首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 23 毫秒
1.
The ligand-induced internalization and recycling of chemokine receptors play a significant role in their regulation. In this study, we analyzed the involvement of actin filaments and of microtubules in the control of ligand-induced internalization and recycling of CXC chemokine receptor (CXCR)1 and CXCR2, two closely related G protein-coupled receptors that mediate ELR-expressing CXC chemokine-induced cellular responses. Nocodazole, a microtubule-disrupting agent, did not affect the IL-8-induced reduction in cell surface expression of CXCR1 and CXCR2, nor did it affect the recycling of these receptors following ligand removal and cell recovery at 37 degrees C. In contrast, cytochalasin D, an actin filament depolymerizing agent, promoted the IL-8-induced reduction in cell surface expression of both CXCR1 and CXCR2. Cytochalasin D significantly inhibited the recycling of both CXCR1 and CXCR2 following IL-8-induced internalization, the inhibition being more pronounced for CXCR2 than for CXCR1. Potent inhibition of recycling was observed also when internalization of CXCR2 was induced by another ELR-expressing CXC chemokine, granulocyte chemotactic protein-2. By the use of carboxyl terminus-truncated CXCR1 and CXCR2 it was observed that the carboxyl terminus domains of CXCR1 and CXCR2 were partially involved in the regulation of the actin-mediated process of receptor recycling. The cytochalasin D-mediated inhibition of CXCR2 recycling had a functional relevance because it impaired the ability of CXCR2-expressing cells to mediate cellular responses. These results suggest that actin filaments, but not microtubules, are involved in the regulation of the intracellular trafficking of CXCR1 and CXCR2, and that actin filaments may be required to enable cellular resensitization following a desensitized refractory period.  相似文献   

2.
In the present study, we used the human chemokine receptors CXCR1 and CXCR2 as a model system for the study of intracellular cross-talk between two closely related G protein-coupled receptors (GPCR). In cells expressing either CXCR1 or CXCR2, exposure to the CXCL8 ligand resulted in prominent reduction in cell surface expression of the receptors. We have shown previously that the reduction in cell surface expression of CXCR1 and CXCR2, to be termed herein "down-regulation", is significantly lower in cells expressing both receptors together. Now we show that reduced receptor down-regulation was specific to the CXCR1+CXCR2 pair. Also, CXCR2 carboxyl terminus phosphorylation sites were required for inducing inhibition of CXCR1 down-regulation, and vice versa. Accordingly, phosphorylation of CXCR2 carboxyl terminus domain was intact when expressed together with CXCR1. Moreover, specific carboxyl terminus phosphorylation sites on each of the wild type receptors protected them from more severe inhibition of down-regulation, induced by joint expression with the other receptor. When concomitantly expressed, CXCR1 and CXCR2 were impaired in recycling to the plasma membrane, despite their undergoing intact dephosphorylation. Overall, we show that cross-talk between two GPCR is manifested by impairment of their intracellular trafficking, primarily of ligand-induced down-regulation, via carboxyl terminus phosphorylation sites.  相似文献   

3.
Adaptor protein interaction with specific peptide motifs found within the intracellular, carboxyl terminus of chemokine receptor CXCR2 has been shown to modulate intracellular trafficking and receptor function. Efficient ligand-induced internalization of this receptor is dependent on the binding of adaptor protein 2 to the specific LLKIL motif found within the carboxyl terminus (1). In this study we show that the carboxyl-terminal type 1 PDZ ligand motif (-STTL) of CXCR2 plays an essential role in both proper intracellular receptor trafficking and efficient cellular chemotaxis. First, we show that CXCR2 is sorted to and degraded in the lysosome upon long-term ligand stimulation. We also show that receptor degradation is not dependent upon receptor ubiquitination, but is instead modulated by the carboxyl-terminal type I PDZ ligand of CXCR2. Deletion of this ligand results in increased degradation, earlier co-localization with the lysosome, and enhanced sorting to the Rab7-positive late endosome. We also show that deletion of this ligand effects neither receptor internalization nor receptor recycling. Furthermore, we demonstrate that deletion of the PDZ ligand motif results in impaired chemotactic response. The data presented here demonstrate that the type I PDZ ligand of CXCR2 acts to both delay lysosomal sorting and facilitate proper chemotactic response.  相似文献   

4.
IL-8 (or CXCL8) activates the receptors CXCR1 (IL-8RA) and CXCR2 (IL-8RB) to induce chemotaxis in leukocytes, but only CXCR1 mediates cytotoxic and cross-regulatory signals. This may be due to the rapid internalization of CXCR2. To investigate the roles of the intracellular domains in receptor regulation, wild-type, chimeric, phosphorylation-deficient, and cytoplasmic tail (C-tail) deletion mutants of both receptors were expressed in RBL-2H3 cells and studied for cellular activation, receptor phosphorylation, desensitization, and internalization. All but one chimeric receptor bound IL-8 and mediated signal transduction, chemotaxis, and exocytosis. Upon IL-8 activation, the chimeric receptors underwent receptor phosphorylation and desensitization. One was resistant to internalization, yet it mediated normal levels of beta-arrestin 2 (beta arr-2) translocation. The lack of internalization by this receptor may be due to its reduced association with beta arr-2 and the adaptor protein-2 beta. The C-tail-deleted and phosphorylation-deficient receptors were resistant to receptor phosphorylation, desensitization, arrestin translocation, and internalization. They also mediated greater phosphoinositide hydrolysis and exocytosis and sustained Ca(2+) mobilization, but diminished chemotaxis. These data indicate that phosphorylation of the C-tails of CXCR1 and CXCR2 are required for arrestin translocation and internalization, but are not sufficient to explain the rapid internalization of CXCR2 relative to CXCR1. The data also show that receptor internalization is not required for chemotaxis. The lack of receptor phosphorylation was correlated with greater signal transduction but diminished chemotaxis, indicating that second messenger production, not receptor internalization, negatively regulates chemotaxis.  相似文献   

5.
The functional role of neutrophils during acute inflammatory responses is regulated by two high affinity interleukin-8 receptors (CXCR1 and CXCR2) that are rapidly desensitized and internalized upon binding their cognate chemokine ligands. The efficient re-expression of CXCR1 on the surface of neutrophils following agonist-induced internalization suggests that CXCR1 surface receptor turnover may involve regulatory pathways and intracellular factors similar to those regulating beta2-adrenergic receptor internalization and re-expression. To examine the internalization pathway utilized by ligand-activated CXCR1, a CXCR1-GFP construct was transiently expressed in two different cell lines, HEK 293 and RBL-2H3 cells. While interleukin-8 stimulation promoted CXCR1 sequestration in RBL-2H3 cells, receptor internalization in HEK 293 cells required co-expression of G protein-coupled receptor kinase 2 and beta-arrestin proteins. The importance of beta-arrestins in CXCR1 internalization was confirmed by the ability of a dominant negative beta-arrestin 1-V53D mutant to block internalization of CXCR1 in RBL-2H3 cells. A role for dynamin was also demonstrated by the lack of CXCR1 internalization in dynamin I-K44A dominant negative mutant-transfected RBL-2H3 cells. Agonist-promoted co-localization of transferrin and CXCR1-GFP in endosomes of RBL-2H3 cells confirmed that receptor internalization occurs via clathrin-coated vesicles. Our data provides a direct link between agonist-induced internalization of CXCR1 and a requirement for G protein-coupled receptor kinase 2, beta-arrestins, and dynamin during this process.  相似文献   

6.
Protein phosphatase 2A (PP2A) is postulated to be involved in the dephosphorylation of G protein-coupled receptors. In the present study, we demonstrate that the carboxyl terminus of CXCR2 physically interacts with the PP2A core enzyme, a dimer formed by PP2Ac and PR65, but not with the PP2Ac monomer, suggesting direct interaction of the receptor with PR65. The integrity of a sequence motif in the C terminus of CXCR2, KFRHGL, which is conserved in all CC and CXC chemokine receptors, is required for the receptor binding to the PP2A core enzyme. CXCR2 co-immunoprecipitates with the PP2A core enzyme in HEK293 cells and in human neutrophils. Overexpression of dominant negative dynamin 1 (dynamin 1 K44A) in CXCR2-expressing cells blocks the receptor association with the PP2A core enzyme, and an internalization-deficient mutant form of CXCR2 (I323A,L324A) also exhibits impaired association with the PP2A core enzyme, suggesting that the receptor internalization is required for the receptor binding to PP2A. A phosphorylation-deficient mutant of CXCR2 (331T), which has previously been shown to undergo internalization in HEK293 cells, binds to an almost equal amount of the PP2A core enzyme in comparison with the wild-type CXCR2, suggesting that the interaction of the receptor with PP2A is phosphorylation-independent. The dephosphorylation of CXCR2 is reversed by treatment of the cells with okadaic acid. Moreover, pretreatment of the cells with okadaic acid increases basal phosphorylation of CXCR2 and attenuates CXCR2-mediated calcium mobilization and chemotaxis. Taken together, these data indicate that PP2A is involved in the dephosphorylation of CXCR2. We postulate that this interaction results from direct binding of the regulatory subunit A (PR65) of PP2A to the carboxyl terminus of CXCR2 after receptor sequestration and internalization.  相似文献   

7.
Chemokine receptor CXCR7 is essential for normal development, and this receptor promotes initiation and progression of diseases including cancer and autoimmunity. To understand normal and pathologic functions of CXCR7 and advance development of therapeutic agents, there is a need to define structural domains that regulate this receptor. We generated mutants of CXCR7 with deletion of different lengths of the predicted intracellular tail and analyzed effects on CXCR7 signaling and function in cell-based assays. While wild-type CXCR7 predominantly localized to intracellular vesicles, progressive deletion of the carboxy terminus redistributed the receptor to the plasma membrane. Truncating the intracellular tail of CXCR7 did not alter binding to CXCL12, but mutant receptors had reduced scavenging of this chemokine. Using a firefly luciferase complementation system, we established that deletions of the carboxy terminus decreased basal interactions and eliminated ligand-dependent recruitment of the scaffolding protein β-arrestin-2 to receptors. Deleting the carboxy terminus of CXCR7 impaired constitutive internalization of the receptor and reduced activation of ERK1/2 by CXCL12-CXCR7. Inhibiting dynamin, a molecule required for internalization of CXCR7, increased ligand-dependent association of the receptor with β-arrestin-2 and enhanced activation of ERK1/2. These studies establish mechanisms of action for CXCR7 and establish the intracellular tail of CXCR7 as a critical determinant of receptor trafficking, chemokine scavenging, and signaling.  相似文献   

8.
CXCL8 (interleukin-8) interacts with two receptors, CXCR1 and CXCR2, to activate leukocytes. Upon activation, CXCR2 internalizes very rapidly relative to CXCR1 ( approximately 90% versus approximately 10% after 5 min). The C termini of the receptors have been shown to be necessary for internalization but are not sufficient to explain the distinct kinetics of down-regulation. To determine the structural determinant(s) that modulate receptor internalization, various chimeric and point mutant receptors were generated by progressively exchanging specific domains or amino acids between CXCR1 and CXCR2. The receptors were stably expressed in rat basophilic leukemia 2H3 cells and characterized for receptor binding, intracellular Ca(2+) mobilization, phosphoinositide hydrolysis, phosphorylation, internalization, and MAPK activation. The data herein indicate that the second extracellular loop (2ECL) of the receptors is critical for the distinct rate of internalization. Replacing the 2ECL of CXCR2 with that of CXCR1 (B(2ECL)A) or Asp(199) with its CXCR1 valine counterpart (B(D199V)A) delayed CXCR2 internalization similarly to CXCR1. Replacing Asp(199) with Asn (B(D199N)) restored CXCR2 rapid internalization. Structure modeling of the 2ECL of the receptors also suggested that Asp(199) plays a critical role in stabilizing and modulating CXCR2 rapid internalization relative to CXCR1. B(D199N) internalized rapidly but migrated as a single phosphorylated form like CXCR1 ( approximately 75 kDa), whereas B(2ECL)A and B(D199V)A showed slow and fast migrating forms like CXCR2 ( approximately 45 and approximately 65 kDa, respectively) but internalized like CXCR1. These data further undermine the role of receptor oligomerization in CXCL8 receptor internalization. Like CXCR1, B(D199V)A also induced sustained ERK activation and cross-desensitized Ca(2+) mobilization to CCR5 relative to B(D199N) and CXCR2. Altogether, the data suggest that the 2ECL of the CXCL8 receptors is important in modulating their distinct rate of down-regulation and thereby signal length and post-internalization activities.  相似文献   

9.
Agonist-stimulated internalization followed by recycling to the cell membrane play an important role in fine-tuning the activity of chemokine receptors. Because the recycling of chemokine receptors is critical for the reestablishment of the cellular responsiveness to ligand, it is crucial to understand the mechanisms underlying the receptor recycling and resensitization. In the present study, we have demonstrated that the chemokine receptor CXCR2 associated with myosin Vb and Rab11-family interacting protein 2 (FIP2) in a ligand-dependent manner. Truncation of the C-terminal domain of the receptor did not affect the association, suggesting that the interactions occur upstream of the C terminus of CXCR2. After ligand stimulation, the internalized CXCR2 colocalized with myosin Vb and Rab11-FIP2 in Rab11a-positive vesicles. The colocalization lasted for approximately 2 h, and little colocalization was observed after 4 h of ligand stimulation. CXCR2 also colocalized with myosin Vb tail or Rab11-FIP2 (129-512), the N-terminal-truncated mutants of myosin Vb and Rab11-FIP2, respectively, but in a highly condensed manner. Expression of the enhanced green fluorescent protein-tagged myosin Vb tail significantly retarded the recycling and resensitization of CXCR2. CXCR2 recycling was also reduced by the expression Rab11-FIP2 (129-512). Moreover, expression of the myosin Vb tail reduced CXCR2- and CXCR4-mediated chemotaxis. These data indicate that Rab11-FIP2 and myosin Vb regulate CXCR2 recycling and receptor-mediated chemotaxis and that passage of internalized CXCR2 through Rab11a-positive recycling system is critical for physiological response to a chemokine.  相似文献   

10.
The chemokine receptor CXCR4 has recently been shown to be a co-receptor involved in the entry of human immunodeficiency virus type 1 into target cells. This study shows that coexpression of beta-arrestin with CXCR4 in human embryonic kidney 293 cells attenuated chemokine-stimulated G protein activation and inhibition of cAMP production. Truncation of the C-terminal 34 amino acids of CXCR4 (CXCR4-T) abolished the effects of beta-arrestin on CXCR4/G protein signaling, indicating the functional interaction of the receptor C terminus with beta-arrestin. On the other hand, receptor internalization and the subsequent activation of extracellular signal-regulated kinases were significantly promoted by coexpression of beta-arrestin with CXCR4, whereas the C-terminal truncation of CXCR4 did not affect this regulation of beta-arrestin, suggesting that beta-arrestin can functionally interact with CXCR4 with or without the C terminus. Moreover, beta(2)V54D, the dominant inhibitory mutant of beta-arrestin 2, exerted no effects on CXCR4/G protein signaling, but strongly influenced receptor internalization and extracellular signal-regulated kinase activation. Further cross-linking experiments demonstrated that beta-arrestin as well as beta(2)V54D could physically contact both CXCR4 and CXCR4-T. Glutathione S-transferase pull-down assay showed that beta-arrestin was able to bind efficiently in vitro to both the third intracellular loop and the 34-amino acid C terminus of CXCR4. Taken together, our data clearly establish that beta-arrestin can effectively regulate different functions of CXCR4 and that this is mediated through its distinct interactions with the C terminus and other regions including the third loop of CXCR4.  相似文献   

11.
CXCL12 signaling through G protein-coupled CXCR4 regulates cell migration during ontogenesis and disease states including cancer and inflammation. The second CXCL12-receptor CXCR7 modulates the CXCL12/CXCR4 pathway by acting as a CXCL12 scavenger and exerts G protein-independent functions. Given the distinct properties of CXCR4 and CXCR7, we hypothesized that the distinct C-terminal domains differently regulate receptor trafficking and stability. Here, we examined epitope-tagged wild type and C-terminal mutant receptors in human embryonic kidney cells (HEK293) with respect to trafficking, stability, (125)I-CXCL12 degradation, and G protein-coupling. The 24 CXCR7 C-terminal residues were sufficient to promote rapid spontaneous internalization. Replacement of the CXCR7 C terminus with that of CXCR4 (CXCR7-4tail mutant) abolished spontaneous internalization but permitted ligand-induced internalization and phosphorylation at the heterologous domain. The reverse tail-swap caused ligand-independent internalization of the resulting CXCR4-7tail mutant. Receptor-mediated (125)I-CXCL12 uptake and release of (125)I-CXCL12 degradation products were accelerated with receptors bearing the CXCR7 C terminus and impaired after conversion of CXCR7 C-terminal serine/threonine residues into alanines. C-terminal lysine residues were dispensable for plasma membrane targeting and the CXCL12 scavenger function but involved in constitutive degradation of CXCR7. Although the CXCR7 C terminus abolished G protein coupling in the CXCR4-7tail mutant, replacement of the CXCR7 C terminus, CXCR7 second intracellular loop, or both domains with the corresponding CXCR4 domain did not result in a G protein-coupled CXCR7 chimera. Taken together, we provide evidence that the CXCR7 C terminus influences the ligand-uptake/degradation rate, G protein coupling, and receptor stability. Regulatory pathways targeting CXCR7 C-terminal serine/threonine sites may control the CXCL12 scavenger activity of CXCR7.  相似文献   

12.
The chemokine receptors, CXCR1 and CXCR2, couple to Gαi to induce leukocyte recruitment and activation at sites of inflammation. Upon activation by CXCL8, these receptors become phosphorylated, desensitized, and internalized. In this study, we investigated the role of different G protein-coupled receptor kinases (GRKs) in CXCR1- and CXCR2-mediated cellular functions. To that end, short hairpin RNA was used to inhibit GRK2, 3, 5, and 6 in RBL-2H3 cells stably expressing CXCR1 or CXCR2, and CXCL8-mediated receptor activation and regulation were assessed. Inhibition of GRK2 and GRK6 increased CXCR1 and CXCR2 resistance to phosphorylation, desensitization, and internalization, respectively, and enhanced CXCL8-induced phosphoinositide hydrolysis and exocytosis in vitro. GRK2 depletion diminished CXCR1-induced ERK1/2 phosphorylation but had no effect on CXCR2-induced ERK1/2 phosphorylation. GRK6 depletion had no significant effect on CXCR1 function. However, peritoneal neutrophils from mice deficient in GRK6 (GRK6(-/-)) displayed an increase in CXCR2-mediated G protein activation but in vitro exhibited a decrease in chemotaxis, receptor desensitization, and internalization relative to wild-type (GRK6(+/+)) cells. In contrast, neutrophil recruitment in vivo in GRK6(-/-) mice was increased in response to delivery of CXCL1 through the air pouch model. In a wound-closure assay, GRK6(-/-) mice showed enhanced myeloperoxidase activity, suggesting enhanced neutrophil recruitment, and faster wound closure compared with GRK6(+/+) animals. Taken together, the results indicate that CXCR1 and CXCR2 couple to distinct GRK isoforms to mediate and regulate inflammatory responses. CXCR1 predominantly couples to GRK2, whereas CXCR2 interacts with GRK6 to negatively regulate receptor sensitization and trafficking, thus affecting cell signaling and angiogenesis.  相似文献   

13.
Fan GH  Yang W  Wang XJ  Qian Q  Richmond A 《Biochemistry》2001,40(3):791-800
Agonist treatment of cells expressing the chemokine receptor, CXCR2, induces receptor phosphorylation and internalization through a dynamin-dependent mechanism. In the present study, we demonstrate that a carboxyl terminus-truncated mutant of CXCR2 (331T), which no longer undergoes agonist-induced phosphorylation, continues to undergo ligand-induced internalization in HEK293 cells. This mutant receptor exhibits reduced association with beta-arrestin 1 but continues to exhibit association with adaptin 2 alpha and beta subunits. Replacing Leu320-321 and/or Ile323-Leu324 with Ala (LL320,321AA, IL323,324AA, and LLIL320,321,323,324AAAA) in wild-type CXCR2 or 331T causes little change in ligand binding and signaling through Ca(2+) mobilization but greatly impairs the agonist-induced receptor sequestration and ligand-mediated chemotaxis. The LL320,321AA, IL323,324AA, and LLIL320,321,323,324AAAA mutants of CXCR2 exhibit normal binding to beta-arrestin 1 but exhibit decreased binding to adaptin 2alpha and beta. These data demonstrate a role for the LLKIL motif in the carboxyl terminus of CXCR2 in receptor internalization and cell chemotaxis and imply a role for adaptin 2 in the endocytosis of CXCR2.  相似文献   

14.
15.
《FEBS letters》2014,588(24):4769-4775
C-X-C motif chemokine 12/C-X-C chemokine receptor type 4 (CXCL12/CXCR4) signaling is involved in ontogenesis, hematopoiesis, immune function and cancer. Recently, the orphan chemokine CXCL14 was reported to inhibit CXCL12-induced chemotaxis – probably by allosteric modulation of CXCR4. We thus examined the effects of CXCL14 on CXCR4 regulation and function using CXCR4-transfected human embryonic kidney (HEK293) cells and Jurkat T cells. CXCL14 did not affect dose–response profiles of CXCL12-induced CXCR4 phosphorylation, G protein-mediated calcium mobilization, dynamic mass redistribution, kinetics of extracellular signal-regulated kinase 1 (ERK1) and ERK2 phosphorylation or CXCR4 internalization. Hence, essential CXCL12-operated functions of CXCR4 are insensitive to CXCL14, suggesting that interactions of CXCL12 and CXCL14 pathways depend on a yet to be identified CXCL14 receptor.  相似文献   

16.
Neutrophil migration and activation are critical components of innate immunity and are mediated by a variety of inflammatory mediators, which include interleukin-8 (IL-8) and epithelial-derived neutrophil activating peptide-78 (ENA-78). Limited knowledge on the expression of receptors for these inflammatory mediators (CXCR1 and CXCR2) in bovine, in addition to the association of a polymorphism (G→C) in position +777 of the CXCR1 gene with impaired neutrophil function, prompted evaluation of CXCR1 and CXCR2 mRNA and protein expression, ligand binding affinity, and intracellular receptor signaling in neutrophils from cows with different CXCR1 genotypes. Initial observations revealed that overall IL-8 receptor numbers appeared to be lower in cows with a CC genotype compared to cows with a GG genotype. However, in the presence of SB225002, a CXCR2 inhibitor, CXCR1 affinity was about fivefold lower in cows with a CC genotype and may have resulted in an underestimation of receptor numbers in cows with this genotype. In addition, intracellular calcium ([Ca++]i) release was lower in cows with a CC genotype when cells were stimulated with IL-8 but not ENA-78. Furthermore, when neutrophils were stimulated with an optimal dose of IL-8 in the presence of SB225002, [Ca++]i release was lower in cows with a CC genotype, suggesting differential CXCR1 signaling among genotypes. These findings offer knowledge of the role that each of these receptors plays in the inflammatory response in the bovine and provide insight into the potential mechanisms that may be affected in neutrophils of cows with different CXCR1 genotypes.  相似文献   

17.
18.
Katancik JA  Sharma A  de Nardin E 《Cytokine》2000,12(10):1480-1488
The objective of this investigation was to determine the amino acid residues of the human neutrophil CXC chemokine receptor-2 (CXCR2) that are critical for binding the ligands interleukin 8 (IL-8), neutrophil-activating peptide-2 (NAP-2), and growth-related protein alpha (GROalpha) and critical for receptor-mediated signal transduction. Charged residues of the amino terminus and the first extracellular loop of CXCR2 were targeted for point mutagenesis studies. Seven separate CXCR2 mutants (Glu7, Asp9, Glu12, Asp13, Lys108, Asn110, and Lys120, all to Ala) were generated. Based on the Scatchard analysis of radioligand binding studies, the following amino acids were deemed critical for ligand binding: (i) Asp9, Glu12, Lys108, and Lys120 for IL-8 and (ii) Glu7, Asp9, and Glu12 for GROalpha. Point mutations in the amino terminus domain (Asp9 and Glu12) and the first extracellular loop (Lys108, Asn110, and Lys120) of CXCR2 reduced cell activation to all three ligands as measured by changes in intracellular calcium concentration. In conclusion, high-affinity binding of IL-8, NAP-2, and GROalpha to CXCR2 involves interaction with specific and different amino acid residues of CXCR2. Furthermore, we propose that the CXCR2 amino acid residues required for cell activation are not necessarily the same residues required for ligand binding.  相似文献   

19.
Large DNA viruses, such as herpesvirus and poxvirus, encode proteins that target and exploit the chemokine system of their host. UL146 and UL147 in the cytomegalovirus (CMV) genome encode the two CXC chemokines vCXCL1 and vCXCL2. In this study, vCXCL1 was probed against a panel of the 18 classified human chemokine receptors. In calcium mobilization assays vCXCL1 acted as an agonist on both CXCR1 and CXCR2 but did not activate or block any of the other 16 chemokine receptors. vCXCL1 was characterized and compared with CXCL1/GROα, CXCL2/GROβ, CXCL3/GROγ, CXCL5/ENA-78, CXCL6/GCP-2, CXCL7/NAP-2 and CXCL8/IL-8 in competition binding, calcium mobilization, inositol triphosphate turnover, and chemotaxis assays using CXCR1- and CXCR2-expressing Chinese hamster ovary, 300.19, COS7, and L1.2 cells. The affinities of vCXCL1 for the CXCR1 and CXCR2 receptors were 44 and 5.6 nm, respectively, as determined in competition binding against radioactively labeled CXCL8. In calcium mobilization, phosphatidylinositol turnover, and chemotaxis assays, vCXCL1 acted as a highly efficacious activator of both receptors, with a rather low potency for the CXCR1 receptor but comparable with CXCL5 and CXCL7. It is suggested that CMV uses the UL146 gene product expressed in infected endothelial cells to attract neutrophils by activating their CXCR1 and CXCR2 receptors, whereby neutrophils can act as carriers of the virus to uninfected endothelial cells. In that way a lasting pool of CMV-infected endothelial cells could be maintained.  相似文献   

20.
CXCR1 and CXCR2 mediate migratory activities in response to IL-8 and other ELR+-CXC chemokines (e.g., GCP-2 and NAP-2). In vitro, activation of migration is induced by low IL-8 concentrations (10-50 ng/mL), whereas migratory shut-off is induced by high IL-8 concentrations (1000 ng/mL). The stimulation of CXCR1 and CXCR2 by IL-8 concentrations that result in migratory activation induced focal adhesion kinase (FAK) phosphorylation in a G(alpha)i-dependent manner. The expression of FRNK, a dominant negative mutant of FAK, perturbed migratory responses to the activating dose of 50 ng/mL IL-8. The migration-activating concentrations of 50 ng/mL GCP-2 and NAP-2 induced less potent migratory responses and FAK phosphorylation in CXCR2-expressing cells as compared with IL-8. These results indicate that FAK is phosphorylated, and required, for the chemotactic response under conditions of migratory activation by ELR+-CXC chemokines. In addition, FAK phosphorylation was determined following exposure to migration-attenuating concentrations of IL-8. In CXCR1-RBL cells this treatment resulted in FAK phosphorylation, in similar levels to those induced by activating concentrations of IL-8. In contrast, in CXCR2-RBL cells the migration-attenuating concentrations of IL-8 induced promoted levels of FAK phosphorylation and different patterns of FAK phosphorylation on its six potential tyrosine phosphorylation sites, as compared to activating concentrations of the chemokine. Exposure to IL-8 resulted not only in FAK phosphorylation but also in its cellular redistribution, indicated by the formation of defined contact regions with the substratum, enriched in phosphorylated FAK and vinculin. Overall, FAK phosphorylation was associated with, and found to be differently regulated upon, ELR+-CXC chemokine-induced migration.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号