首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Run training can increase the mass of soleus muscle grafts, yet values remain lower than nongrafted muscle even with continued training. Thus we tested the hypothesis that nerve-implant soleus grafts of rats previously run trained would be refractory to the hypertrophic stimulus of ablation of synergistic muscle. We also compared the magnitude of growth of the nerve-implant soleus graft after ablation with that reported by others for the nerve-intact soleus graft. We studied eight groups that differed relative to the combination and order of treatments (running and ablation of synergistic muscle) and the graft age at the time of the ablation operation and study. Graft mass, protein concentration, and histochemical fiber composition were measured. Compared with grafts from cage-sedentary rats, the mass and protein content of the nerve-implant soleus grafts were higher (16-63%) at all times after ablation. When the ablation operation was performed at 56 days postgrafting, there was a 33% increase in protein content of the soleus graft by 84 days for cage-sedentary animals. This increase was twofold greater (P less than or equal to 0.02) than the 15% increase that followed ablation for the grafts from the animals that had been run trained before the ablation operation. Four weeks of run training before the ablation operation impaired the adaptive response of muscle grafts to the ablation of synergistic muscles, which may reflect alterations in motor unit recruitment and/or satellite cell activity. Ablation of synergistic muscles resulted in an absolute growth of the nerve-implant soleus grafts that was comparable with that reported for nerve-intact soleus grafts.  相似文献   

2.
MRC OX35, an anti-CD4 mAb, was used to treat high responder Wistar Furth (W/F) (RT1u) and low responder DA (RT1a) rats which had been grafted with directly vascularized hearts from PVG (RT1c) rats across a full MHC plus non-MHC incompatibility. Four doses of mAb at 7 mg/kg given in the first 2 wk postgrafting induced indefinite graft survival (greater than 150 days) in DA hosts, but only delayed rejection to 18 to 42 days in W/F as compared to rejection times of 6 to 8 days in untreated rats. The extension of MRC OX35 treatment to 6 wk in W/F rats induced indefinite graft survival in three of six rats. During treatment MRC OX35 therapy only partially depleted CD4+ cells, and all circulating CD4+ cells were coated with MRC OX35. The capacity of naive CD4+ and CD8+ cells from W/F and DA to be activated to PVG alloantigen was compared both in vitro in an MLC assay and in vivo by an adoptive transfer assay of their capacity to restore rejection of PVG heart grafts in irradiated syngeneic hosts. CD4+ cells from both W/F and DA proliferated in MLC and restored graft rejection. W/F CD8+ cells both proliferated in MLC and restored rejection, but DA CD8+ cells neither proliferated nor reconstituted rejection. Examination of lymphocytes from MRC OX35 treated hosts with long-surviving grafts showed that they were neither depleted of CD4+ T cells nor did they lack the capacity to proliferate to PVG Ag in MLC, this response being similar to that to third-party Ag or by naive lymphocytes. Compared to first-set rejection, PVG skin graft rejection was delayed 2 to 3 days in W/F and 10 to 12 days in DA rats with long-surviving grafts after MRC OX35 therapy, whereas they rejected third-party skin grafts in first-set tempo. These studies show that differences in graft survival in anti-CD4 treated low and high responder strains may be due to the inherent capacity of CD8+ cells to be activated to effect rejection independent of CD4+ cells in W/F but not in DA. In those hosts that accept grafts, there is no evidence of clonal deletion, but there appears to be a form of unresponsiveness akin to that induced in adult rats by other immunosuppressive therapies that protects the graft from rejection.  相似文献   

3.
We hypothesized that the mass and maximum tetanic tension (Po) of nerve-intact grafts overloaded by ablation of synergistic muscles would be greater than that of standard nerve-intact grafts or of control soleus muscles. Soleus muscles were grafted orthotopically and bilaterally in 35 female rats. Control soleus muscles were obtained from 30 age-matched cohorts. Twenty-eight days following grafting, gastrocnemius muscles were ablated bilaterally in half of the animals. Comparisons were made between 28 and 112 days following grafting. By 112 days the wet mass of the overload nerve-intact grafts was 138% of the standard grafts and 152% of the control soleus muscles, whereas the Po was 161% and 107%, respectively. Specific tension stabilized at approximately 19 +/- 1 N/cm2 for both types of grafts, significantly lower than the value of 24 +/- 1 N/cm2 for control soleus muscles. Ablation of synergistic muscles resulted in a significant and sustained increase in mass and Po in regenerating skeletal muscle autografts. We conclude that provided the appropriate conditioning stimulus small grafts (100-200 mg) are capable of achieving the values for the mass and Po of control muscles.  相似文献   

4.
Accelerated intimal hyperplasia in response to altered flow environment is critical to the process of vein bypass graft failure. Lack of a reproducible animal model for dissecting the mechanisms of vein graft (VG) remodeling has limited progress toward solving this clinically significant problem. Combining a cuffed anastomotic technique with other surgical manipulations, we developed a well-defined, more robust method for studying hemodynamic factors in VG arterialization. VG with fistula placement, complete occlusion, or partial distal branch ligation (DBL) was performed in the carotid artery of 56 rabbits. Extensive hemodynamic and physiological analyses were performed to define the hemodynamic forces and histological adaptations of the wall at 1-28 days. Anastomotic time averaged 12 min, with 100% patency of bilateral grafts and unilateral grafts plus no adjunct or delayed fistula. Bilateral VG-DBL resulted in an immediate disparity in wall shear (0.8 +/- 0.1 vs. 12.4 +/- 1.1 dyn/cm2, ligated vs. contralateral graft). Grafts exposed to low shear stress responded primarily through enhanced intimal thickening (231 +/- 35 vs. 36 +/- 18 microm, low vs. high shear). High-shear-stress grafts adapted through enhanced outward remodeling, with a 24% increase in lumen diameter at 28 days (3.0 +/- 0.1 vs. 3.7 +/- 0.2 mm, low vs. high shear). We have taken advantage of the cuffed anastomotic technique and combined it with a bilateral VG-DBL model to dissect the impact of hemodynamic forces on VG arterialization. This novel model offers a robust, clinically relevant, statistically powerful small animal model for evaluation of high- and low-shear-regulated VG remodeling.  相似文献   

5.
The capacity of the mammalian brain to support the physiological function of allografts was assessed in parathyroidectomized Fischer strain rats bearing either isografts or immunogenic DA allografts of parathyroid glands implanted in their cerebral cortices. Established isografts and allografts survived indefinitely in the brain, maintaining normal serum calcium levels, with equal numbers of spontaneous failures (18-21%) in each group. Similarly, both MHC-compatible and incompatible skin allografts survived and were 'functional' at 40-50 days postgrafting as assessed by: continued formation of keratin; the presence of differentiated hair follicles and sebaceous glands; and frequent mitotic figures. No serum alloantibodies were induced by either MHC-incompatible parathyroid glands or skin in this site. However, both types of allografts were promptly rejected or failed to become established in the brains of specifically presensitized hosts. Furthermore, when Fischer hosts with long-established intracerebral DA parathyroid grafts received orthotopic DA skin grafts, their parathyroid grafts were rejected along with first-set rejection of the skin grafts. The tempo of this cellular immune response and the primary alloantibody response that accompanied it indicate that although the intracerebral grafts failed to induce detectable host sensitization or suppression, they remained susceptible to immune effectors. Thus, by using strongly immunogenic, adult tissues, we have established that the rat cerebral cortex is an immunologically privileged site, and the privilege is not dependent on lack of graft immunogenicity or alterations in host responsiveness. Furthermore, Ia+ (possible antigen-presenting) cells were rare in the cortical parenchyma sites used for transplantation though numerous in the choroid plexus of the ventricles and in certain areas of white matter. Therefore, privilege probably reflects deficient graft antigen presentation related to the paucity of Ia+ cells as well as to the brain's poor lymphatic drainage.  相似文献   

6.
Systemic ghrelin sensitizes cocaine-induced hyperlocomotion in rats   总被引:1,自引:0,他引:1  
The feeding-relevant pathway by which food restriction (FR) augments cocaine action is unknown. Systemic administration of the 28-amino acid acylated peptide ghrelin (1-10 nmol) increases food intake in rats and circulating levels of rat ghrelin are up-regulated by FR. The present experiment examined the impact of repeated administration of ghrelin or vehicle on the subsequent capacity of cocaine to enhance locomotion in rats. Male Sprague-Dawley rats were pretreated daily for seven days with 0, 5 or 10 nmol rat ghrelin (i.p.) in the home cage. On the 8th day, rats were transported to a testing room, placed in a locomotion chamber for 15 min, and then injected (i.p.) with 0, 7.5, or 15 mg/kg cocaine hydrochloride. Locomotor activity was monitored over a 45 min post-cocaine period. Pretreatment with 5 or 10 nmol ghrelin alone did not significantly increase basal locomotion relative to that of the 0 nmol ghrelin group. Rats pretreated with 5 nmol or 10 nmol ghrelin showed an enhanced locomotor response after treatment with 15 mg/kg cocaine relative to rats treated with 0 nmol ghrelin. These results indicate that acute injection of ghrelin, at a feeding-relevant dose, can augment the acute effects of cocaine on locomotion in rats.  相似文献   

7.
Animal studies suggest that bone remodeling is under beta-adrenergic control via the sympathetic nervous system. To our knowledge, the impact of beta-agonist substances, at doping doses, has not been studied in adult rats. The purpose of this study was to examine the effects of salbutamol injections with or without treadmill exercise on trabecular and cortical bone in adult rats. Adult (36 wk of age) female Wistar rats (n = 56) were treated with salbutamol (3 mg.kg(-1).day(-1) sc, 5 days/wk) or vehicle (sham) with or without subsequent treadmill exercise (13 m/min, 60 min/day, 5 days/wk) for 10 wk. Tibial and femoral bone mineral density was analyzed by dual-energy X-ray absorptiometry. Metaphysic trabecular bone structure was analyzed by micro-CT at the time of the animals' death. Bone cell activities were assessed histomorphometrically. After 10 wk, the increase in bone mineral density was less in salbutamol-treated than in sham rats (+3.3% vs. +12.4%, P < 0.05), and trabecular parameters were altered and bone resorption was increased in salbutamol-treated rats compared with controls. The negative effect on bone architecture in salbutamol-treated rats persisted, even with treadmill exercise. These results confirm the deleterious effect of beta(2)-agonists on bone mass during chronic treatment and describe its effects on bone mechanical properties in adult rats. Bone loss occurred independently of a salbutamol-induced anabolic effect on muscle mass and was equally severe in sedentary and exercising rats, despite a beneficial effect of exercise on the extrinsic and intrinsic energy to ultimate strain. These bone effects may have important consequences in athletes who use salbutamol as a doping substance.  相似文献   

8.
The spleen and thymus have been studied macro- and microscopically in rats (180-200 g body mass) on the 1st, 3d, 5th, 7th, 14th and 28th days of adaptation to a decreased atmospheric pressure in the altitude chamber corresponding to lifting to 5,000 and 7,500 m (after a preliminary gradual acclimatization) and on the 14th, 28th, 42d, 56th days of readaptation. A relative mass of the organs, the white pulp section area--the transversal section area of the spleen ratio, the summation section area of its lymph nodules have been estimated. In the thymus the cortico-medullary index (CMI) has been defined. A relative mass of the spleen increases during the first week of hypoxia, and during adaptation period it somewhat decreases and stabilizes, remaining higher than in the control. At the altitude of 5,000 m the cross section area of the lymph nodules decreases by 17% on the 28th adaptation day and at the altitude of 7,500 m--by 27% beginning from the 14th up to the 28th adaptation days. In the thymus the CMI, after some decrease during the first days of hypoxia at the altitude of 5,000 m, increases and normalizes on the 28th adaptation day, and at the altitude of 7,500 m stabilizes on the 14th - 28th days of hypoxia. When the rats are at the altitudes of 5,000 and 7,500 m the thymus lymphoid tissue reacts more quickly to the hypoxia effect and much sooner normalizes during the readaptation period than does the white pulp of the spleen. The main changes in the lymphoid tissue of the spleen and thymus take place on the 7th - 28th days of hypoxia.  相似文献   

9.
BACKGROUND: We studied the outcome of individuals with aplastic anemia conditioned with a radiation-containing regimen followed by an infusion of stem cell grafts that had been depleted of lymphocytes with CAMPATH-1H (antiCD52; humanised). METHODS: The conditioning regime consisted of fractionated (f) TBI 8 Gy followed by f total nodal irradiation (TNI) 6 Gy. In addition, patients received CY 60 mg/kg on 2 consecutive days. Cytokine-mobilized peripheral blood grafts from HLA-identical siblings were T-cell depleted with CAMPATH-1H 'in the bag'. CsA was commenced on day -1 and continued until day +90. RESULTS: Seventeen heavily transfused patients with aplastic anemia, median age 18 years (range 14-56 years), were studied. The median time from diagnosis to transplantation was 172 days (range 34-443 days). The median CD34(+) cell number infused was 3.47 x 10(6)/kg (range 1.03-18.4 x 10(6)/kg). All patients engrafted. Recovery was fast and patients reached 0.5 x 10(9)/L polymorphs by median day 11 (range 9-17 days). Toxicity from the conditioning included grade 4 hematologic toxicity in all patients. Another major toxicity was gastrointestinal mucosal damage, which exceeded grade 2 in two instances. One patient developed thrombotic thrombocytopenic purpura, which responded to substitution of CsA with tacrolimus and plasmapheresis. Another patient, who had normal blood counts, died of infection on day 241. Chimerism studies at 6 months post-transplantation confirmed the donor origin of hematopoiesis in all seven patients tested. None of the patients developed acute or chronic GvHD. There was no delayed graft failure and 94% of patients had survived disease free at a median of 1303.5 days (range 216-2615 days) from graft infusion. DISCUSSION: In this cohort of multiply transfused patients, the radiation-containing schedules described in this study led to universal engraftment with limited toxicity despite T-cell depletion. No patient developed GvHD or late graft failure. Lower doses of radiation-containing conditioning should be explored further.  相似文献   

10.
The present investigation was undertaken to study the relationship between acetylcholine receptor (AchR) clustering and endplate formation within regenerating skeletal muscle grafts. Silver staining of nerves was combined with rhodamine-alpha-bungarotoxin labeling of AchR clusters in heterotopic grafts of the rat soleus muscle. Two major graft procedures were used: whole muscle grafts and grafts which lacked the zone of original motor endplates (MEP-less grafts). These categories were subdivided into standard grafts, where subsequent innervation was allowed, and noninnervated grafts, which were experimentally deprived of innervation. Grafting brought about the death and removal of muscle fibers, followed by regeneration of myotubes within surviving basal lamina sheaths. A transient population of small extra-junctional AchR clusters spontaneously appears shortly after myotube formation in all four muscle graft types. Early myotubes of whole muscle grafts (both innervated and standard grafts, prior to the time of innervation) also develop presumptive secondary synaptic clefts and large, organized aggregations of AchRs at original synaptic sites. At later times, nerves regenerating into standard whole muscle and MEP-less grafts lead to the formation of numerous ectopic endplates. In whole muscle grafts, endplates may also form at original synaptic sites. Functional graft innervation is achieved in whole muscle and MEP-less grafts as early as 20 days postgrafting. The results of this study support the existence of still-unknown factors associated with the original synaptic site which can direct postsynaptic differentiation independent of innervation. They also demonstrate that functional endplates may form in mammalian muscle grafts at both original synaptic sites and ectopic locations, thus indicating that the zone of original synaptic sites is not necessary for the establishment of numerous functional and morphologically well-differentiated endplates.  相似文献   

11.
Dispersed canine pancreatic grafts were cryopreserved and the in vivo function was studied following intrasplenic autotransplantation. Four protocols were employed, examining the effects of cooling and thawing rates and cryoprotectant (dimethylsulfoxide) concentration on graft survival. The degree of graft injury by each protocol was assessed by examining the requirement for exogenous insulin following transplantation. Cooling at 5 degrees C/min and thawing at 80 degrees C/min allowed three successful grafts from seven when thawed at 80 degrees C/min using 1.4 or 2 M Me2SO but only one success from eight when thawed at 8 degrees C/min. Of the seven experiments where successful preservation was achieved graft injury was estimated as less than 50% in four but for three it was probably greater than 50%. Each protocol exhibited considerable variability of islet survival. When sufficient islet mass was transplanted to restore fasting euglycaemia, graft function, as assessed by glucose-stimulated insulin release and intravenous glucose disposal, was identical to fresh grafts. Successful graft implantation, however, does not guarantee indefinite survival as six of seven grafts in this study became exhausted within 13 months of implantation.  相似文献   

12.
Angiogenesis and reperfusion of blood vessels were analysed qualitatively, at the light- and electron-microscopical levels, in solid pineal autografts placed intracerebrally in adult rats (post-transplantation survival times: 1, 3, 7, 10, 14 and 28 days). Reperfusion of blood vessels was studied in sections from immersion-fixed brains incubated to demonstrate the endogenous peroxidase activity of erythrocytes within the lumen of blood vessels. The possible presence of the blood-brain barrier (BBB) within the grafts was also investigated by injecting native horseradish peroxidase (HRP) intravenously into the rats. Angiogenesis, the morphological and functional properties of blood vessels vascularizing the grafts and the survival of pineal tissue were analysed ultrastructurally following transplantation. Revascularization of pineal autografts placed into the adult host central nervous system occurred very slowly, requiring 7–10 days to establish anastomoses between graft and host blood vessels. During this process, signs of angiogenesis in pineal and cerebral capillaries were evident, suggesting that both contributed to graft revascularization. Morphological and functional studies with HRP revealed that, following transplantation, blood vessels at the graft-host interface or within pineal autografts maintained their morphological and functional properties: they were fenestrated and did not present a BBB to blood-borne peroxidase. Thus, after grafting, the presence or absence of the BBB is graft-determined. Revascularized pineal tissue showed good survival and pinealocytes revealed structural features of active secretory cells.  相似文献   

13.
14.
Taste-aversion (TA) learning was measured to determine whether exposure to high-voltage direct current (HVdc) static electric fields can produce TA learning in male Long Evans rats. Fifty-six rats were randomly distributed into four groups of 14 rats each. All rats were placed on a 20 min/day drinking schedule for 12 consecutive days prior to receiving five conditioning trials. During the conditioning trials, access to 0.1 % sodium saccharin-flavored water was given for 20 min, followed 30 min later by one of four treatments. Two groups of 14 rats each were individually exposed to static electric fields and air ions, one group to +75 kV/m (+2 × 105 air ions/cm3) and the other group to ?75 kV/m (-2 × 105 air ions/cm3). Two other groups of 14 rats each served as sham-exposed controls, with the following variation in one of the sham-exposed groups: This group was subdivided into two subsets of seven rats each, so that a positive control group could be included to validate the experimental design. The positive control group (n = 7) was injected with cyclophosphamide 25 mg/kg, i.p., 30 min after access to saccharin-flavored water on conditioning days, whereas the other subset of seven rats was similarly injected with an equivalent volume of saline. Access to saccharin-flavored water on conditioning days was followed by the treatments described above and was alternated daily with water “recovery” sessions in which the rats received access to water for 20 min in the home cage without further treatment. Following the last water-recovery session, a 20 min, two-bottle preference test (between water and saccharin-flavored water) was administered to each group. The positive control group did show TA learning, thus validating the experimental protocol. No saccharin-flavored water was consumed in the two-bottle preference test by the cyclophosphamide-injected, sham-exposed group compared to 74% consumed by the saline-injected sham-exposed controls (P <.0001). Saccharin-preference data for the static field-exposed groups showed no TA learning compared to data for sham-exposed controls. In summary, exposure to intense static electric fields and air ions did not produce TA learning as assessed by this particular design. © 1995 Wiley-Liss, Inc.  相似文献   

15.
BACKGROUND: Cryopreservation is a valuable technique for storing heart valve and vascular allografts. However, the biological ramifications of cryopreservation are still unclear; therefore, using animal experiments we assessed how 'cryopreservation' influences graft allogenicity and cell viability. METHODS: Thoracic aortas of Lewis rats were prepared as fresh (F) or cryopreserved (CP) grafts, and implanted into the infrarenal aorta of Lewis or Brown Norway rats (BNs). The grafts and spleens were harvested at post-operative day 7 and 28 (POD7, POD28) for analyses. RESULTS: First, the systemic immune response to transplantation was estimated by mixed lymphocyte reaction analyses using spleen cells from na?ve or recipient BNs. The alloreactivity of the recipients increased to 1.5 times that of the na?ve BNs at POD7 and POD28, when stimulated by mitomycin C-treated Lewis spleen cells. Second, local immune response was estimated by TNFalpha, IFNgamma, and iNOS mRNA expression in the grafts by quantitative PCR, which revealed 20- to 40-fold increases at POD28 after allotransplantation. Third, endothelial cell viability was estimated by endothelial NOS mRNA expression level: it was similar and highest in F and CP grafts before transplantation then significantly decreased after both syngeneic and allogeneic transplantation. Finally, intimal hyperplasia, expressed by I/M ratio, developed over time after allotransplantation, reaching 2.5 times the thickness of F grafts before transplantation. The results of these experiments revealed no difference between F and CP grafts before and after transplantation. CONCLUSION: Cryopreservation did not modify the allogenicity of vascular allografts and had minimal adverse impacts on graft cell viability.  相似文献   

16.
Augmentation of cocaine hyperactivity in rats by systemic ghrelin   总被引:1,自引:0,他引:1  
The feeding-relevant pathway by which food deprivation (FD) augments cocaine action is unknown. Systemic administration of the 28 amino acid acylated peptide ghrelin (1-10 nmol) increases food intake in rats and circulating levels of rat ghrelin are up-regulated by FD. The present experiment examined the impact of ghrelin or vehicle pretreatment on the locomotion and stereotypy induced by systemic cocaine hydrochloride. Male Sprague-Dawley rats were pretreated at -60 min with 0 or 5 nmol rat ghrelin (IP) and then injected (IP) at time 0 with 0, 2.5, 5.0, or 10.0 mg/kg cocaine. Locomotor activity was monitored over a 45-min post-cocaine period. Rats received the same ghrelin dose, but a different cocaine dose (in random order) on each of the four drug trials, with each drug trial separated by at least 2 days. Administration of 5 nmol ghrelin-0 mg/kg cocaine slightly increased locomotion relative to that of 0 nmol ghrelin-0 mg/kg cocaine. Cocaine increased locomotion as a function of dose in the 0 nmol ghrelin group, but the effect of cocaine was even greater when preceded by 5 nmol ghrelin. These results indicate that acute injection of ghrelin, at a feeding-relevant dose, augments the acute effects of cocaine on locomotion in rats.  相似文献   

17.
Our previous studies revealed that predegenerated peripheral nerve grafts facilitated neurite outgrowth from the injured hippocampus and that this effect was particularly distinct when 7-, 28-, and 35-days predegenerated nerve grafts were used. It is recently known that a totally transected peripheral nerve exhibits biphasic neurite-promoting activity. The early phase lasts 7 days. The aim of the present study was to find whether short-time predegenerated (1-6 days) peripheral nerve grafts exert any neurotrophic effect and when this influence is maximal. Experiments were carried out on adult male Wistar rats. Sciatic nerves were totally transected and following 1, 2, 3, 4, 5 and 6 days their distal stumps were implanted into the hippocampus. Control animals were treated with non-predegenerated sciatic nerve grafts. In all groups FITC-HRP was injected into the free end of graft six weeks following surgery. Special histochemic technique showed AChE-positive fibres inside the grafts of all examined groups. Fluorescence microscopic examination revealed the labeled cells in all examined groups, however their number was different in each group, depending on the predegeneration stage. They were most numerous at the fourth day of predegeneration.  相似文献   

18.
The aim of this study was to ascertain the effects of training at altitude (1750 m. PB = 630mmHg) and at sea level (10m, PB = 760mmHg) as well as that of a period of adaptation of originally sea level-trained rats at altitude on endurance capacity. The average run time to exhaustion was 185.3 +/- 3.7 min for rats trained at altitude in comparison with 150.0 +/- 10.3 min for sea level-trained rats. After 14 days of adaptation at altitude, no significant difference in running time to exhaustion between rats trained at altitude (189.0 +/- 16.4 min) and those trained at sea level (177.2 +/- 11.6 min) was apparent. The improved endurance capacity of rats trained at altitude (when tested at altitude) is probably attributable to an increased respiratory capacity as is evident from the significantly increased levels of the citric acid cycle marker enzyme, citrate synthase (citrate oxaloacetate-lyase, EC 4.1.3.7) in the liver and gastrocnemius muscle of rats trained at altitude as compared to those trained at sea level.  相似文献   

19.
Since little is known about the training response to exercise in neonatal animals, this study was undertaken to elucidate the potential of oxidative system adaptations in developing skeletal muscle of rats during 50 days of daily treadmill running. The training regimen involved male and female rats (10 days old) initially running 0.1 mph, 0% grade, for 15 min. The program progressed to 1 mph, 25% grade, for 60 min by 50 days of age. At 25 days of age, pyruvate and palmitate oxidative capacity, and citrate synthase activity in red vastus muscle homogenates were elevated in the trained group (T) compared with age- and sex-matched controls (C). These increases were also observed for each subsequent time point tested and occurred in spite of the fact that the peak oxidative capacity of neonatal red vastus muscle was 46% greater than adult values. Further, trained animals tested at 45 days of age responded with a 12% increase in maximal oxygen consumption (Vo2max) compared with controls (P less than 0.05). Assays of muscle phosphofructokinase and of creatine phosphokinase activity conducted at this time point revealed no difference between T and C groups. Collectively, these data suggest that neonatal rats can be successfully trained and that they respond to an endurance-type program qualitatively similarly to adult rats.  相似文献   

20.
Outbred rats (n = 60) were trained to count 20-s intervals (by the technique developed by J. Bures) with drinking reinforcement. The animals were divided in three groups, which were subjected to conditioning from 7.00 to 9.00 a.m, from 1.00 to 3.00 p.m., and from 8.00 to 10.00 p.m, respectively. Conditioning was most efficient in the morning and least efficient in the day-time. Thus, the better capability of rats for time perception and conditioning on the basis of time perception in transitional phases of a day (from light to darkness and on the contrary) is in agreement with circadian rhythm of locomotion of these nocturnal animals.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号