首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
It has previously been shown that the murine coronavirus mouse hepatitis virus (MHV) undergoes RNA recombination at a relatively high frequency in both tissue culture and infected animals. Thus far, all of the recombination sites had been localized at the 5' half of the RNA genome. We have now performed a cross between MHV-2, a fusion-negative murine coronavirus, and a temperature-sensitive mutant of the A59 strain of MHV, which is fusion positive at the permissive temperature. By selecting fusion-positive viruses at the nonpermissive temperature, we isolated several recombinants containing multiple crossovers in a single genome. Some of the recombinants became fusion negative during the plaque purification. The fusion ability of the recombinants parallels the presence or absence of the A59 genomic sequences encoding peplomers. Several of the recombinants have crossovers within 3' end genes which encode viral structural proteins, N and E1. These recombination sites were not specifically selected with the selection markers used. This finding, together with results of previous recombination studies, indicates that RNA recombination can occur almost anywhere from the 5' end to the 3' end along the entire genome. The data also show that the replacement of A59 genetic sequences at the 5' end of gene C, which encodes the peplomer protein, with the fusion-negative MHV-2 sequences do not affect the fusion ability of the recombinant viruses. Thus, the crucial determinant for the fusion-inducing capability appears to reside in the more carboxyl portion of the peplomer protein.  相似文献   

2.
Current models of recombination between viral RNAs are based on replicative template-switch mechanisms. The existence of nonreplicative RNA recombination in poliovirus is demonstrated in the present study by the rescue of viable viruses after cotransfections with different pairs of genomic RNA fragments with suppressed translatable and replicating capacities. Approximately 100 distinct recombinant genomes have been identified. The majority of crossovers occurred between nonhomologous segments of the partners and might have resulted from transesterification reactions, not necessarily involving an enzymatic activity. Some of the crossover loci are clustered. The origin of some of these "hot spots" could be explained by invoking structures similar to known ribozymes. A significant proportion of recombinant RNAs contained the entire 5' partner, if its 3' end was oxidized or phosphorylated prior to being mixed with the 3' partner. All of these observations are consistent with a mechanism that involves intermediary formation of the 2',3'-cyclic phosphate and 5'-hydroxyl termini. It is proposed that nonreplicative RNA recombination may contribute to evolutionarily significant RNA rearrangements.  相似文献   

3.
High-frequency RNA recombination of murine coronaviruses.   总被引:43,自引:31,他引:12       下载免费PDF全文
The RNA genome of coronaviruses consists of a single species of nonsegmented RNA. In this communication, we demonstrate that the RNA genomes of different strains of murine coronaviruses recombine during mixed infection at a very high frequency. Susceptible cells were coinfected with a temperature-sensitive mutant of one strain of mouse hepatitis virus (MHV) and a wild-type virus of a different strain. Of 21 randomly isolated viruses released from the coinfected cells at the nonpermissive temperature, 2 were recombinants which differed in the site of recombination. After three serial passages of the original virus pool derived from the mixed infection, the majority of the progeny viruses were recombinants. These recombinant viruses represented at least five different recombination sites between the two parental MHV strains. Such a high-frequency recombination between nonsegmented RNA genomes of MHV suggests that segmented RNA intermediates might be generated during MHV replication. We propose that the RNA replication of MHV proceeds in a discontinuous and nonprocessive manner, thus generating free segmented RNA intermediates, which could be used in RNA recombination via a copy-choice mechanism.  相似文献   

4.
Effect of gamma radiation on retroviral recombination.   总被引:2,自引:0,他引:2       下载免费PDF全文
W S Hu  H M Temin 《Journal of virology》1992,66(7):4457-4463
To elucidate the mechanism(s) of retroviral recombination, we exposed virions to gamma radiation prior to infecting target cells. By using previously described spleen necrosis virus-based vectors containing multiple markers, recombinant proviruses were studied after a single round of retrovirus replication. The current models of retroviral recombination predict that breaking virion RNA should promote minus-strand recombination (forced copy-choice model), decrease or not affect plus-strand recombination (strand displacement/assimilation model), and shift plus-strand recombination towards the 3' end of the genome. However, we found that while gamma irradiation of virions reduced the amount of recoverable viral RNA, it did not primarily cause breaks. Thus, the frequency of selected recombinants was not significantly altered with greater doses of radiation. In spite of this, the irradiation did decrease the number of recombinants with only one internal template switch. As a result, the average number of additional internal template switches in the recombinant proviruses increased from 0.7 to 1.4 as infectivity decreased to 6%. The unselected internal template switches tended to be 5' of the selected crossover even in the recombinants from irradiated viruses, inconsistent with a plus-strand recombination mechanism.  相似文献   

5.
The mechanism of RNA-RNA recombination at the 3' nontranslated region (3'NTR) of the Sindbis virus (SIN) genome was studied by using nonreplicative RNA precursors. The 11.7-kb SIN genome was transcribed in vitro as two nonoverlapping RNA fragments. RNA-1 contained the entire 11.4-kb protein coding sequence of SIN and also carried an additional 1.8-kb nonviral sequence at its 3' end. RNA-2 carried the remaining 0.26 or 0.3 kb of the SIN genome containing the 3'NTR. Transfection of these two fragments into BHK cells resulted in vivo RNA-RNA recombination and release of infectious SIN recombinants. Eighteen plaque-purified recombinant viruses were sequenced to precisely map the RNA-RNA crossover sites at the 3'NTR. Sixteen of the 18 recombinants were found to be genetically heterogeneous at the 3'NTR. Two major clustered sites within the 3'NTR of RNA-2 were found to be fused to multiple locations on the nonviral sequence of RNA-1, resulting in insertions of 10 to 1,085 nucleotides at the 3'NTR. Sequence analysis of crossover sites suggested only limited homology and heteroduplex-forming capability between substrate RNAs. Analysis of additional 23 recombinant viruses generated by mutagenized donor and acceptor templates supports the occurrence of recombination hot spots on donor templates. Introduction of a 17-nucleotide rudimentary replicase recognition signal in the acceptor template alone did not induce the polymerase to reinitiate at the 17-nucleotide signal. Interestingly, deletion of a 24-nucleotide hot spot locus on the donor template abolished crossover events at one of the two sites and allowed the polymerase to reinitiate at the 17-nucleotide replicase recognition signal inserted at the acceptor template. The possible roles of RNA-protein and RNA-RNA interactions in the differential regulation of apparent pausing, template selection, and reinitiation are discussed.  相似文献   

6.
7.
Y J Lin  M M Lai 《Journal of virology》1993,67(10):6110-6118
All of the defective interfering (DI) RNAs of mouse hepatitis virus (MHV) contain both the 5' and 3' ends of the viral genomic RNA, which presumably include the cis sequences required for RNA replication. To define the replication signal of MHV RNA, we have used a vaccinia virus-T7 polymerase-transcribed MHV DI RNA to study the effects of sequence deletion on DI RNA replication. Following infection of susceptible cells with a recombinant vaccinia virus expressing T7 RNA polymerase, various cDNA clones derived from a DI RNA (DIssF) of the JHM strain of MHV, which is a 3.5-kb naturally occurring DI RNA, behind a T7 promoter were transfected. On superinfection with a helper MHV, the ability of various DI RNAs to replicate was determined. Serial deletions from the middle of the RNA toward both the 5' and 3' ends demonstrated that 859 nucleotides from the 5' end and 436 nucleotides from the 3' end of the MHV RNA genome were necessary for RNA replication. Surprisingly, an additional stretch of 135 nucleotides located at 3.1 to 3.3 kb from the 5' end of the genome was also required. This stretch is discontiguous from the 5'-end cis replication signal and is present in all of the naturally occurring DI RNAs studied so far. The requirement for a long stretch of 5'- and 3'-end sequences predicts that the subgenomic MHV mRNAs cannot replicate. The efficiency of RNA replication varied with different cDNA constructs, suggesting possible interaction between different regions of DI RNA. The identification of MHV RNA replication signals allowed the construction of an MHV DI-based expression vector, which can express foreign genes, such as the chloramphenicol acetyltransferase gene.  相似文献   

8.
9.
Frequent human immunodeficiency virus type 1 (HIV-1) recombination occurs during DNA synthesis when portions of the two copackaged RNAs are used as templates to generate a hybrid DNA copy. Therefore, the frequency of copackaging of genomic RNAs from two different viruses (heterozygous virion formation) affects the generation of genotypically different recombinants. We hypothesized that the selection of copackaged RNA partners is largely determined by Watson-Crick pairing at the dimer initiation signal (DIS), a 6-nucleotide palindromic sequence at the terminal loop of stem-loop 1 (SL1). To test our hypothesis, we examined whether heterozygous virion formation could be encouraged by manipulation of the DIS. Three pairs of viruses were generated with compensatory DIS mutations, designed so that perfect DIS base pairing could only occur between RNAs derived from different viruses, not between RNAs from the same virus. We observed that vector pairs with compensatory DIS mutations had an almost twofold increase in recombination rates compared with wild-type viruses. These data suggest that heterozygous virion formation was enhanced in viruses with compensatory DIS mutations (from 50% to more than 90% in some viral pairings). The role of the SL1 stem in heterozygous virion formation was also tested; our results indicated that the intermolecular base pairing of the stem sequences does not affect RNA partner selection. In summary, our results demonstrate that the Watson-Crick pairing of the DIS is a major determinant in the selection of the copackaged RNA partner, and altering the base pairing of the DIS can change the proportion of heterozygous viruses in a viral population. These results also strongly support the hypothesis that HIV-1 RNA dimers are formed prior to encapsidation.  相似文献   

10.
11.
Recombination in RNA   总被引:27,自引:0,他引:27  
A M King  D McCahon  W R Slade  J W Newman 《Cell》1982,29(3):921-928
The aphthovirus genome consists of a single molecule of single-stranded RNA that encodes all the virus-induced proteins. We isolated recombinant aphthoviruses from cells simultaneously infected with temperature-sensitive mutants of two different subtype strains. Analysis of the proteins induced by 16 independently generated recombinants revealed two types of protein pattern, which were consistent with single genetic crossovers on the 5' side and 3' side, respectively, of the central P34-coding region. Recombinants invariably inherited all four coat proteins from the same parent, and novel recombinant proteins were not observed. RNAase T1 fingerprints of virus RNA, prepared from representatives of each recombinant type, confirmed the approximate crossover sites that had been deduced from the inheritance of proteins. These fingerprints provide molecular evidence of recombination at the level of RNA and demonstrate the potential of RNA recombination for producing genetic diversity among picornaviruses.  相似文献   

12.
A model system of a single-stranded trisegment Brome mosaic bromovirus (BMV) was used to analyze the mechanism of homologous RNA recombination. Elements capable of forming strand-specific stem-loop structures were inserted at the modified 3' noncoding regions of BMV RNA3 and RNA2 in either positive or negative orientations, and various combinations of parental RNAs were tested for patterns of the accumulating recombinant RNA3 components. The structured negative-strand stem-loops that were inserted in both RNA3 and RNA2 reduced the accumulation of RNA3-RNA2 recombinants to a much higher extent than those in positive strands or the unstructured stem-loop inserts in either positive or negative strands. The use of only one parental RNA carrying the stem-loop insert reduced the accumulation of RNA3-RNA2 recombinants even further, but only when the stem-loops were in negative strands of RNA2. We assume that the presence of a stable stem-loop downstream of the landing site on the acceptor strand (negative RNA2) hampers the reattachment and reinitiation processes. Besides RNA3-RNA2 recombinants, the accumulation of nontargeted RNA3-RNA1 and RNA3-RNA3 recombinants were observed. Our results provide experimental evidence that homologous recombination between BMV RNAs more likely occurs during positive- rather than negative-strand synthesis.  相似文献   

13.
The genetic characterization of a nucleocapsid (N) protein mutant of the coronavirus mouse hepatitis virus (MHV) is described. The mutant, Albany 4 (Alb4), is both temperature sensitive and thermolabile. Analysis of the progeny of a mixed infection showed that the defective Alb4 allele is recessive to wild type, and its gene product is diffusible. The N protein of Alb4 was found to be smaller than its wild-type counterpart, and sequence analysis of the Alb4 N gene revealed that it contains an internal deletion of 87 nucleotides, producing an in-frame deletion of 29 amino acids. All of these properties of Alb4 made it ideal for use as a recipient in a targeted RNA recombination experiment in which the deletion in Alb4 was repaired by recombination with synthetic RNA7, the smallest MHV subgenomic mRNA. Progeny from a cotransfection of Alb4 genomic RNA and synthetic RNA7 were selected for thermal stability. Polymerase chain reaction analysis of candidate recombinants showed that they had regained the material that is deleted in the Alb4 mutant. They also had acquired a five-nucleotide insertion in the 3' untranslated region, which had been incorporated into the synthetic RNA7 as a molecular tag. The presence of the tag was directly verified, as well, by sequencing the genomic RNA of purified recombinant viruses. This provided a clear genetic proof that the Alb4 phenotype was due to the observed deletion in the N gene. In addition, these results demonstrated that it is possible to obtain stable, independently replicating progeny from recombination between coronavirus genomic RNA and a tailored, synthetic RNA species.  相似文献   

14.
15.
The initial step in mouse hepatitis virus (MHV) RNA replication is the synthesis of negative-strand RNA from a positive-strand genomic RNA template. Our approach to begin studying MHV RNA replication is to identify the cis-acting signals for RNA synthesis and the proteins which recognize these signals at the 3' end of genomic RNA of MHV. To determine whether host cellular and/or viral proteins interact with the 3' end of the coronavirus genome, an RNase T1 protection/gel mobility shift electrophoresis assay was used to examine cytoplasmic extracts from mock- and MHV-JHM-infected 17Cl-1 murine cells for the ability to form complexes with defined regions of the genomic RNA. We demonstrated the specific binding of host cell proteins to multiple sites within the 3' end of MHV-JHM genomic RNA. By using a set of RNA probes with deletions at either the 5' or 3' end or both ends, two distinct binding sites were located. The first protein-binding element was mapped in the 3'-most 42 nucleotides of the genomic RNA [3' (+42) RNA], and the second element was mapped within an 86-nucleotide sequence encompassing nucleotides 171 to 85 from the 3' end of the genome (171-85 RNA). A single potential stem-loop structure is predicted for the 3' (+)42 RNA, and two stem-loop structures are predicted for the 171-85 RNA. Proteins interacting with these two elements were identified by UV-induced covalent cross-linking to labeled RNAs followed by sodium dodecyl sulfate-polyacrylamide gel electrophoresis analysis. The RNA-protein complex formed with the 3'-most 42 nucleotides contains approximately five host polypeptides, a highly labeled protein of 120 kDa and four minor species with sizes of 103, 81, 70, and 55 kDa. The second protein-binding element, contained within a probe representing nucleotides 487 to 85 from the 3' end of the genome, also appears to bind five host polypeptides, 142, 120, 100, 55, and 33 kDa in size, with the 120-kDa protein being the most abundant. The RNA-protein complexes observed with MHV-infected cells in both RNase protection/gel mobility shift and UV cross-linking assays were identical to those observed with uninfected cells. The possible involvement of the interaction of host proteins with the viral genome during MHV replication is discussed.  相似文献   

16.
17.
The mechanism of RNA recombination in poliovirus   总被引:61,自引:0,他引:61  
K Kirkegaard  D Baltimore 《Cell》1986,47(3):433-443
We have investigated RNA recombination among poliovirus genomes by analyzing both intratypic and intertypic recombinant crosses involving the same defined genetic markers. Sequence analysis of the recombinant junctions of 13 nonsibling intertypic recombinants showed that intertypic RNA recombination is not site-specific, nor does it require extensive homology between the recombining parents at the crossover site. To discriminate between breaking-rejoining and copy choice mechanisms of RNA recombination, we have inhibited the replication of the recombining parents independently and found opposite effects on the frequency of genetic recombination in intratypic crosses. The results strongly support a copy choice mechanism for RNA recombination, in which the viral RNA polymerase switches templates during negative strand synthesis.  相似文献   

18.
19.
20.
Brome mosaic virus (BMV), a tripartite positive-stranded RNA virus of plants engineered to support intersegment RNA recombination, was used for the determination of sequence and structural requirements of homologous crossovers. A 60-nucleotide (nt) sequence, common between wild-type RNA2 and mutant RNA3, supported efficient repair (90%) of a modified 3' noncoding region in the RNA3 segment by homologous recombination with wild-type RNA2 3' noncoding sequences. Deletions within this sequence in RNA3 demonstrated that a nucleotide identity as short as 15 nt can support efficient homologous recombination events, while shorter (5-nt) sequence identity resulted in reduced recombination frequency (5%) within this region. Three or more mismatches within a downstream portion of the common 60-nt RNA3 sequence affected both the incidence of recombination and the distribution of crossover sites, suggesting that besides the length, the extent of sequence identity between two recombining BMV RNAs is an important factor in homologous recombination. Site-directed mutagenesis of the common sequence in RNA3 did not reveal a clear correlation between the stability of predicted secondary structures and recombination activity. This indicates that homologous recombination does not require similar secondary structures between two recombining RNAs at the sites of crossovers. Nearly 20% of homologous recombinants were imprecise (aberrant), containing either nucleotide mismatches, small deletions, or small insertions within the region of crossovers. This implies that homologous RNA recombination is not as accurate as proposed previously. Our results provide experimental evidence that the requirements and thus the mechanism of homologous recombination in BMV differ from those of previously described heteroduplex-mediated nonhomologous recombination (P. D. Nagy and J. J. Bujarski, Proc. Natl. Acad. Sci. USA 90:6390-6394, 1993).  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号