首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Previous experimental studies of insertion of the Nucleus standard straight and the Contour arrays into the scala tympani have reported that the electrode arrays cause damage to various cochlear structures. However, the level of insertion-induced damage by these electrode arrays to cochlear structures (the spiral ligament, the basilar membrane and the osseous spiral lamina) has not been quantified. Although it has been suggested that rotation can overcome this resistance and prevent the basilar membrane from being pierced by the tip of the Nucleus standard straight array, there has not been any attempt to study the relationship between the rotation and the reduction of damage to the basilar membrane. In this study, 3D finite element analyses of insertions of the Nucleus standard straight array and the Contour array into the scala tympani have been undertaken. The perforation of the basilar membrane by the tip of the Nucleus standard straight array at the region of 11-14 mm from the round window appears to be compounded by the geometry of the spiral passage of the scala tympani. Anti-clockwise rotations between 25 degrees and 90 degrees applied at the basal end of the electrode array (for the right cochlea) were shown to significantly reduce the contact stresses exerted by the tip on the basilar membrane which support the practice of applying small rotation partway through insertion of electrode array to minimize damage to the basilar membrane. Although the Contour array (with its stylet intact) is stiffer than the Nucleus standard straight array, a slight withdrawal of the stylet from the Contour array before insertion was found to significantly reduce damage by the electrode array to the spiral ligament and the basilar membrane.  相似文献   

2.
Friction and adhesion of articular cartilage from high- and low-load-bearing regions of bovine knee joints were examined with a tribometer under various loads and equilibration times. The effect of trapped lubricants was investigated by briefly unloading the cartilage sample before friction testing, to allow fluid to reflow into the contact interface and boundary lubricants to rearrange. Friction and adhesion of high-load-bearing joint regions were consistently lower than those of low-load-bearing regions. This investigation is the first to demonstrate the regional variation in the friction and adhesion properties of articular cartilage. Friction coefficient decreased with increasing contact pressure and decreasing equilibration time. Briefly unloading cartilage before the onset of sliding resulted in significantly lower friction and adhesion and a loss of the friction dependence on contact pressure, suggesting an enhancement of the cartilage tribological properties by trapped lubricants. The results of this study reveal significant differences in the friction and adhesion properties between high- and low-load-bearing joint regions and elucidate the role of trapped lubricants in cartilage tribology.  相似文献   

3.
Ongoing clinical studies on patients recently implanted with the auditory midbrain implant (AMI) into the inferior colliculus (IC) for hearing restoration have shown that these patients do not achieve performance levels comparable to cochlear implant patients. The AMI consists of a single-shank array (20 electrodes) for stimulation along the tonotopic axis of the IC. Recent findings suggest that one major limitation in AMI performance is the inability to sufficiently activate neurons across the three-dimensional (3-D) IC. Unfortunately, there are no currently available 3-D array technologies that can be used for clinical applications. More recently, there has been a new initiative by the European Commission to fund and develop 3-D chronic electrode arrays for science and clinical applications through the NeuroProbes project that can overcome the bulkiness and limited 3-D configurations of currently available array technologies. As part of the NeuroProbes initiative, we investigated whether their new array technology could be potentially used for future AMI patients. Since the NeuroProbes technology had not yet been tested for electrical stimulation in an in vivo animal preparation, we performed experiments in ketamine-anesthetized guinea pigs in which we inserted and stimulated a NeuroProbes array within the IC and recorded the corresponding neural activation within the auditory cortex. We used 2-D arrays for this initial feasibility study since they were already available and were sufficient to access the IC and also demonstrate effective activation of the central auditory system. Based on these encouraging results and the ability to develop customized 3-D arrays with the NeuroProbes technology, we can further investigate different stimulation patterns across the ICC to improve AMI performance.  相似文献   

4.
Six studies have been completed to reevaluate pleural surfactant as a possible boundary lubricant in mesothelial sliding. It is capable of remarkable antiwear action, giving a mean scar diameter on a standard "four-ball test" comparable to the best commercially available lubricants and reducing friction to values anticipated from lamellated solid lubricants such as graphite. Pleural surfaces displayed appreciable hydrophobicity, which was almost eliminated by rinsing with a lipid solvent from which phospholipid was recovered and quantified. These quantities indicated that equivalent of 7.3 adsorbed monolayers of surface-active phospholipid, which was in general agreement with the number of layers of a graphite-like surface coating visualized by electron microscopy by use of a novel fixation procedure that avoids conventional aldehydes known to destroy hydrophobic surfaces. Graphite-like (dry) lubrication by adsorbed surface-active phospholipid is discussed as an excellent lubrication system available wherever the distribution of fluid allows the pleura to make contact.  相似文献   

5.
In this study, a useful method was developed to fabricate array patterns of microparticles not on electrode surfaces, but on arbitrary surfaces, using negative‐dielectrophoresis (n‐DEP). First, electrodes were designed and electric field simulations were performed to manipulate microparticles toward target areas. Based on the simulation results, multilayered array and grid (MLAG) electrodes, consisting of array electrodes surrounded by insulated regions and a grid electrode, were fabricated for the formation of localized, non‐uniform electric fields. The MLAG electrode was mounted to a target substrate in a face‐to‐face configuration with a spacer. When an AC voltage (4.60 Vrms and 1 MHz) was applied to the MLAG electrode, array patterns of 6 and 20 µm diameter microparticles were rapidly fabricated on the target substrate with ease. The results suggest that MLAG electrodes can be widely applied for the fabrication of biochips including cell arrays. Biotechnol. Bioeng. 2009; 104: 709–718 © 2009 Wiley Periodicals, Inc.  相似文献   

6.
The objective of this study was to compare micro- and macroscale friction coefficients of bovine articular cartilage. Microscale measurements were performed using standard atomic force microscopy (AFM) techniques, using a 5 microm spherical probe tip. Twenty-four cylindrical osteochondral plugs were harvested in pairs from adjacent positions in six fresh bovine humeral heads (4-6 months old), and divided into two groups for AFM and macroscopic friction measurements. AFM measurements of friction were observed to be time-independent, whereas macroscale measurements demonstrated the well-documented time-dependent increase from a minimum to an equilibrium value. The microscale AFM friction coefficient (mu(AFM), 0.152+/-0.079) and macroscale equilibrium friction coefficient (mu(eq), 0.138+/-0.036) exhibited no statistical differences (p=0.50), while the macroscale minimum friction coefficient (mu(min), 0.004+/-0.001) was significantly smaller than mu(eq) and mu(AFM) (p<0.0001). Variations in articular surface roughness (Rq= 462+/-216 nm) did not correlate significantly with mu(AFM), mu(eq) or mu(min). The effective compressive modulus determined from AFM indentation tests using a Hertz contact analysis was E*=45.8+/-18.8 kPa. The main finding of this study is that mu(AFM) is more representative of the macroscale equilibrium friction coefficient, which represents the frictional response in the absence of cartilage interstitial fluid pressurization. These results suggest that AFM measurements may be highly suited for exploring the role of boundary lubricants in diarthrodial joint lubrication independently of the confounding effect of fluid pressurization to provide greater insight into articular cartilage lubrication.  相似文献   

7.
Dielectrophoretic manipulation of cells with spiral electrodes.   总被引:1,自引:0,他引:1       下载免费PDF全文
Electrokinetic responses of human breast cancer MDA-MB-231 cells were studied in suspensions of conductivities 18, 56, and 160 mS/m on a microelectrode array consisting of four parallel spiral electrode elements energized with phase-quadrature signals of frequencies between 100 Hz and 100 MHz. At low frequencies cells were levitated and transported toward or away from the center of the spiral array, whereas at high frequencies cells were trapped at electrode edges. The frequencies of transition between these characteristic cell behaviors increased with increasing suspension conductivity. Levitation heights and radial velocities were determined simultaneously for individual cells as a function of the applied field magnitude and frequency. Results were compared with theoretical predictions from generalized dielectrophoresis theory applied in conjunction with cell dielectric parameters and simulated electric field distributions corrected for electrode polarization effects. It was shown that the conventional and traveling-wave dielectrophoretic force components dominated cell levitation and radial motion, respectively. Both theoretical predictions and experimental data showed that the cell radial velocity was very sensitive to the field frequency when the in-phase component of the field-induced polarization was close to zero. Applications of spiral electrode arrays, including the isolation of cells of clinical relevance, are discussed.  相似文献   

8.

Background

The efficiency of cochlear implants (CIs) is affected by postoperative connective tissue growth around the electrode array. This tissue formation is thought to be the cause behind post-operative increases in impedance. Dexamethasone (DEX) eluting CIs may reduce fibrous tissue growth around the electrode array subsequently moderating elevations in impedance of the electrode contacts.

Methods

For this study, DEX was incorporated into the silicone of the CI electrode arrays at 1% and 10% (w/w) concentration. Electrodes prepared by the same process but without dexamethasone served as controls. All electrodes were implanted into guinea pig cochleae though the round window membrane approach. Potential additive or synergistic effects of electrical stimulation (60 minutes) were investigated by measuring impedances before and after stimulation (days 0, 7, 28, 56 and 91). Acoustically evoked auditory brainstem responses were recorded before and after CI insertion as well as on experimental days 7, 28, 56, and 91. Additionally, histology performed on epoxy embedded samples enabled measurement of the area of scala tympani occupied with fibrous tissue.

Results

In all experimental groups, the highest levels of fibrous tissue were detected in the basal region of the cochlea in vicinity to the round window niche. Both DEX concentrations, 10% and 1% (w/w), significantly reduced fibrosis around the electrode array of the CI. Following 3 months of implantation impedance levels in both DEX-eluting groups were significantly lower compared to the control group, the 10% group producing a greater effect. The same effects were observed before and after electrical stimulation.

Conclusion

To our knowledge, this is the first study to demonstrate a correlation between the extent of new tissue growth around the electrode and impedance changes after cochlear implantation. We conclude that DEX-eluting CIs are a means to reduce this tissue reaction and improve the functional benefits of the implant by attenuating electrode impedance.  相似文献   

9.
Friction and wear are detrimental to engineered systems. Ultrasonic lubrication is achieved when the interface between two sliding surfaces is vibrated at a frequency above the acoustic range (20 kHz). As a solid-state technology, ultrasonic lubrication can be used where conventional lubricants are unfeasible or undesirable. Further, ultrasonic lubrication allows for electrical modulation of the effective friction coefficient between two sliding surfaces. This property enables adaptive systems that modify their frictional state and associated dynamic response as the operating conditions change. Surface wear can also be reduced through ultrasonic lubrication. We developed a protocol to investigate the dependence of friction force reduction and wear reduction on the linear sliding velocity between ultrasonically lubricated surfaces. A pin-on-disc tribometer was built which differs from commercial units in that a piezoelectric stack is used to vibrate the pin at 22 kHz normal to the rotating disc surface. Friction and wear metrics including effective friction force, volume loss, and surface roughness are measured without and with ultrasonic vibrations at a constant pressure of 1 to 4 MPa and three different sliding velocities: 20.3, 40.6, and 87 mm/sec. An optical profilometer is utilized to characterize the wear surfaces. The effective friction force is reduced by 62% at 20.3 mm/sec. Consistently with existing theories for ultrasonic lubrication, the percent reduction in friction force diminishes with increasing speed, down to 29% friction force reduction at 87 mm/sec. Wear reduction remains essentially constant (49%) at the three speeds considered.  相似文献   

10.
Biomechanics and Modeling in Mechanobiology - Studying the insertion process of cochlear implant (CI) electrode array (EA) is important to ensure successful, sufficient, and safe implantation. A...  相似文献   

11.
We used a pin-on-disc tribometer to measure the friction coefficient of both pristine and mechanically damaged cartilage samples in the presence of different lubricant solutions. The experimental set up maximizes the lubrication mechanism due to interstitial fluid pressurization. In phosphate buffer solution (PBS), the measured friction coefficient increases with the level of damage. The main result is that when poly(ethylene oxide) (PEO) or hyaluronic acid (HA) are dissolved in PBS, or when synovial fluid (SF) is used as lubricant, the friction coefficients measured for damaged cartilage samples are only slightly larger than those obtained for pristine cartilage samples, indicating that the surface damage is in part alleviated by the presence of the various lubricants. Among the lubricants considered, 100 mg/mL of 100,000 Da MW PEO in PBS appears to be as effective as SF. We attempted to discriminate the lubrication mechanism enhanced by the various compounds. The lubricants viscosity was measured at shear rates comparable to those employed in the friction experiments, and a quartz crystal microbalance with dissipation monitoring was used to study the adsorption of PEO, HA, and SF components on collagen type II adlayers pre-formed on hydroxyapatite. Under the shear rates considered the viscosity of SF is slightly larger than that of PBS, but lower than that of lubricant formulations containing HA or PEO. Neither PEO nor HA showed strong adsorption on collagen adlayers, while evidence of adsorption was found for SF. Combined, these results suggest that synovial fluid is likely to enhance boundary lubrication. It is possible that all three formulations enhance lubrication via the interstitial fluid pressurization mechanism, maximized by the experimental set up adopted in our friction tests.  相似文献   

12.
We have developed a new, high-throughput, competition-based tagged-internal standard (TIS) assay to measure the levels of blood proteins in human serum. In this assay, target proteins in the sample serum compete with tagged-internal standard proteins for binding to an antibody array. Antibody arrays are fabricated by immobilizing a target protein-specific antibody on the carboxylate-modified latex bead surface of well-type arrays. A solution of Alexa 546-conjugated target protein is added to a sample of human serum and applied to the well-type antibody array. The array is then analyzed with a fluorescence scanner and the level of unlabeled target protein in the human sera is inferred from the amount of tagged protein bound to the array. We successfully applied this assay to measure the level of C-reactive protein (CRP) in 92 unlabeled human sera. The TIS assay was found to be specific and reproducible for the quantitative analysis of CRP. The antibody array data from the TIS assay correlate well with clinical laboratory data obtained using the commercialized latex-enhanced turbidimetry immunoassay (n=3, r=0.967, CV=0.32%). Thus, the antibody array-based TIS assay system is high-throughput, quantitative, and label-free and may be useful in the rapid serodiagnosis of human disease.  相似文献   

13.
重聋螺旋神经元分布和非等距极阵的研究   总被引:2,自引:0,他引:2  
本实验定量研究螺旋神经元耳毒性变性消失后分布的现象,供人工耳蜗极阵设计用。耳蜗光镜神经元计数结果显示:神经元存活数指向蜗顶的非线性增长,电极排列应作相应得非等矩排列。临床人工耳蜗植入验证语音辨别力提高65%。  相似文献   

14.
Human salivary statherin was purified from parotid saliva and adsorbed to bare hydrophilic (HP) mica and STAI-coated hydrophobic (HB) mica in a series of Surface Force Balance experiments that measured the normal (F(n)) and friction forces (F(s)*) between statherin-coated mica substrata. Readings were taken both in the presence of statherin solution (HP and HB mica) and after rinsing (HP mica). F(n) measurements showed, for both substrata, monotonic steric repulsion that set on at a surface separation D ~20 nm, indicating an adsorbed layer whose unperturbed thickness was ca 10 nm. An additional longer-ranged repulsion, probably of electrostatic double-layer origin, was observed for rinsed surfaces under pure water. Under applied pressures of ~1 MPa, each surface layer was compressed to a thickness of ca 2 nm on both types of substratum, comparable with earlier estimates of the size of the statherin molecule. Friction measurements, in contrast with F(n) observations, were markedly different on the two different substrata: friction coefficients, μ ≡ ?F(s)*/?F(n), on the HB substratum (μ ≈ 0.88) were almost an order of magnitude higher than on the HP substratum (μ ≈ 0.09 and 0.12 for unrinsed and rinsed, respectively), and on the HB mica there was a lower dependence of friction on sliding speed than on the HP mica. The observations were attributed to statherin adsorbing to the mica in multimer aggregates, with internal re-arrangement of the protein molecules within the aggregate dependent on the substratum to which the aggregate adsorbed. This internal re-arrangement permitted aggregates to be of similar size on HP and HB mica but to have different internal molecular orientations, thus exposing different moieties to the solution in each case and accounting for the very different friction behaviour.  相似文献   

15.
Implantable electrode arrays are widely used in therapeutic stimulation of the nervous system (e.g. cochlear, retinal, and cortical implants). Currently, most neural prostheses use serial stimulation (i.e. one electrode at a time) despite this severely limiting the repertoire of stimuli that can be applied. Methods to reliably predict the outcome of multi-electrode stimulation have not been available. Here, we demonstrate that a linear-nonlinear model accurately predicts neural responses to arbitrary patterns of stimulation using in vitro recordings from single retinal ganglion cells (RGCs) stimulated with a subretinal multi-electrode array. In the model, the stimulus is projected onto a low-dimensional subspace and then undergoes a nonlinear transformation to produce an estimate of spiking probability. The low-dimensional subspace is estimated using principal components analysis, which gives the neuron’s electrical receptive field (ERF), i.e. the electrodes to which the neuron is most sensitive. Our model suggests that stimulation proportional to the ERF yields a higher efficacy given a fixed amount of power when compared to equal amplitude stimulation on up to three electrodes. We find that the model captures the responses of all the cells recorded in the study, suggesting that it will generalize to most cell types in the retina. The model is computationally efficient to evaluate and, therefore, appropriate for future real-time applications including stimulation strategies that make use of recorded neural activity to improve the stimulation strategy.  相似文献   

16.
In situ friction measurement on murine cartilage by atomic force microscopy   总被引:2,自引:1,他引:1  
Articular cartilage provides a low-friction, wear-resistant surface for the motion of diarthrodial joints. The objective of this study was to develop a method for in situ friction measurement of murine cartilage using a colloidal probe attached to the cantilever of an atomic force microscope. Sliding friction was measured between a chemically functionalized microsphere and the cartilage of the murine femoral head. Friction was measured at normal loads ranging incrementally from 20 to 100 nN with a sliding speed of 40 microm/s and sliding distance of 64 microm. Under these test conditions, hydrostatic pressurization and biphasic load support in the cartilage were minimized, providing frictional measurements that predominantly reflect boundary lubrication properties. Friction coefficients measured on murine tissue (0.25+/-0.11) were similar to those measured on porcine tissue (0.23+/-0.09) and were in general agreement with measurements of boundary friction on cartilage by other researchers. Using the colloidal probe as an indenter, the elastic mechanical properties and surface roughness were measured in the same configuration. Interfacial shear was found to be the principal mechanism of friction generation, with little to no friction resulting from plowing forces, collision forces, or energy losses due to normal deformation. This measurement technique can be applied to future studies of cartilage friction and mechanical properties on genetically altered mice or other small animals.  相似文献   

17.
Triboelectric nanogenerator (TENG) is an emerging approach for harvesting energy from the living environment. But its performance is limited by the maximum density of surface charges created by contact electrification. Here, by rationally designing a synchronous rotation structure, a charge pumping strategy is realized for the first time in a rotary sliding TENGs, which is demonstrated to enhance the charge density by a factor of 9, setting up a record for rotary TENGs. The average power is boosted by more than 15 times compared with normal TENGs, achieving an ultrahigh average power density of 1.66 kW m?3, under a low drive frequency of 2 Hz. Moreover, the charge pumping mechanism enables decoupling of bound charge generation and the severity of interfacial friction in the main TENG, allowing surface lubricants to be applied for suppressing abrasion and lowering heat generation. The adaptability of the strategy to rotation and sliding type TENGs in low‐frequency agitations provides a breakthrough to the bottleneck of power output for mechanical energy harvesting, and should have a great impact on high‐power TENG design and practical applications in various fields.  相似文献   

18.
A serological chemiluminescent biochip was designed based on screen-printed electrode arrays composed of nine 1-mm(2) electrodes. Arrays were shown to be produced with good batch-to-batch reproducibility (standard deviations of 4.4 and 12.0% for ferricyanide oxidation potential and current, respectively) and very good reproducibility within a particular array (2.0 and 7.5% standard deviations for the same controls). Electrode arrays were used to electroaddress various bioconjugate structures comprising a recombinant HIV-1 P24 capsid protein (RH24K) in polypyrrole film. Entrapment of RH24K preimmobilized onto maleic anhydride-alt-methyl vinyl ether copolymer was shown to be the more efficient immobilization procedure. This addressed sensing layer enabled the detection of anti-P24 antibodies at a concentration of 3.5 ng/ml through peroxidase-labeled anti-human immunoglobulin G reaction. The biochip was used to perform an HIV-1 serological test in human sera. HIV-1 seropositive and seronegative sera were easily discriminated using serum dilutions greater than 1/10,000.  相似文献   

19.
Isoelectric focusing (IEF) was successuflly performed in capillary arrays with up to four capillaries. Separated proteins in the capillary array were detected by an UV absorption imaging detector. The whole analysis time for all samples in the capillary array was only 3 min due to the real-time imaging detector. The instrument was applied to analyse several protein samples including different human hemoglobin variants, myoglobin, transferrin, carbonic anhydrase and a monoclonal antibody to fluorescein. Because of good reproducibility of the focused pattern, unknown samples can be run simultaneously with a standard in the multichannel instrument and the components of unknown samples can be identified by comparing their zone positions to those of the standard. Minor components can be determined by the instrument in the presence of major components with 100 times higher concentrations in human hemoglobin samples. This instrument could be a powerful analytical tool for clinical analysis and for quality control in pharmaceutical companies.  相似文献   

20.
The linear electrode array: a useful tool with many applications.   总被引:4,自引:0,他引:4  
In this review we describe the basic principles of operation of linear electrode arrays for the detection of surface EMG signals, together with their most relevant current applications. A linear array of electrodes is a system which detects surface EMG signals in a number of points located along a line. A spatial filter is usually placed in each point for signal detection, so that the recording of EMG signals with linear arrays corresponds to the sampling in one spatial direction of a spatially filtered version of the potential distribution over the skin. Linear arrays provide indications on motor unit (MU) anatomical properties, such as the locations of the innervation zones and tendons, and the fiber length. Such systems allow the investigation of the properties of the volume conductor and its effect on surface detected signals. Moreover, linear arrays allow to estimate muscle fiber conduction velocity with a very low standard deviation of estimation (of the order of 0.1-0.2 m/s), thus providing reliable indications on muscle fiber membrane properties and their changes in time (for example with fatigue or during treatment). Conduction velocity can be estimated from a signal epoch (global estimate) or at the single MU level. In the latter case, MU action potentials are identified from the interference EMG signals and conduction velocity is estimated for each detected potential. In this way it is possible, in certain conditions, to investigate single MU control and conduction properties with a completely non-invasive approach. Linear arrays provide valuable information on the neuromuscular system properties and appear to be promising tools for applied studies and clinical research.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号