首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
2.
3.
4.
5.
6.
Epithelial-to-mesenchymal transition (EMT) plays a critical role in cancer metastasis, and is regulated by growth factors such as transforming growth factor β (TGF-β) and fibroblast growth factors (FGF) secreted from the stromal and tumor cells. However, the role of growth factors in EMT has not been fully established. Several integrins are upregulated by TGF-β1 during EMT. Integrins are involved in growth factor signaling through integrin-growth factor receptor crosstalk. We previously reported that FGF1 directly binds to integrin αvβ3 and the interaction was required for FGF1 functions such as cell proliferation and migration. We studied the role of αvβ3 induced by TGF-β on TGF-β-induced EMT. Here, we describe that FGF1 augmented EMT induced by TGF-β1 in MCF10A and MCF12A mammary epithelial cells. TGF-β1 markedly amplified integrin αvβ3 and FGFR1 (but not FGFR2). We studied if the enhancing effect of FGF1 on TGF-β1-induced EMT requires enhanced levels of both integrin αvβ3 expression and FGFR1. Knockdown of β3 suppressed the enhancement by FGF1 of TGF-β1-induced EMT in MCF10A cells. Antagonists to FGFR suppressed the enhancing effect of FGF1 on EMT. Integrin-binding defective FGF1 mutant did not augment TGF-β1-induced EMT in MCF10A cells. These findings suggest that enhanced integrin αvβ3 expression in addition to enhanced FGFR1 expression is critical for FGF1 to augment TGF-β1-induced EMT in mammary epithelial cells.  相似文献   

7.
8.
Mammalian intestinal epithelium undergoes continuous cell turn over, with cell proliferation in the crypts and apoptosis in the villus. Both transforming growth factor (TGF)-β and gastrin-releasing peptide (GRP) are involved in the regulation of intestinal epithelial cells for division, differentiation, adhesion, migration and death. Previously, we have shown that TGF-β and bombesin (BBS) synergistically induce cyclooxygenase-2 (COX-2) expression and subsequent prostaglandin E2 (PGE2) production through p38MAPK in rat intestinal epithelial cell line stably transfected with GRP receptor (RIE/GRPR), suggesting the interaction between TGF-β signaling pathway and GRPR. The current study examined the biological responses of RIE/GRPR cells to TGF-β and BBS. Treatment with TGF-β1 (40 pM) and BBS (100 nM) together synergistically inhibited RIE/GRPR growth and induced apoptosis. Pretreatment with SB203580 (10 μM), a specific inhibitor of p38MAPK, partially blocked the synergistic effect of TGF-β and BBS on apoptosis. In conclusion, BBS enhanced TGF-β growth inhibitory effect through apoptosis induction, which is at least partially mediated by p38MAPK.  相似文献   

9.
Dendritic cells are professional antigen presenting cells and central for establishing and maintaining immunity and immunological tolerance. They develop from hematopoietic stem cells through successive steps of lineage commitment and differentiation. Dendritic cell development and function are regulated by specific cytokines, including transforming growth factor type β1 (TGF-β1). Our previous work demonstrated the importance of TGF-β1 signaling for dendritic cell development and subset specification. Here, we used genome-wide gene expression profiling with DNA microarrays to investigate the activity of TGF-β1 on gene expression in dendritic cell development. This study identified specific gene categories induced by TGF-β1 with an impact on dendritic cell biology.  相似文献   

10.
11.
12.

Background

Chronic hepatitis C virus (HCV) infection and associated liver cirrhosis represent a major risk factor for hepatocellular carcinoma (HCC) development. TGF-β is an important driver of liver fibrogenesis and cancer; however, its actual impact in human cancer progression is still poorly known. The aim of this study was to investigate the role of HCC-derived HCV core natural variants on cancer progression through their impact on TGF-β signaling.

Principal Findings

We provide evidence that HCC-derived core protein expression in primary human or mouse hepatocyte alleviates TGF-β responses in terms or growth inhibition or apoptosis. Instead, in these hepatocytes TGF-β was still able to induce an epithelial to mesenchymal transition (EMT), a process that contributes to the promotion of cell invasion and metastasis. Moreover, we demonstrate that different thresholds of Smad3 activation dictate the TGF-β responses in hepatic cells and that HCV core protein, by decreasing Smad3 activation, may switch TGF-β growth inhibitory effects to tumor promoting responses.

Conclusion/Significance

Our data illustrate the capacity of hepatocytes to develop EMT and plasticity under TGF-β, emphasize the role of HCV core protein in the dynamic of these effects and provide evidence for a paradigm whereby a viral protein implicated in oncogenesis is capable to shift TGF-β responses from cytostatic effects to EMT development.  相似文献   

13.
14.
In the current studies we examined the effects of transforming growth factor type β (TGF-β) on the control of differentiation of BALB/c 3T3 T stem cells. We report that TGF-β is a potent, reversible inhibitor of adipocyte differentiation (50% inhibition at ˜0.06–0.08 ng/ml), while other biologically active polypeptides, such as epidermal growth factor (EGF), human growth hormone (hGH), and somatomedin C, have no specific effect on differentiation at even higher concentrations (200 ng/ml). We also report that TGF-β inhibits differentiation in a cell cycle-dependent manner by its effect on a specific phase in the differentiation process. We therefore suggest that if TGF-β is an important regulatory factor, one of its critical mechanisms of action may be its ability to inhibit the process of cell differentiation.  相似文献   

15.
16.
17.
18.
Vascular endothelial growth factor (VEGF)-D, a member of the VEGF family, induces both angiogenesis and lymphangiogenesis by activating VEGF receptor-2 (VEGFR-2) and VEGFR-3 on the surface of endothelial cells. Transforming growth factor (TGF)-β1 has been shown to stimulate VEGF-A expression in human lung fibroblast via the Smad3 signaling pathway and to induce VEGF-C in human proximal tubular epithelial cells. However, the effects of TGF-β1 on VEGF-D regulation are unknown. To investigate the regulation of VEGF-D, human lung fibroblasts were studied under pro-fibrotic conditions in vitro and in idiopathic pulmonary fibrosis (IPF) lung tissue. We demonstrate that TGF-β1 downregulates VEGF-D expression in a dose- and time-dependent manner in human lung fibroblasts. This TGF-β1 effect can be abolished by inhibitors of TGF-β type I receptor kinase and Jun NH2-terminal kinase (JNK), but not by Smad3 knockdown. In addition, VEGF-D knockdown in human lung fibroblasts induces G1/S transition and promotes cell proliferation. Importantly, VEGF-D protein expression is decreased in lung homogenates from IPF patients compared with control lung. In IPF lung sections, fibroblastic foci show very weak VEGF-D immunoreactivity, whereas VEGF-D is abundantly expressed within alveolar interstitial cells in control lung. Taken together, our data identify a novel mechanism for downstream signal transduction induced by TGF-β1 in lung fibroblasts, through which they may mediate tissue remodeling in IPF.  相似文献   

19.
20.
Subculture of primary normal human oral keratinocytes (NHOK) results in terminal differentiation, leading to cell death. To investigate whether the subculture-induced death of NHOK is due to apoptosis, we studied transferase-mediated dUTP nick end labeling (TUNEL)-positive cells, DNA fragmentation, and expression of several apoptosis-associated genes from NHOK with different passage numbers. We also determined the effect of transforming growth factor β1 (TGF-β1) on the induction of apoptosis in NHOK. We were able to subculture primary NHOK up to the fifth passage, at which point cells showed morphological features of differentiation. Appearance of DNA fragmentation concurrently occurred with an increase in the number of TUNEL-positive cells with higher passage numbers. The level of cellular p53 proteins was gradually decreased by the continued passage of cells, whereas the levels of intracellular and secreted TGF-β and phospholipase C-γ1 (PLC-γ1) were significantly elevated by serial subculture. Exogenous TGF-β1 also induced differentiation and apoptosis of proliferating NHOK. These data indicate that terminal differentiation of NHOK is associated with apoptosis, which is, in part, linked to elevated cellular levels of TGF-β and PLC-γ1.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号