), and one 2-acetamido-2-deoxy-L-galacturonic acid residue (L-GalNAcA) and having the following structure: ? 2) - a- D - Manp - (1 ? 6) - a- D - Manp - (1 ? 4) - a- L - GalpNAcA - (1 ? 3) - b- D - GalpNAc - (1 ?\to 2) - \alpha - D - Manp - (1 \to 6) - \alpha - D - Manp - (1 \to 4) - \alpha - L - GalpNAcA - (1 \to 3) - \beta - D - GalpNAc - (1 \to.  相似文献   

10.
O-Specific polysaccharide composed of L-rhamnose and 2-acetamido-2-deoxy-D-mannose was obtained on mild acid degradation of the V. fluvialis lipopolysaccharide. On the basis of the 13C-NMR data and methylation studies, the following structure was suggested for the polysaccharide repeating unit: ----4)-alpha-L-Rhap-(1----3)-beta-D-ManpNAc-(1---- This structure was confirmed by calculations using known glycosidation effects on 13C chemical shifts.  相似文献   

11.
The structure of the capsular polysaccharide of Type XIX Streptococcus pneumoniae (S-XIX) has been elucidated by 1H- and 13C-n.m.r. spectroscopy. Mild hydrolysis of S-XIX with acid yielded a major oligosaccharide, the repeating unit of S-XIX, which was shown to be O-2-acetamido-2-deoxy-β-d-mannopyranosyl-(1→4)-O-α-d-glucopyranosyl-(1→2)-l-rhamnose 4′′-phosphate. Phosphoric acid forms a diester linkage in the S-XIX molecule, which explains the instability of S-XIX towards acid or alkali. The phosphodiester linkages in S-XIX join HO-1 of α-l-rhamnose and HO-4 of the 2-acetamido-2-deoxy-d-mannopyranosyl residue in the next repeating-unit. Treatment of S-XIX with alkali or alkaline-NaBH4 produced the repeating units in a lower yield. The proposed structure of S-XIX is
  相似文献   

12.
The O-specific polysaccharide isolated by mild acid degradation of the lipopolysaccharide of Y. kristensenii strain 490 (O:12,25) contained D-glucose, 2-acetamido-2-deoxy-D-glucose, 2-acetamido-2-deoxy-D-galactose, 2-acetamido-2,6-dideoxy-L-galactose, glycerol, and phosphate in the ratios 2:2:1:1:1:1. On the basis of 31P- and 13C-n.m.r. data, methylation analysis, dephosphorylation, solvolysis with anhydrous hydrogen fluoride, and Smith degradation, it was concluded that the repeating unit of the polysaccharide was a branched hexaosylglycerol phosphate with the following structure. [formula: see text]  相似文献   

13.
An acidic O-specific polysaccharide containing D-glucuronic acid (D-GlcA), 2,3-diacetamido-2,3-dideoxy-D-glucuronic acid (D-GlcNAc3NAcA), 2,3-diacetamido-2,3-dideoxy-D-mannuronoyl-L-alanine (D-ManNAc3NAcA6Ala), and 2-acetamido-2,4, 6-trideoxy-4-[(S)-3-hydroxybutyramido]-D-glucose (D-QuiNAc4NAcyl) was obtained by mild acid degradation of the lipopolysaccharide of the bacterium Pseudoalteromonas sp. KMM 634 followed by gel-permeation chromatography. The polysaccharide was cleaved selectively with a new solvolytic agent, trifluoromethanesulfonic acid, to give a disaccharide and a trisaccharide with D-GlcNAc3NAcA at the reducing end. The borohydride-reduced oligosaccharides and the initial polysaccharide were studied by GLC-MS and 1H- and 13C-NMR spectroscopy, and the following structure of the linear tetrasaccharide repeating unit of the polysaccharide was established: -->3)-alpha-D-QuipNAc4Ac4NAcyl-(1-->4)-beta-D-ManpNAc3NAcA6Ala+ ++-(1-->4)-b eta-D-GlcpNAc3NAc3NAcA-(1-->4)-beta-D-GlcpA-(1-->.  相似文献   

14.
An O-specific polysaccharide was obtained by mild acid degradation of P. mirabilis O29 lipopolysaccharide (LPS) and found to contain 2-acetamido-2-deoxy-D-galactose and D-glucuronic acid (D-GlcA) in the ratio 3:1. Studies of the polysaccharide by 1H- and 13C-NMR spectroscopy including two-dimensional correlation spectroscopy (COSY), total correlation spectroscopy (TOCSY), nuclear Overhauser effect spectroscopy (NOESY), and H-detected 1H,13C-heteronuclear multiple-quantum coherence (HMQC) experiments demonstrated the following structure of the branched tetrasaccharide repeating unit:  相似文献   

15.
An acidic polysaccharide was obtained from the lipopolysaccharide of Pseudoalteromonas distincta strain KMM 638, isolated from a marine sponge, and found to contain D-GlcA, D-GalNAc, 2-acetamido-2,6-dideoxy-D-glucose (D-QuiNAc) and two unusual acidic amino sugars: 2-acetamido-2-deoxy-D-galacturonic acid (D-GalNAcA) and 5-acetamido-3,5,7,9-tetradeoxy-7-formamido-L-glycero-L-manno-nonulosonic acid (Pse5Ac7Fo, a derivative of pseudaminic acid). Oligosaccharides were derived from the polysaccharide by partial acid hydrolysis and mild alkaline degradation and characterised by electrospray ionisation (ESI) MS and 1H and 13C NMR spectroscopy. Based on these data and NMR spectroscopic studies of the initial and O-deacetylated polysaccharides, including quaternary carbon detection, 2D COSY, TOCSY, ROESY, H-detected 1H,13C HMQC and HMBC experiments, the following structure of the branched pentasaccharide repeating unit was established: [structure: see text].  相似文献   

16.
An acidic O-polysaccharide was obtained by mild acid degradation of the lipopolysaccharide of Escherichia coli O150 and studied by sugar and methylation analyses, triflic acid solvolysis, Smith degradation, (1)H and (13)C NMR spectroscopy, including 2D ROESY, (1)H,(13)C HSQC, HMQC-TOCSY, and HMBC experiments. The polysaccharide was found to contain a regioisomer of N-acetylisomuramic acid, 2-acetamido-4-O-[(S)-1-carboxyethyl]-2-deoxy-d-glucose [d-GlcNAc4(Slac)]. The structure of its hexasaccharide repeating unit was established.  相似文献   

17.
The specific polysaccharide was released from Shigella dysenteriae type 5 lipopolysaccharide by mild acidic hydrolysis and then purified by gel chromatography on Sephadex G-50. The polysaccharide was built up of residues of D-mannose, 2-acetamido-2-deoxy-D-glucose, 3-0-(D-1-carboxyethyl)-L-rhamnose (rhamnolactylic acid) and 0-acetyl groups in a ratio 2:1:1:1. On the basis of radiospectroscopy, methylation analysis, Smith degradation, and chromium trioxide oxidation, the repeating oligosaccharide unit of the polysaccharide can be assigned the following structure: (formula: see text) where GlcNAc is 2-acetamido-2-deoxy-D-glucopyranose, Manp is mannopyranose, RhaLcA is rhammolacytic acid and Ac is an acetyl group. The serological properties of Sh. dysenteriae somatic antigens are discussed in relation to the chemical structures of their specific polysaccharides.  相似文献   

18.
O-Specific polysaccharide built up of trisaccharide repeating units containing 3-acetamidino-2-acetamido-2,3-dideoxy-D-mannuronic acid (ManNAcAmA), 2,3-diacetamido-2,3-dideoxy-D-mannuronic acid (Man(NAc)2A), N-acetyl-D-fucosamine (FucNAc), and O-acetyl group was obtained on mild acid hydrolysis of P. aeruginosa O25 (Wokatsch classification) lipopolysaccharide. Basing on de-O-acetylation of polysaccharide with aqueous triethylamine accompanied by hydrolysis of acetamidino group to acetamido group, as well as on the 1H and 13C NMR data, the following structure of the repeating unit of the polysaccharide was established: (Formula: see text) P. aeruginosa O25 polysaccharide has the same carbohydrate skeleton as that of P. aeruginosa O3a,b (Lányi classification) and differs from the latter only by the presence of the O-acetyl group at position 4 of N-acetylfucosamine.  相似文献   

19.
High-molecular-mass polysaccharides were released by mild acid degradation of the lipopolysaccharides of two wild-type Vibrio vulnificus strain, a flagellated motile strain CECT 5198 and a non-flagellated non-motile strain S3-I2-36. Studies by sugar analysis and partial acid hydrolysis along with 1H and 13C NMR spectroscopies showed that the polysaccharides from both strains have the same trisaccharide repeating unit of the following structure:→4)-β-d-GlcpNAc3NAcylAN-(1→4)-α-l-GalpNAmA-(1→3)-α-d-QuipNAc-(1→where QuiNAc stands for 2-acetamido-2,6-dideoxyglucose, GalNAmA for 2-acetimidoylamino-2-deoxygalacturonic acid, GlcNAc3NAcylAN for 2-acetamido-3-acylamino-2,3-dideoxyglucuronamide and acyl for 4-d-malyl (∼30%) or 2-O-acetyl-4-d-malyl (∼70%). The structure of the polysaccharide studied resembles much that of a marine bacterium Pseudoalteromonas rubra ATCC 29570 reinvestigated in this work. The latter differs in (i) the absolute configuration of malic acid (l vs d), (ii) 3-O-acetylation of GalNAmA and (iii) replacement of QuiNAc with its 4-keto biosynthetic precursor.  相似文献   

20.
Structural investigation of the capsular polysaccharide from Klebsiella K type 63 by methylation analysis, periodate oxidation, and uronic acid degradation showed the repeating unit to consist of →3)-α-D-Galp-(1→3)-α-D-GalpA-(1→3)-α-L-Fucp(1→. This structure is identical to that of Escherichia coli serotype K-42 capsular polysaccharide. The 1H- and13C-n.m.r. spectra of the original and modified polysaccharide are consistent with the foregoing structure.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号