首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
Many invasive ant species form mutualisms with honeydew-producing Hemiptera and their aggressive presence deters the natural enemies of the Hemiptera. Invasive ant species like the Argentine ant have often been associated with hemipteran outbreaks in urban, agricultural and natural ecosystems. We investigated the effects of a mutualism between the invasive Argentine ant and the endemic terrapin scale on coccid density and the fitness of the host of this mutualism, the endemic red maple, situated in a commercial park. The terrapin scale has numerous natural enemies and we predicted that the high terrapin scale numbers associated with tending Argentine ants would collapse once Argentine ants were excluded from the host tree canopy. We predicted that excluding the Argentine ant from the tree canopy would result in an indirect net fitness benefit to the host. Terrapin scale numbers collapsed when Argentine ants were excluded from the host tree canopy. Red maples with Argentine ants excluded from their canopy had higher seed mass and larger early leaves indicating that this invasive ant-endemic scale mutualism imposed a net fitness cost to the host tree. The Argentine ant has yet to invade closed-canopy forest within its introduced range. The red maple is common in adjacent closed-canopy forest fragments and recent work has shown that invasion of these forest fragments by the Argentine ant is limited by a steady carbohydrate resource. We discuss the implications to forest invasion posed by a mutualism involving the Argentine ant and an endemic coccid.  相似文献   

2.
The fungus-growing ant-microbe mutualism is a classic example of organismal complexity generated through symbiotic association. The ants have an ancient obligate mutualism with fungi they cultivate for food. The success of the mutualism is threatened by specialized fungal parasites (Escovopsis) that consume the cultivated fungus. To defend their nutrient-rich garden against infection, the ants have a second mutualism with bacteria (Pseudonocardia), which produce antibiotics that inhibit the garden parasite Escovopsis. Here we reveal the presence of a fourth microbial symbiont associated with fungus-growing ants: black yeasts (Ascomycota; Phialophora). We show that black yeasts are commonly associated with fungus-growing ants, occurring throughout their geographical distribution. Black yeasts grow on the ants' cuticle, specifically localized to where the mutualistic bacteria are cultured. Molecular phylogenetic analyses reveal that the black yeasts form a derived monophyletic lineage associated with the phylogenetic diversity of fungus growers. The prevalence, distribution, localization and monophyly indicate that the black yeast is a fifth symbiont within the attine ant-microbe association, further exemplifying the complexity of symbiotic associations.  相似文献   

3.
Mutualism is a net positive interaction that includes varying degrees of both costs and benefits. Because tension between the costs and benefits of mutualism can lead to evolutionary instability, identifying mechanisms that regulate investment between partners is critical to understanding the evolution and maintenance of mutualism. Recently, studies have highlighted the importance of interspecific signalling as one mechanism for regulating investment between mutualist partners. Here, we provide evidence for interspecific alarm signalling in an insect protection mutualism and we demonstrate a functional link between this acoustic signalling and efficacy of protection. The treehopper Publilia concava Say (Hemiptera: Membracidae) is an insect that provides ants with a carbohydrate-rich excretion called honeydew in return for protection from predators. Adults of this species produce distinct vibrational signals in the context of predator encounters. In laboratory trials, putative alarm signal production significantly increased following initial contact with ladybeetle predators (primarily Harmonia axyridis Pallas, Coleoptera: Coccinellidae), but not following initial contact with ants. In field trials, playback of a recorded treehopper alarm signal resulted in a significant increase in both ant activity and the probability of ladybeetle discovery by ants relative to both silence and treehopper courtship signal controls. Our results show that P. concava treehoppers produce alarm signals in response to predator threat and that this signalling can increase effectiveness of predator protection by ants.  相似文献   

4.
Geographic variation in the outcome of interspecific interactions may influence not only the evolutionary trajectories of species but also the structure of local communities. We investigated this community consequence of geographic variation for a facultative mutualism between ants and wild cotton (Gossypium thurberi). Ants consume wild cotton extrafloral nectar and can protect plants from herbivores. We chose three sites that differed in interaction outcome, including a mutualism (ants provided the greatest benefits to plant fitness and responded to manipulations of extrafloral nectar), a potential commensalism (ants increased plant fitness but were unresponsive to extrafloral nectar), and a neutral interaction (ants neither affected plant fitness nor responded to extrafloral nectar). At all sites, we manipulated ants and extrafloral nectar in a factorial design and monitored the abundance, diversity, and composition of other arthropods occurring on wild cotton plants. We predicted that the effects of ants and extrafloral nectar on arthropods would be largest in the location with the mutualism and weakest where the interaction was neutral. A non-metric multidimensional scaling analysis revealed that the presence of ants altered arthropod composition, but only at the two sites in which ants increased plant fitness. At the site with the mutualism, ants also suppressed detritivore/scavenger abundance and increased aphids. The presence of extrafloral nectar increased arthropod abundance where mutual benefits were the strongest, whereas both arthropod abundance and morphospecies richness declined with extrafloral nectar availability at the site with the weakest ant–plant interaction. Some responses were geographically invariable: total arthropod richness and evenness declined by approximately 20% on plants with ants, and extrafloral nectar reduced carnivore abundance when ants were excluded from plants. These results demonstrate that a facultative ant–plant mutualism can alter the composition of arthropod assemblages on plants and that these community-level consequences vary across the landscape.  相似文献   

5.
Despite recent findings that mutualistic interactions between two species may be greatly affected by species external to the mutualism, the implications of such multi-species interactions for the population dynamics of the mutualists are virtually unexplored. In this paper, we ask how the mutualism between the shoot-base boring weevil Apion onopordi and the rust fungus Puccinia punctiformis is influenced by the dynamics of their shared host plant Cirsium arvense, and vice versa. In particular, we hypothesized that the distribution of the weevil's egg load between healthy and rust-infected thistles may regulate the abundance of the mutualists and their host plant. In contrast to our expectations we found that the dynamics of the mutualists are largely determined by the dynamics of their host. This is, to our knowledge, the first demonstration that the dynamics of a mutualism are driven by a third, non-mutualistic species.  相似文献   

6.
A Zhou  Y Lu  L Zeng  Y Xu  G Liang 《PloS one》2012,7(7):e41856
Although mutualism between ants and honeydew-producing hemipterans has been extensively recognized in ecosystem biology, however few attempts to test the hypothesis that mutualism between two alien species leads to the facilitation of the invasion process. To address this problem, we focus on the conditional mutualism between S. invicta and P. solenopsis by field investigations and indoor experiments. In the laboratory, ant colony growth increased significantly when ants had access to P. solenopsis and animal-based food. Honeydew produced by P. solenopsis also improved the survival of ant workers. In the field, colony density of P. solenopsis was significantly greater on plots with ants than on plots without ants. The number of mealybug mummies on plants without fire ants was almost three times that of plants with fire ants, indicating a strong effect of fire ants on mealybug survival. In addition, the presence of S. invicta successfully contributed to the spread of P. solenopsis. The quantity of honeydew consumption by S. invicta was significantly greater than that of a presumptive native ant, Tapinoma melanocephalum. When compared with the case without ant tending, mealybugs tended by ants matured earlier and their lifespan and reproduction increased. T. melanocephalum workers arrived at honeydew more quickly than S. invicta workers, while the number of foraging S. invicta workers on plants steadily increased, eventually exceeding that number of T. melanocephalum foragers. Overall, these results suggest that the conditional mutualism between S. invicta and P. solenopsis facilitates population growth and fitness of both species. S. invicta tends to acquire much more honeydew and drive away native ants, promoting their predominance. These results suggest that the higher foraging tempo of S. invicta may provide more effective protection of P. solenopsis than native ants. Thus mutualism between these two alien species may facilitate the invasion success of both species.  相似文献   

7.
Mutualisms involve the exchange of resources and these resources attract exploiters and predators. Because predators may have a stronger effect either on mutualists or on exploiters, their net effect on the mutualism may be positive or negative. Ants and Ficus -associated wasps are a potential example. These wasps could represent sufficient food to ensure a permanent presence of predators. If this is the case then we may expect divergent selection (dependent on fig species) on traits facilitating or impeding ant predatory activity. Dioecious Ficus species in Brunei present the opportunity to determine whether presence of fig wasps on a tree ensures increased presence of ants because: (1) wasps are mainly present on male trees, thus allowing study of the effect of wasp abundance on ant presence; and (2) preliminary observations showed that ants present on trees were mainly predatory species that do not tend hemipterans. We show here, for several dioecious Ficus species, that many more ants were present on male trees than on female trees. Furthermore, these ants were mainly dominant predatory taxa that often nested in the male trees. Hence, wasps on male trees provide a sufficient resource in terms of quantity and reliability to ensure the continuous presence of dominant ants on the trees.  相似文献   

8.
For both applied and theoretical ecological science, the mutualism between ants and their hemipteran partners is iconic. In this well-studied interaction, ants are assumed to provide hemipterans protection from natural enemies in exchange for nutritive honeydew. Despite decades of research and the potential importance in pest control, the precise mechanism producing this mutualism remains contested. By analyzing maximum likelihood parameter estimates of a hemipteran population model, we show that the mechanism of the mutualism is direct, via improved hemipteran growth rates, as opposed to the frequently assumed indirect mechanism, via harassment of the specialist parasites and predators of the hemipterans. Broadly, this study demonstrates that the management of mutualism-based ecosystem services requires a mechanistic understanding of mutualistic interactions. A consequence of this finding is the counter intuitive demonstration that preserving ant participation in the ant-hemipteran mutualism may be the best way of insuring pest control.  相似文献   

9.
Successful species interactions require that both partners share a similar cue. For many species, spring warming acts as a shared signal to synchronize mutualist behaviors. Spring flowering plants and the ants that disperse their seeds respond to warming temperatures so that ants forage when plants drop seeds. However, where warm‐adapted ants replace cold‐adapted ants, changes in this timing might leave early seeds stranded without a disperser. We investigate plant seed dispersal south and north of a distinct boundary between warm‐ and cold‐adapted ants to determine if changes in the ant species influence local plant dispersal. The warm‐adapted ants forage much later than the cold‐adapted ants, and so we first assess natural populations of early and late blooming plants. We then transplant these plants south and north of the ant boundary to test whether distinct ant climate requirements disrupt the ant–plant mutualism. Whereas the early blooming plant's inability to synchronize with the warm‐adapted ant leaves its populations clumped and patchy and its seedlings clustered around the parents in natural populations, when transplanted into the range of the cold‐adapted ant, effective seed dispersal recovers. In contrast, the mutualism persists for the later blooming plant regardless of location because it sets seed later in spring when both warm‐ and cold‐adapted ant species forage, resulting in effective seed dispersal. These results indicate that the climate response of species interactions, not just the species themselves, is integral in understanding ecological responses to a changing climate. Data linking phenological synchrony and dispersal are rare, and these results suggest a viable mechanism by which a species' range is limited more by biotic than abiotic interactions – despite the general assumption that biotic influences are buried within larger climate drivers. These results show that biotic partner can be as fundamental a niche requirement as abiotic resources.  相似文献   

10.
Many aphids are known to engage in a trophic mutualism with ants, whereby the aphids secrete sugary-rich honeydew which is collected by the ants for food, and the ants, in exchange, protect the aphids against natural enemies. Previous results, however, suggest that the production of some of the honeydew sugars, such as the ant-attractant trisaccharide melezitose, may induce an indirect cost to the aphids. This led us to believe that large differences in the nature of the secreted honeydew might exist, due to some clones capitalizing more or less on their mutualistic interaction with ants, or due to some “cheater” clones foregoing the production of particular sugars, instead taking advantage of the ant-attracting effect of other non sugar-deficient clones, co-occurring on the same plant. Here we present data on clonal variation in the composition of honeydew of the black bean aphid Aphis fabae which confirm this prediction. In particular, our results show that there was large interclone variation in the amount of glucose, melezitose and total sugar produced. The variation in the production of melezitose, however, showed particularly large differences, with 54% (7 out of 13) of the clones screened being virtually deficient for the production of this sugar, irrespective of whether the aphid colonies were ant-tended or not. The consequences of this finding in the context of the evolution and maintenance of the ant–aphid mutualism, as well as the adaptive benefits of oligosaccharide synthesis in aphids and other insects are discussed.  相似文献   

11.
In most mutualisms, partners disperse independently of each other. For instance, in ant-plant symbioses, plants disperse as seeds, and ants disperse as winged queens. For an ant-plant mutualism to persist, therefore, queens must be able to locate and colonise host plant saplings. It has been suggested that host plants emit volatile chemical cues that attract dispersing queens, but this has never been demonstrated experimentally. We used a Y-tube olfactometry protocol to test this hypothesis in the tropical understorey antplant Cordia nodosa Lam. (Boraginaceae), which associates with two genera of ants, Azteca (Dolichoderinae) and Allomerus (Myrmicinae). Both genera show significant attraction to the volatiles of C. nodosa over control understorey plant species that do not associate with ants. These results support the hypothesis that ants are attracted to volatiles emitted by their host plant and suggest a key preadaptation that promoted the evolution of ant-plant symbioses. Received 1 July 2005; revised 2 November 2005; accepted 8 November 2005.  相似文献   

12.
1. In ecological webs, net indirect interactions between species are composed of interactions that vary in sign and magnitude. Most studies have focused on negative component interactions (e.g. predation, herbivory) without considering the relative importance of positive interactions (e.g. mutualism, facilitation) for determining net indirect effects. 2. In plant/arthropod communities, ants have multiple top-down effects via mutualisms with honeydew-producing herbivores and harassment of and predation on other herbivores; these ant effects provide opportunities for testing the relative importance of positive and negative interspecific interactions. We manipulated the presence of ants, honeydew-producing membracids and leaf-chewing beetles on perennial host plants in field experiments in Colorado to quantify the relative strength of these different types of interactions and their impact on the ant's net indirect effect on plants. 3. In 2007, we demonstrated that ants simultaneously had a positive effect on membracids and a negative effect on beetles, resulting in less beetle damage on plants hosting the mutualism. 4. In 2008, we used structural equation modelling to describe interaction strengths through the entire insect herbivore community on plants with and without ants. The ant's mutualism with membracids was the sole strong interaction contributing to the net indirect effect of ants on plants. Predation, herbivory and facilitation were weak, and the net effect of ants reduced plant reproduction. This net indirect effect was also partially because of behavioural changes of herbivores in the presence of ants. An additional membracid manipulation showed that the membracid's effect on ant activity was largely responsible for the ant's net effect on plants; ant workers were nearly ten times as abundant on plants with mutualists, and effects on other herbivores were similar to those in the ant manipulation experiment. 5. These results demonstrate that mutualisms can be strong relative to negative direct interspecific interactions and that positive interactions deserve attention as important components of ecological webs.  相似文献   

13.
Network structure in plant-animal systems has been widely investigated but the roles of functional traits of plants and animals in formation of mutualism and predation interactions and community structure are still not fully understood. In this study, we quantitatively assessed interaction strength of mutualism and predation between 5 tree species and 7 rodent species by using semi-natural enclosures in a subtropical forest in southwest China. Seeds with high handling-time and nutrition traits (for both rat and mouse species) or high tannin trait (for mouse species) show high mutualism but low predation with rodents; while seeds with low handling-time and low nutrition traits show high predation but low mutualism with rodents. Large-sized rat species are more linked to seeds with high handling-time and high nutrition traits, while small-sized mouse species are more connected with seeds with low handling-time, low nutrition value and high tannin traits. Anti-predation seed traits tend to increase chance of mutualism instead of reducing predation by rodents, suggesting formation of mutualism may be connected with that of predation. Our study demonstrates that seed and animal traits play significant roles in the formation of mutualism and predation and network structure of the seed-rodent dispersal system.  相似文献   

14.
Herbivorous insects have evolved various defensive strategies to avoid their primary enemies, parasitoids. Many species of Lycaenidae (Lepidoptera) have food‐for‐protection mutualism with ants in their larval stages, where larvae produce nectar for ants and in return ants exclude parasitoids as well as predators. Myrmecophilous relationships are divided into two categories, obligate and facultative, by degrees of myrmecophily. Although parasitoids attacking obligate lycaenids always encounter lycaenid‐specific ant species, parasitoids that use facultative lycaenids are likely to encounter diverse ant species showing various defense systems. However, we know little about the parasitoid community of facultative lycaenid larvae. In this study, we investigated the mutualistic ant and parasitoid communities of a facultative myrmecophilous species, Arhopala japonica, in seven localities in Japan. The present field observation newly recorded four ant species attending A. japonica larvae, and combined with the previous data, the number of attending ant species reached 16, which is nearly the maximum number of reported attending ant species among myrmecophilous lycaenids. However, the present study revealed that almost all parasitized A. japonica larvae were attacked by a single braconid species, Cotesia sp. near inducta. We also assessed the efficiency of facultative ant defense against the parasitoid in the laboratory and revealed that oviposition by Cotesia sp. near inducta females was almost completely hindered when A. japonica larvae were attended by ants. This suggests that the dominant parasitoid does not have effective traits to overcome defensive behavior of ants and that the female wasps oviposit mainly in A. japonica larvae without intensive attendance.  相似文献   

15.
  • 1 The mutualism between wood ants of the Formica rufa group and aphids living in the canopy of trees is a widespread phenomenon in boreal forests, and it can affect tree growth. However, not all trees in the forest are involved in this interaction.
  • 2 To assess the incidence of host trees involved in this ant–aphid mutualism and its spatial distribution in boreal forests, we inventoried sample plots with a radius of 10–15 m around wood ant mounds in 12 forest stands of two age classes (5–12‐year‐old sapling stands and 30–45‐year‐old pole stands) and two dominant tree species (Scots pine and silver birch) in Eastern Finland from 2007 to 2009.
  • 3 The proportion of trees visited by ants out of all trees on the individual study plots were in the range 4–62%, and 1.5–39% of the trees on the plots were consistently visited by ants during all 3 years. The percentage of host trees increased with the ant mound base area on the plots. Trees visited by ants were larger and closer to the mound than trees not visited by ants. Within the group of visited trees, more ants were found on bigger trees and on trees close to the ant mounds.
  • 4 Extrapolated from plot to stand level, we estimated that 0.5–6.6% of the trees were host trees in at least one of the three study years, and that only 0.01–2.3% of all the trees were consistently visited by ants during all 3 years. It is concluded that ant–aphid mutualism is a minor occurrence at the stand level.
  相似文献   

16.
Abstract.  1. The strength or density dependence of pairwise species interactions can depend on the presence or absence of other species, especially potential mutualists.
2. The gall wasp Disholcaspis eldoradensis induces plant galls that secrete a sweet honeydew from their top surfaces while the wasp larvae are active. These galls are actively tended by Argentine ants, which collect the honeydew and drive off parasitoids attempting to attack the gall wasp.
3. When ants were excluded, the total rate of parasitism by seven species of parasitoids increased by 36%, and the rate of gall-wasp emergence decreased by 54%.
4. The total percentage parasitism was affected by gall density when ants were excluded but not when ants were unmanipulated, suggesting a change in parasitoid functional responses due to ant tending.
5. In addition, excluding ants significantly altered the proportions of different parasitoid species that emerged from galls; one parasitoid species increased from 1% to 34%, and another decreased from 46% to 19%.
6. The invasive Argentine ants studied are capable of maintaining the mutualism with the gall wasps that evolved in the presence of different ant species and also act as a selective filter for the local community of generalist parasitoids trying to attack this gall species.  相似文献   

17.
The landmark discovery of obligate pollination mutualism between Glochidion plants and Epicephala moths has sparked increased interest in the pollination systems of Phyllantheae plants. In this paper I review current information on the natural history and evolutionary history of obligate pollination mutualism in Phyllantheae. Currently, an estimated >500 species are mutualistic with Epicephala moths that actively pollinate flowers and whose progeny feed on the resulting seeds. The Phyllantheae also includes species that are not mutualistic with Epicephala moths and are instead pollinated by bees and/or flies or ants. Phylogenetic analyses indicate that the mutualism evolved independently five times within Phyllantheae, whereas active pollination behavior, a key innovation in this mutualism, evolved once in Epicephala . Reversal of mutualism has occurred at least once in both partner lineages, involving a Breynia species that evolved an alternative pollination system and a derived clade of Epicephala that colonized ant-pollinated Phyllantheae hosts and thereby lost the pollinating habit. The plant–moth association is highly species specific, although a strict one-to-one assumption is not perfectly met. A comparison of plant and moth phylogenies suggests signs of parallel speciation, but partner switches have occurred repeatedly at a range of taxonomic levels. Overall, the remarkable species diversity and multiple originations of the mutualism provide excellent opportunities to address many important questions on mutualism and the coevolutionary process. Although research on the biology of the mutualism is still in its infancy, the Phyllantheae– Epicephala association holds promise as a new model system in ecology and evolutionary biology.  相似文献   

18.
Climate change can influence the abundance of insect herbivores through direct and indirect mechanisms. In this study, we evaluated multitrophic drivers of herbivore abundance for an aphid species (Aphis helianthi) in a subalpine food web consisting of a host plant (Ligusticum porteri), mutualist ants and predatory lygus bugs (Lygus spp.). We used a model-selection approach to determine which climate and host plant cues best predict year-to-year variation in insect phenology and abundance observed over 6 years. We complemented this observational study with experiments that determined how elevated temperature interacts with (1) host plant phenology and (2) the ant-aphid mutualism to determine aphid abundance. We found date of snowmelt to be the best predictor of yearly abundance of aphid and lygus bug abundance but the direction of this effect differed. Aphids achieved lower abundances in early snowmelt years likely due to increased abundance of lygus bug predators in these years. Elevating temperature of L. porteri flowering stalks reduced their quality as hosts for aphid populations. However, warming aphid colonies on host plants of similar quality increased population growth rates. Importantly, this effect was apparent even in the absence of ants. While we observed fewer ants tending colonies at elevated temperatures, these colonies also had reduced numbers of lygus bug predators. This suggests that mutualism with ants becomes less significant as temperature increases, which contrasts other ant-hemipteran systems. Our observational and experimental results show the importance of multitrophic species interactions for predicting the effect of climate change on the abundances of herbivores.  相似文献   

19.
Ants are widely employed by plants as an antiherbivore defence. A single host plant can associate with multiple, symbiotic ant species, although usually only a single ant species at a time. Different plant‐ant species may vary in the degree to which they defend their host plant. In Kenya, ant–acacia interactions are well studied, but less is known about systems elsewhere in Africa. A southern African species, Vachellia erioloba, is occupied by thorn‐dwelling ants from three different genera. Unusually, multiple colonies of all these ants simultaneously and stably inhabit trees. We investigated if the ants on V. erioloba (i) deter insect herbivores; (ii) differ in their effectiveness depending on the identity of the herbivore; and (iii) protect the tree against an important herbivore, the larvae of the lepidopteran Gonometa postica. We show that experimental exclusion of ants leads to greater levels of herbivory on trees. The ants inhabiting V. erioloba are an effective deterrent against hemipteran and coleopteran, but not lepidopteran herbivores. Defensive services do not vary among ant species, but only Crematogaster ants exhibit aggression towards G. postica. This highlights the potential of the V. erioloba–ant mutualism for studying ant–plant interactions that involve multiple, simultaneously resident thorn‐dwelling ant species.  相似文献   

20.
  1. Ants exert strong selective pressure on herbivorous insects, although some caterpillars can live in symbiosis with them using chemical defensive strategies.
  2. We investigated the adaptive resemblance of cuticular hydrocarbons (CHCs) in multitrophic systems involving a guild of facultative myrmecophilous caterpillar species (Lepidoptera: Lycaenidae), tending ants (Hymenoptera: Formicidae), and host plants from three families. We hypothesised that the CHCs of the caterpillars would resemble those of their host plants (chemical camouflage).
  3. We analysed CHCs using gas chromatography/mass spectrometry. Morisita's similarity index (SI) was used to compare CHC profiles of caterpillar species with different types of ant associations (commensal or mutualistic), ants, and host plants.
  4. We found strong convergence between caterpillars' CHCs and plants, especially for commensal species that do not provide secretion rewards for ants. Moreover, we found unexpected chemical convergence among mutualistic (trophobiotic) caterpillar species that offer caloric reward secretions to ants.
  5. These results show that the studied caterpillars acquire CHCs through their diet and that they vary according to host plant species and type of ant association (commensalism or mutualism). This ‘chemical camouflage’ of myrmecophilous caterpillars may have arisen as a defensive strategy allowing coexistence with ants on plants, whereas ‘chemical conspicuousness’ may have evolved in the context of honest signalling between mutualistic partners.
  6. We suggest the existence of chemical mimicry among myrmecophilous species, especially between mutualistic caterpillars. Cuticular chemical mixtures can play a key adaptive role in decreasing ant attacks and increasing caterpillar survival in multimodal sensory systems.
  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号