首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
2.
Cyclin E as a coactivator of the androgen receptor   总被引:7,自引:0,他引:7  
Androgens play an important role in the growth of prostate cancer, but the molecular mechanism that underlies development of resistance to antiandrogen therapy remains unknown. Cyclin E has now been shown to increase the transactivation activity of the human androgen receptor (AR) in the presence of its ligand dihydrotestosterone. The enhancement of AR activity by cyclin E was resistant to inhibition by the antiandrogen 5-hydroxyflutamide. Cyclin E was shown to bind directly to the COOH terminus portion of the AB domain of the AR, and to enhance its AF-1 transactivation function. These results suggest that cyclin E functions as a coactivator of the AR, and that aberrant expression of cyclin E in tumors may contribute to persistent activation of AR function, even during androgen ablation therapy.  相似文献   

3.
The major Smad pathways serve in regulating the expression of genes downstream of TGFbeta signals. In this study, we examined the effects of sustained Smad7 expression in cultured cells. Interestingly, Smad7 caused various mesenchymal cells, including NIH3T3 fibroblast and ST2 bone-marrow stromal cells, to undergo a marked morphological alteration into a flattened cell shape, but kept them alive for as long as 60 days. Furthermore, Smad7 arrested the proliferation of the cells even before they reached confluence. These cells became quiescent in G0/G1 phase and accumulated a hypophosphorylated form of retinoblastoma. The cytostatic effect of Smad7 was closely associated with a preceding decrease in the levels of G1 cyclins, such as cyclin D1 and cyclin E. Accordingly, ectopic cyclin E was able to overcome the Smad7-induced arrest of proliferation. These results indicate that Smad7 functions upstream of G1 cyclins and suggest a novel role for Smad7 as an antiproliferative factor. In contrast to the growth of mesenchymal cells, that of epithelial cells was little susceptible to Smad7. The present findings raise the possibility that a link between Smad7 and the G1 to S phase transition may also contribute to the cell cycle control by certain Smad7-inducing stimuli in a cell-type-dependent fashion.  相似文献   

4.
NA22598, a novel antitumor compound isolated from a microbial cultured broth, inhibited the growth of human colon cancer DLD-1 cells in suspension cultures (anchorage-independent growth) severalfold more strongly than in substratum-attached monolayer cultures. It arrested the cell cycle progression at early G1 phase under both these culture conditions. Rb phosphorylation, cyclin D1 expression, and cdk2 activation in G1 progression were all inhibited by NA22598, but the amounts of cdk2 and p27 were not affected. Among these effects the inhibition of cyclin D1 expression was most prominent, and NA22598 was found to inhibit the synthesis of cyclin D1 without affecting mRNA expression or protein degradation. p27 binding to cdk2 was more markedly increased in suspension cultures than in attached cultures by NA22598, but the compound had no effect on total p27. Apparently, the decrease of cyclin D1 induced redistribution of p27 from the cyclin D1/cdk4 to the cyclin E/cdk2 complexes during G1 phase in the suspension cultures. Because p27 is upregulated during suspension culture, a greater amount of it was associated with cyclin E/cdk2, thus producing greater growth inhibition. An agent, like NA22598, which induces the downregulation of cyclin D1 might offer a new anticancer strategy.  相似文献   

5.
Cyclin E1 is expressed at the G₁/S phase transition of the cell cycle to drive the initiation of DNA replication and is degraded during S/G₂M. Deregulation of its periodic degradation is observed in cancer and is associated with increased proliferation and genomic instability. We identify that in cancer cells, unlike normal cells, the closely related protein cyclin E2 is expressed predominantly in S phase, concurrent with DNA replication. This occurs at least in part because the ubiquitin ligase component that is responsible for cyclin E1 downregulation in S phase, Fbw7, fails to effectively target cyclin E2 for proteosomal degradation. The distinct cell cycle expression of the two E-type cyclins in cancer cells has implications for their roles in genomic instability and proliferation and may explain their associations with different signatures of disease.  相似文献   

6.
葡萄糖-6-磷酸脱氢酶(G6PD)在人皮肤黑色素瘤A375细胞中处于高表达与高活性状态, 但G6PD在黑色素瘤发生发展过程中的作用及其具体机制尚不明确.本文在前期运用 siRNA方法构建G6PD敲减的黑色素瘤A375稳转细胞(A375-G6PDΔ)基础上,构建表达载体pBabe-puro-G6PDWT在A375-G6PDΔ细胞中过表达野生型的G6PD基因,从而构建G6PD表达恢复的稳转细胞(A375-G6PDΔ-G6PDWT).3株细胞A375-WT、A375-G6PDΔ和 A375-G6PDΔ-G6PDWT经G6PD酶活性测定、MTT测定、克隆形成实验、流式细胞仪分析细胞周期和Western 印迹检测.结果显示,A375-G6PDΔ-G6PDWT细胞的G6PD蛋白表达量 (0.847 ± 0.080)及其活性(0.394 ± 0.029)分别是A375-G6PDΔ的3.28倍(P<0.01) 和7.34倍(P<0.01),分别是A375-WT细胞的91-57%和2.12倍(P<0.05).与A375-WT细 胞相比,A375-G6PDΔ细胞G0/G1期细胞数增加,S期细胞数减少,增殖指数PI降低了25-70%(P<0.05),细胞周期蛋白D1/D2、细胞周期蛋白E表达分别下降37.4%、54.3% (P<0.01)和17.3%;而A375-G6PDΔ-G6PDWT细胞呈现G1/S期阻滞解除,细胞周期蛋白D1/D2蛋白分别恢复到A375-WT细胞的89.5%和87.6%,细胞周期蛋白E表达未见 恢复,呈现生长增殖和克隆形成率的恢复并接近于A375-WT细胞. 结果提示,G6PD通 过细胞周期蛋白D1/D2调控人皮肤黑色素瘤A375细胞G1期向S期转换的进程,这为黑色 素瘤发病机制的研究提供了新的思路.  相似文献   

7.
The function of Cyclin D1 (CycD1) has been widely studied in the cell nucleus as a regulatory subunit of the cyclin-dependent kinases Cdk4/6 involved in the control of proliferation and development in mammals. CycD1 has been also localized in the cytoplasm, where its function nevertheless is poorly characterized. In this work we have observed that in normal skin as well as in primary cultures of human keratinocytes, cytoplasmic localization of CycD1 correlated with the degree of differentiation of the keratinocyte. In these conditions, CycD1 co-localized in cytoplasmic foci with exocyst components (Sec6) and regulators (RalA), and with β1 integrin, suggesting a role for CycD1 in the regulation of keratinocyte adhesion during differentiation. Consistent with this hypothesis, CycD1 overexpression increased β1 integrin recycling and drastically reduced the ability of keratinocytes to adhere to the extracellular matrix. We propose that localization of CycD1 in the cytoplasm during skin differentiation could be related to the changes in detachment ability of keratinocytes committed to differentiation.  相似文献   

8.
Cyclin D1 and cyclin E1, as vital regulatory factors of G1-S phase cell cycle progression, are frequently constitutive expressed and associated with pathogenesis and tumorigenesis in most human cancers and they have been regarded as promising targets for cancer therapy. In this study, we established NVP-BEZ235, a potent dual kinase inhibitor, could induce neuroblastoma cells proliferation inhibition without apoptosis activation. Moreover, we showed NVP-BEZ235 could induce neuroblastoma cells arrested at G0/G1 phase accompanied with significant reduction of the cyclin D1 and E1 proteins in a dose dependent manner at nanomole concentration. Additionally we found that GSK3β was dephosphorylated and activated by NVP-BEZ235 and then triggered cyclin D1 and cyclin E1 degradation through ubiquitination proteasome pathway, based on the evidences that NVP-BEZ235 induced downregulation of cyclin D1 and cyclin E1 were obviously recovered by proteasome inhibitor and the blockade of GSK3β contributed to remarkable rescue of cyclin D1 and cyclin E1. Analogous results about its anti-proliferation effects and molecular mechanism were observed on neuroblastoma xenograft mouse model in vivo. Therefore, these results indicate that NVP-BEZ235-induced cyclin D1 and cyclin E1 degradation, which happened through activating GSK3β, and GSK3β-dependent down-regulation of cyclin D1 and cyclin E1 should be available for anticancer therapeutics.  相似文献   

9.
ADP-ribosylation is involved in a variety of biological processes, many of which are chromatin-dependent and linked to important functions during the cell cycle. However, any study on ADP-ribosylation and the cell cycle faces the problem that synchronization with chemical agents or by serum starvation and subsequent growth factor addition already activates ADP-ribosylation by itself. Here, we investigated the functional contribution of ARTD1 in cell cycle re-entry and G1/S cell cycle progression using T24 urinary bladder carcinoma cells, which synchronously re-enter the cell cycle after splitting without any additional stimuli. In synchronized cells, ARTD1 knockdown, but not inhibition of its enzymatic activity, caused specific down-regulation of cyclin E during cell cycle re-entry and G1/S progression through alterations of the chromatin composition and histone acetylation, but not of other E2F-1 target genes. Although Cdk2 formed a functional complex with the residual cyclin E, p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] protein levels increased in G1 upon ARTD1 knockdown most likely due to inappropriate cyclin E-Cdk2-induced phosphorylation-dependent degradation, leading to decelerated G1/S progression. These results provide evidence that ARTD1 regulates cell cycle re-entry and G1/S progression via cyclin E expression and p27Kip1 Murray AH, Hunt T. The cell cycle: an introduction. New York: Oxford University Press, 1993. [Google Scholar] stability independently of its enzymatic activity, uncovering a novel cell cycle regulatory mechanism.  相似文献   

10.
The proto-oncogenes c-fos and c-jun have been shown in numerous model systems to be induced within minutes of growth factor stimulation, during the G0/G1 transition. In this report we use the mitotic shake-off procedure to generate a population of highly synchronized Swiss 3T3 cells. We show that both of these immediate-early, competence genes are also induced during the M/G1 transition, immediately after completion of mitosis. While c-fos mRNA levels drop to undetectable levels within 2 hr after division, c-jun mRNA levels are maintained at a basal level which is ~ 30% maximum throughout the remainder of G1. In order to access the functional significance of these patterns of c-fos and c-jun expression, antisense oligodeoxynucleotides specific to c-fos or c-jun were added to either actively growing Swiss 3T3 cells or mitotically synchronized cells, and their ability to inhibit DNA synthesis and cell division determined. Our results show that treatment of Swiss 3T3 cells with either c-fos or c-jun antisense oligodeoxynucleotides, while actively growing, during mitosis, or in early G1, results in a reduction in ability to enter S and subsequently divide. This was also true if Swiss 3T3 cells were treated during mid-G1 with c-jun antisense oligodeoxynucleotides. These results demonstrate that the regulation of G1 progression following mitosis is dependent upon the expression and function of the immediate-early, competence proto-oncogenes c-fos and c-jun. © 1994 Wiley-Liss, Inc.  相似文献   

11.
12.
DOC-1R (deleted in oral cancer-1 related) is a novel putative tumor suppressor. This study investigated DOC-1R antitumor activity and the underlying molecular mechanisms. Cell phenotypes were assessed using flow cytometry, BrdU incorporation and CDK2 kinase assays in DOC-1R overexpressing HeLa cells. In addition, RT-PCR and Western blot assays were used to detect underlying molecular changes in these cells. The interaction between DOC-1R and CDK2 proteins was assayed by GST pull-down and immunoprecipitation-Western blot assays. The data showed that DOC-1R overexpression inhibited G1/S phase transition, DNA replication and suppressed CDK2 activity. Molecularly, DOC-1R inhibited CDK2 expression at the mRNA and protein levels, and there were decreased levels of G1-phase cyclins (cyclin D1 and E) and elevated levels of p21, p27, and p53 proteins. Meanwhile, DOC-1R associated with CDK2 and inhibited CDK2 activation by obstructing its association with cyclin E and A. In conclusion, the antitumor effects of DOC-1R may be mediated by negatively regulating G1 phase progression and G1/S transition through inhibiting CDK2 expression and activation.  相似文献   

13.
Numerous studies exploring oncogenic Ras or manipulating physiological Ras signalling have established an irrefutable role for Ras as driver of cell cycle progression. Despite this wealth of information the precise signalling timeline and effectors engaged by Ras, particularly during G1, remain obscure as approaches for Ras inhibition are slow-acting and ill-suited for charting discrete Ras signalling episodes along the cell cycle. We have developed an approach based on the inducible recruitment of a Ras-GAP that enforces endogenous Ras inhibition within minutes. Applying this strategy to inhibit Ras stepwise in synchronous cell populations revealed that Ras signaling was required well into G1 for Cyclin D induction, pocket protein phosphorylation and S-phase entry, irrespective of whether cells emerged from quiescence or G2/M. Unexpectedly, Erk, and not PI3K/Akt or Ral was activated by Ras at mid-G1, albeit PI3K/Akt signalling was a necessary companion of Ras/Erk for sustaining cyclin-D levels and G1/S transition. Our findings chart mitogenic signaling by endogenous Ras during G1 and identify limited effector engagement restricted to Raf/MEK/Erk as a cogent distinction from oncogenic Ras signalling.  相似文献   

14.
Progression of cell cycle is regulated by sequential expression of cyclins, which associate with distinct cyclin kinases to drive the transition between different cell cycle phases. The complex of Cyclin A with cyclin‐dependent kinase 2 (CDK2) controls the DNA replication activity through phosphorylation of a set of chromatin factors, which critically influences the S phase transition. It has been shown that the direct interaction between the Cyclin A‐CDK2 complex and origin recognition complex subunit 1 (ORC1) mediates the localization of ORC1 to centrosomes, where ORC1 inhibits cyclin E‐mediated centrosome reduplication. However, the molecular basis underlying the specific recognition between ORC1 and cyclins remains elusive. Here we report the crystal structure of Cyclin A‐CDK2 complex bound to a peptide derived from ORC1 at 2.54 å resolution. The structure revealed that the ORC1 peptide interacts with a hydrophobic groove, termed cyclin binding groove (CBG), of Cyclin A via a KXL motif. Distinct from other identified CBG‐binding sequences, an arginine residue flanking the KXL motif of ORC1 inserts into a neighboring acidic pocket, contributing to the strong ORC1‐Cyclin A association. Furthermore, structural and sequence analysis of cyclins reveals divergence on the ORC1‐binding sites, which may underpin their differential ORC1‐binding activities. This study provides a structural basis of the specific ORC1‐cyclins recognition, with implication in development of novel inhibitors against the cyclin/CDK complexes.  相似文献   

15.
Mechanical loading of the skeleton, as achieved during daily movement and exercise, preserves bone mass and stimulates bone formation, whereas skeletal unloading from prolonged immobilization leads to bone loss. A functional interplay between the insulin-like growth factor 1 receptor (IGF1R), a major player in skeletal development, and integrins, mechanosensors, is thought to regulate the anabolic response of osteogenic cells to mechanical load. The mechanistic basis for this cross-talk is unclear. Here we report that integrin signaling regulates activation of IGF1R and downstream targets in response to both IGF1 and a mechanical stimulus. In addition, integrins potentiate responsiveness of IGF1R to IGF1 and mechanical forces. We demonstrate that integrin-associated kinases, Rous sarcoma oncogene (SRC) and focal adhesion kinase (FAK), display distinct actions on IGF1 signaling; FAK regulates IGF1R activation and its downstream effectors, AKT and ERK, whereas SRC controls signaling downstream of IGF1R. These findings linked to our observation that IGF1 assembles the formation of a heterocomplex between IGF1R and integrin β3 subunit indicate that the regulation of IGF1 signaling by integrins proceeds by direct receptor-receptor interaction as a possible means to translate biomechanical forces into osteoanabolic signals.  相似文献   

16.
《Cell reports》2020,30(6):1780-1797.e6
  1. Download : Download high-res image (196KB)
  2. Download : Download full-size image
  相似文献   

17.
Overexpression of cyclin B has been detected in various human breast cancer cell lines, breast tumor tissues, and immortalized but nontransformed breast cells. The cause of this overexpression has not been thoroughly investigated, nor is it known if cyclin B protein forms a functional complex with its partner, cdk1, at inappropriate cell cycle periods. In this study we examined the pattern of cyclin B1 promoter activity in three breast cancer cell lines, BT-549, MDA-MB-157, T-47D, and the immortalized breast cell line MCF-10F. Using cells stably transfected with a cyclin B1 promoter-luciferase reporter, luciferase activity was measured throughout the cell cycle in lovastatin synchronized cells and in G1 and S/G2 phases of asynchronized cells by flow cytometry. Results demonstrate that the cyclin B1 promoter activity increases, as expected, during the S/G2 period in all the cell lines. However, some promoter activity can be detected in G1 phase of the different cell line with BT-549 displaying the more altered pattern. Functional cyclin B1-cdk 1 protein complex was detected in G1 phase of BT-549 and T-47D cell lines. These results suggest that in a subset of transformed breast cancer cells altered cyclin B1 promoter activity may contribute to the misexpression of cyclin B protein.  相似文献   

18.
肾透明细胞癌(clear cell renal cell carcinoma,ccRCC)是一种转移率高、预后差的细胞代谢性疾病,对其有效诊疗及预后分子标志物的研究十分重要。葡萄糖6-磷酸脱氢酶(glucose 6-phosphatedehydrogenase, G6PD)在ccRCC中高表达,并提示患者不良预后,其促进ccRCC细胞增殖的分子机制有待进一步揭示。本研究发现,降低G6PD可抑制细胞周期G1/S期转化并显著抑制ccRCC细胞增殖。G6PD可在细胞水平调控G1/S期转化及增殖相关因子Cyclin D1,CDK4,CDK6,Cyclin E1和CDK2基因表达。TCGA数据库分析结果表明,ccRCC 中Cyclin D1,Cyclin E1 和 CDK2的mRNA 水平显著升高,而CDK4表达无明显差异,CDK6表达却显著降低。相关性分析结果显示,G6PD与Cyclin D1呈显著负相关(P<0.0001),G6PD与CDK4,CDK6之间无显著相关性(P>0.05),G6PD与Cyclin E1(P<0.0001)以及CDK2(P<0.05)显著正相关。进一步免疫组化检测结果表明,Cyclin E1和 CDK2在ccRCC肿瘤组织中表达显著升高。生存预后分析结果显示,Cyclin D1高表达提示ccRCC患者整体预后更为良好,CDK4和CDK6表达水平在ccRCC患者总生存率预测中无意义;而Cyclin E1和CDK2高表达均可提示ccRCC患者预后不良。进一步细胞水平检测发现,Cyclin E1、CDK2表达降低可显著逆转G6PD促进ccRCC细胞增殖的能力。综上,与增殖相关因子Cyclin D1,CDK4和CDK6相比,G6PD有可能通过促进Cyclin E1和CDK2表达升高而发挥促进 ccRCC肿瘤细胞增殖的作用,并且这3者的异常高表达有望成为ccRCC患者不良预后的独立生存预测因素。  相似文献   

19.
20.
In the present study, we investigated the expression of cyclin A2 in mouse two-cell embryos to elucidate the role of cyclin A2 at the G2/M transition. Two forms of cyclin A2 on SDS-PAGE (an upper and a lower band) were detected in two-cell embryos synchronized at the M phase by nocodazole. To investigate the nature of this shift, embryos synchronized at the M phase were treated with alkaline phosphatase (AP). The upper band of cyclin A2 was fainter in AP-treated embryos than in nontreated embryos. This result indicates that cyclin A2 in mouse two-cell embryos is phosphorylated and the band on SDS-PAGE shifts up during the G2/M transition. In addition, we examined the sequential expression of cyclin A2 in two-cell blocked embryos after OA treatment. The upper band of cyclin A2 was first detected at 2 hr after the treatment, corresponding to the timing of Cdc2 kinase activation. In two-cell embryos after removal from nocodazole treatment, the phosphorylated form of cyclin A2 protein decreased abruptly just before cytokinesis. These results suggest that the mechanism of cyclin A2 degradation in mouse two-cell embryos may be different from that in somatic cells.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号