首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 406 毫秒
1.
2.
3.
L Dixon  J Jiricny  T Hohn 《Gene》1986,41(2-3):225-231
Mutation of the initiation codon of the dispensible open reading frame, ORF VII, of cauliflower mosaic virus (CaMV) delayed the appearance of disease symptoms, but the mutants reverted with high frequency. This suggests a role of this start codon in viral expression. Oligonucleotide-directed mutagenesis, utilizing a novel, repair-resistant deoxyguanosine analogue, 2'-deoxy-7-deazainosine (dDI), highly improved the yield of mutants.  相似文献   

4.
Z Kiss-László  S Blanc    T Hohn 《The EMBO journal》1995,14(14):3552-3562
A splicing event essential for the infectivity of a plant pararetrovirus has been characterized. Transient expression experiments using reporter constructs revealed a splice donor site in the leader sequence of the cauliflower mosaic virus (CaMV) 35S RNA and three additional splice donor sites within open reading frame (ORF) I. All four donors use the same splice acceptor within ORF II. Splicing between the leader and ORF II produces an mRNA from which ORF III and, in the presence of the CaMV translational transactivator, ORF IV can be translated efficiently. The other three splicing events produce RNAs encoding ORF I-II in-frame fusions. All four spliced CaMV RNAs were detected in CaMV-infected plants. Virus mutants in which the splice acceptor site in ORF II is inactivated are not infectious, indicating that splicing plays an essential role in the CaMV life cycle. The results presented here suggest a model for viral gene expression in which RNA splicing is required to provide appropriate substrate mRNAs for the specialized translation mechanisms of CaMV.  相似文献   

5.
Studies have indicated that cauliflower mosaic virus (CaMV) gene expression is mediated by the translation of polycistronic 35S pregenomic RNA, but the involvement of some minor subgenomic RNA species is also suspected. We examined the involvement of the 35S promoter in the expression of CaMV open reading frames (ORFs) I and IV using both 35S RNA-driven and promoter-less ORF I- and ORF IV-β-glucuronidase (GUS) fusion constructs. In addition to the 35S promoter-dependent expression of both ORF I- and IV-GUS fusions, we detected the 35S promoter-independent expression of both fusion genes via subgenomic mRNAs, which were detected by Northern blotting in the protoplasts transfected with the 35S promoter-driven constructs as well as in those transfected with the promoter-less constructs. These results suggest the involvement of subgenomic RNAs in the expression of CaMV ORFs I and IV, and the operation of a dual strategy in the expression of two viral genes.  相似文献   

6.
Cauliflower mosaic virus (CaMV) open reading frame III (ORF III) codes for a virion-associated protein (Vap), which is one of two viral proteins essential for aphid transmission. However, unlike the aphid transmission factor encoded by CaMV ORF II, Vap is also essential for systemic infection, suggesting that it is a multifunctional protein. To elucidate the additional function or functions of Vap, we tested the replication of noninfectious ORF III-defective mutants in transfected turnip protoplasts. PCR and Western blot analyses revealed that CaMV replication had occurred with an efficiency similar to that of wild-type virus and without leading to reversions. Electron microscopic examination revealed that an ORF III frameshift mutant formed normally structured virions. These results demonstrate that Vap is dispensable for replication in single cells and is not essential for virion morphogenesis. Analysis of inoculated turnip leaves showed that the ORF III frameshift mutant does not cause any detectable local infection. These results are strongly indicative of a role for Vap in virus movement.  相似文献   

7.
It is possible to replace the CaMV (cauliflower mosaic virus) ORF (open reading frame) II with foreign sequences without interfering with virus viability. Such recom-binants can induce the synthesis of substantial amounts of a foreign protein in infected plants and confer new properties to these plants. However, so far only three genes have been successfully cloned and expressed in this way. The expression mechanism of CaMV demands precise replacement of ORF II and probably certain structural features of the viral 35S RNA, which should not be disturbed by inserted sequences. Since these features are largely unknown, it cannot at present be pre-dicted whether an insert will be tolerated. It is more likely that larger inserts will disturb the viral gene expression mechanism than smaller ones.  相似文献   

8.
Cauliflower mosaic virus (CaMV) open reading frame (ORF) III encodes a 15 kDa protein; the function of which is as yet unknown. This protein has non-sequence-specific DNA binding activity and is associated with viral particles, suggesting that the ORF III product (P3) is involved in the folding of CaMV DNA during encapsidation. In this study, we demonstrated that P3 forms a tetramer in CaMV-infected plants. A P3-related protein with an apparent molecular weight of 60 kDa was detected by Western blotting analysis using anti-P3 antiserum under non-reducing conditions, while only 15 kDa P3 was detected under reducing conditions. Analysis of P3 using viable mutants with a 27-bp insertion in either ORF III or IV revealed that the 60 kDa protein was a tetramer of P3. The P3 tetramer co-sedimented with viral coat protein in multiple fractions on sucrose gradient centrifugation, suggesting that P3 tetramer binds to mature and immature virions. These results strongly suggested that CaMV P3 forms a tetramer in planta and that disulfide bonds are involved in its formation and/or stabilization. The finding of P3 tetramer in planta suggested that viral DNA would be folded compactly by the interaction with multiple P3 molecules, which would form tetramers, while being packaged into the capsid shell.  相似文献   

9.
Expression of a putative plant viral gene in Escherichia coli   总被引:2,自引:0,他引:2  
  相似文献   

10.
Carnation etched ring virus (CERV) DNA comprises 7932 bp. CERV primer binding sites and overall genome organization are similar to those of the related cauliflower mosaic virus (CaMV). The six open reading frames of CERV showed amino acid homology (50-80%) with CaMV ORFs I-VI; no homologues of CaMV ORFs VII or VIII were found. CERV ORFs 1-5 interface each other with the sequence ATGA. The comparison of CERV ORF5 with CaMV ORFV highlighted regions which show homologies to retrovirus gag/pol protease, RNase H and DNA polymerase domains; the possibility that the DNA polymerase domain comprises two subdomains, operating off different templates, is discussed. Both CERV and CaMV ORFs I have sequence homology to tobacco mosaic virus P30 and plastocyanin.  相似文献   

11.
12.
13.
The plus strand of the L-A double-stranded RNA virus of Saccharomyces cerevisiae has two large open reading frames, ORF1, which encodes the major coat protein, and ORF2, which encodes a single-stranded RNA-binding protein having a sequence diagnostic of viral RNA-dependent RNA polymerases. ORF2 is expressed only as a Gag-Pol-type fusion protein with ORF1. We have constructed a plasmid which expresses these proteins from the yeast PGK1 promoter. We show that this plasmid can support the replication of the killer toxin-encoding M1 satellite virus in the absence of an L-A double-stranded RNA helper virus itself. This requires ORF2 expression, providing a potential in vivo assay for the RNA polymerase and single-stranded RNA-binding activities of the fusion protein determined by ORF2. ORF1 expression, like a host ski- mutation, can suppress the usual requirement of M1 for the MAK11, MAK18, and MAK27 genes and allow a defective L-A (L-A-E) to support M1 replication. These results suggest that expression of ORF1 from the vector makes the cell a ski- phenocopy. Indeed, expression of ORF1 in a wild-type killer makes it a superkiller, suggesting that a target of the SKI antiviral system may be the major coat protein.  相似文献   

14.
15.
16.
We have used electron microscopy of thin sections and experiments on isolated viroplasms to compare the properties of four strains of cauliflower mosaic virus (CaMV), three of which were partially or completely deleted in open reading frame (ORF) II. Our results confirm that this gene is required for aphid transmissibility and show that the product of ORF II influences the firmness with which virions are held within the viroplasm. Analysis of the proteins in the viroplasms showed that a mutant with a partial deletion in ORF II produced a protein smaller than the normal ORF product. This smaller protein was non-functional with respect both to aphid transmissibility and properties of the viroplasms.  相似文献   

17.
18.
Transmission of cauliflower mosaic virus (CaMV) by aphids requires two viral nonstructural proteins, the open reading frame (ORF) II and ORF III products (P2 and P3). An interaction between a C-terminal domain of P2 and an N-terminal domain of P3 is essential for transmission. Purified particles of CaMV are efficiently transmitted only if aphids, previously fed a P2-containing solution, are allowed to acquire a preincubated mixture of P3 and virions in a second feed, thus suggesting a direct interaction between P3 and coat protein. Herein we demonstrate that P3 directly interacts with purified viral particles and unassembled coat protein without the need for any other factor and that P3 mediates the association of P2 with purified virus particles. The interaction domain of P3 is located in its C-terminal half, downstream of the P3-P2 interaction domain but overlapping a region which binds nucleic acids. Mutagenesis of P3 which interferes with the interaction between P3 and virions is correlated with the loss of transmission by aphids. Taken together, our results demonstrate that P3 plays a crucial role in the formation of the CaMV transmissible complex by serving as a bridge between P2 and virus particles.  相似文献   

19.
Cauliflower mosaic virus (CaMV) with a high incidence and widespread distribution on Brassica crops in Iran reduces the yield and quality of these crops. The complete sequences of three open reading frames (ORFs) 2, 4 and 6 coding for aphid transmission (AT), coat protein (CP) and inclusion body protein/translation transactivator (TAV) genes, respectively, were determined for two Iranian CaMV isolates from Kerman (south Iran). They induced latent or mild mottle (L/MMo) infection in Brassica oleracea var. capitata so are considered as the (L/MMo) biotype. Clear recombination breakpoints were detected between ORF2 and ORF6 in two Kerman isolates using concatenate fragments. Phylogenetic analysis revealed three Iranian CaMV subpopulations in which the two Kerman isolates in the new subgroup C were added to the two previously reported Iranian subpopulations A (central and west Iran) and B (north‐east Iran). Also three regions of pairwise identity were detected which representing: 97.1–100, 93.8–97.1 and 90.6–93.8% for subgroups A, C and B, respectively. Our analysis showed the high variability of Iranian CaMV population and provided valuable new information for understanding the diversity and evolution of caulimoviruses. Furthermore, star phylogeny was found in the subgroup C with overall lack of nt diversity and high haplotype diversity as evidence of a recent population expansion after a genetic bottleneck although this may have been modified subsequently by clinal genetic drift. The appearance of new genetic types demonstrates a high potential of risks and should be considered in the planning of efficient control programmes.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号