首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The kinesin superfamily protein, KIF1Bβ, a splice variant of KIF1B, is involved in the transport of synaptic vesicles in neuronal cells, and is also expressed in various non-neuronal tissues. To elucidate the functions of KIF1Bβ in non-neuronal cells, we analyzed the intracellular localization of KIF1Bβ and characterized its isoform expression profile. In COS-7 cells, KIF1B colocalized with lysosomal markers and expression of a mutant form of KIF1Bβ, lacking the motor domain, impaired the intracellular distribution of lysosomes. A novel isoform of the kinesin-like protein, KIF1Bβ3, was identified in rat and simian kidney. It lacks the 5th exon of the KIF1Bβ-specific tail region. Overexpression of KIF1Bβ3 induced the translocation of lysosomes to the cell periphery. However, overexpression of KIF1Bβ3-Q98L, which harbors a pathogenic mutation associated with a familial neuropathy, Charcot-Marie-Tooth disease type 2 A, resulted in the abnormal perinuclear clustering of lysosomes. These results indicate that KIF1Bβ3 is involved in the translocation of lysosomes from perinuclear regions to the cell periphery.  相似文献   

2.
Kinesin family proteins are microtubule-dependent molecular motors involved in the intracellular motile process. Using a Ca2+ -binding protein, CHP (calcineurin B homologous protein), as a bait for yeast two hybrid screening, we identified a novel kinesin-related protein, KIF1Bbeta2. KIF1Bbeta2 is a member of the KIF1 subfamily of kinesin-related proteins, and consists of an amino terminal KIF1B-type motor domain followed by a tail region highly similar to that of KIF1A. CHP binds to regions adjacent to the motor domains of KIF1Bbeta2 and KIF1B, but not to those of the other KIF1 family members, KIF1A and KIF1C. Immunostaining of neuronal cells showed that a significant portion of KIF1Bbeta2 is co-localized with synaptophysin, a marker protein for synaptic vesicles, but not with a mitochondria-staining dye. Subcellular fractionation analysis indicated the co-localization of KIF1Bbeta2 with synaptophysin. These results suggest that KIF1Bbeta2, a novel CHP-interacting molecular motor, mediates the transport of synaptic vesicles in neuronal cells.  相似文献   

3.
KIF13B, a kinesin-3 family motor, was originally identified as GAKIN due to its biochemical interaction with human homolog of Drosophila discs-large tumor suppressor (hDLG1). Unlike its homolog KIF13A, KIF13B contains a carboxyl-terminal CAP-Gly domain. To investigate the function of the CAP-Gly domain, we developed a mouse model that expresses a truncated form of KIF13B protein lacking its CAP-Gly domain (KIF13BΔCG), whereas a second mouse model lacks the full-length KIF13A. Here we show that the KIF13BΔCG mice exhibit relatively higher serum cholesterol consistent with the reduced uptake of [3H]CO-LDL in KIF13BΔCG mouse embryo fibroblasts. The plasma level of factor VIII was not significantly elevated in the KIF13BΔCG mice, suggesting that the CAP-Gly domain region of KIF13B selectively regulates LRP1-mediated lipoprotein endocytosis. No elevation of either serum cholesterol or plasma factor VIII was observed in the full length KIF13A null mouse model. The deletion of the CAP-Gly domain region caused subcellular mislocalization of truncated KIF13B concomitant with the mislocalization of LRP1. Mechanistically, the cytoplasmic domain of LRP1 interacts specifically with the alternatively spliced I3 domain of DLG1, which complexes with KIF13B via their GUK-MBS domains, respectively. Importantly, double mutant mice generated by crossing KIF13A null and KIF13BΔCG mice suffer from perinatal lethality showing potential craniofacial defects. Together, this study provides first evidence that the carboxyl-terminal region of KIF13B containing the CAP-Gly domain is important for the LRP1-DLG1-KIF13B complex formation with implications in the regulation of metabolism, cell polarity, and development.  相似文献   

4.
Intracellular transport involves the regulation of microtubule motor interactions with cargo, but the underlying mechanisms are not well understood. Septins are membrane- and microtubule-binding proteins that assemble into filamentous, scaffold-like structures. Septins are implicated in microtubule-dependent transport, but their roles are unknown. Here we describe a novel interaction between KIF17, a kinesin 2 family motor, and septin 9 (SEPT9). We show that SEPT9 associates directly with the C-terminal tail of KIF17 and interacts preferentially with the extended cargo-binding conformation of KIF17. In developing rat hippocampal neurons, SEPT9 partially colocalizes and comigrates with KIF17. We show that SEPT9 interacts with the KIF17 tail domain that associates with mLin-10/Mint1, a cargo adaptor/scaffold protein, which underlies the mechanism of KIF17 binding to the NMDA receptor subunit 2B (NR2B). Significantly, SEPT9 interferes with binding of the PDZ1 domain of mLin-10/Mint1 to KIF17 and thereby down-regulates NR2B transport into the dendrites of hippocampal neurons. Measurements of KIF17 motility in live neurons show that SEPT9 does not affect the microtubule-dependent motility of KIF17. These results provide the first evidence of an interaction between septins and a nonmitotic kinesin and suggest that SEPT9 modulates the interactions of KIF17 with membrane cargo.  相似文献   

5.
The conventional microtubule-dependent motor protein kinesin consists of heavy and light chains both of which have been documented to bind a variety of potential linker or cargo proteins. In this study we employed a yeast two-hybrid assay to identify additional binding partners of the kinesin heavy chain isoform KIF5B. A human brain cDNA library was screened with a bait corresponding to amino acid residues 814-963 of human KIF5B. This screen identified the ribosome receptor, p180, as a KIF5B-binding protein. The sites of interaction are residues 1294-1413 of p180 and the C-terminal half of the cargo binding-domain of KIF5B (residues 867-907). The KIF5B-binding site in p180 is homologous to the previously determined KIF5B-binding site in kinectin. The interacting regions of p180 and KIF5B consist almost entirely of heptad repeats, suggesting the interaction is a coiled-coil. A role for the kinesin/p180 interaction may include mRNA localization and/or transport of endoplasmic reticulum-derived vesicles.  相似文献   

6.
Neurons use kinesin and dynein microtubule-dependent motor proteins to transport essential cellular components along axonal and dendritic microtubules. In a search for new kinesin-like proteins, we identified two neuronally enriched mouse kinesins that provide insight into a unique intracellular kinesin targeting mechanism in neurons. KIF21A and KIF21B share colinear amino acid similarity to each other, but not to any previously identified kinesins outside of the motor domain. Each protein also contains a domain of seven WD-40 repeats, which may be involved in binding to cargoes. Despite the amino acid sequence similarity between KIF21A and KIF21B, these proteins localize differently to dendrites and axons. KIF21A protein is localized throughout neurons, while KIF21B protein is highly enriched in dendrites. The plus end-directed motor activity of KIF21B and its enrichment in dendrites indicate that models suggesting that minus end-directed motor activity is sufficient for dendrite specific motor localization are inadequate. We suggest that a novel kinesin sorting mechanism is used by neurons to localize KIF21B protein to dendrites since its mRNA is restricted to the cell body.  相似文献   

7.
Proper targeting of the βPAK-interacting exchange factor (βPIX)/G protein-coupled receptor kinase-interacting target protein (GIT) complex into distinct cellular compartments is essential for its diverse functions including neurite extension and synaptogenesis. However, the mechanism for translocation of this complex is still unknown. In the present study, we reported that the conventional kinesin, called kinesin-1, can transport the βPIX/GIT complex. Additionally, βPIX bind to KIF5A, a neuronal isoform of kinesin-1 heavy chain, but not KIF1 and KIF3. Mapping analysis revealed that the tail of KIF5s and LZ domain of βPIX were the respective binding domains. Silencing KIF5A or the expression of a variety of mutant forms of KIF5A inhibited βPIX targeting the neurite tips in PC12 cells. Fur-thermore, truncated mutants of βPIX without LZ domain did not interact with KIF5A, and were unable to target the neurite tips in PC12 cells. These results defined kinesin-1 as a motor protein of βPIX, and may provide new insights into βPIX/GIT complex-dependent neuronal pathophysiology.  相似文献   

8.
Axonal transport of synaptic vesicles (SVs) is a KIF1A/UNC-104 mediated process critical for synapse development and maintenance yet little is known of how SV transport is regulated. Using C. elegans as an in vivo model, we identified SAM-4 as a novel conserved vesicular component regulating SV transport. Processivity, but not velocity, of SV transport was reduced in sam-4 mutants. sam-4 displayed strong genetic interactions with mutations in the cargo binding but not the motor domain of unc-104. Gain-of-function mutations in the unc-104 motor domain, identified in this study, suppress the sam-4 defects by increasing processivity of the SV transport. Genetic analyses suggest that SAM-4, SYD-2/liprin-α and the KIF1A/UNC-104 motor function in the same pathway to regulate SV transport. Our data support a model in which the SV protein SAM-4 regulates the processivity of SV transport.  相似文献   

9.
The Ran-binding protein 2 (RanBP2) is a vertebrate mosaic protein composed of four interspersed RanGTPase binding domains (RBDs), a variable and species-specific zinc finger cluster domain, leucine-rich, cyclophilin, and cyclophilin-like (CLD) domains. Functional mapping of RanBP2 showed that the domains, zinc finger and CLD, between RBD1 and RBD2, and RBD3 and RBD4, respectively, associate specifically with the nuclear export receptor, CRM1/exportin-1, and components of the 19 S regulatory particle of the 26 S proteasome. Now, we report the mapping of a novel RanBP2 domain located between RBD2 and RBD3, which is also conserved in the partially duplicated isoform RanBP2L1. Yet, this domain leads to the neuronal association of only RanBP2 with two kinesin microtubule-based motor proteins, KIF5B and KIF5C. These kinesins associate directly in vitro and in vivo with RanBP2. Moreover, the kinesin light chain and RanGTPase are part of this RanBP2 macroassembly complex. These data provide evidence of a specific docking site in RanBP2 for KIF5B and KIF5C. A model emerges whereby RanBP2 acts as a selective signal integrator of nuclear and cytoplasmic trafficking pathways in neurons.  相似文献   

10.
The Cdo-p38MAPK (p38 mitogen-activated protein kinase) signaling pathway plays important roles in regulating skeletal myogenesis. During myogenic differentiation, the cell surface receptor Cdo bridges scaffold proteins BNIP-2 and JLP and activates p38MAPK, but the spatial-temporal regulation of this process is largely unknown. We here report that KIF5B, the heavy chain of kinesin-1 motor, is a novel interacting partner of BNIP-2. Coimmunoprecipitation and far-Western study revealed that BNIP-2 directly interacted with the motor and tail domains of KIF5B via its BCH domain. By using a range of organelle markers and live microscopy, we determined the endosomal localization of BNIP-2 and revealed the microtubule-dependent anterograde transport of BNIP-2 in C2C12 cells. The anterograde transport of BNIP-2 was disrupted by a dominant-negative mutant of KIF5B. In addition, knockdown of KIF5B causes aberrant aggregation of BNIP-2, confirming that KIF5B is critical for the anterograde transport of BNIP-2 in cells. Gain- and loss-of-function experiments further showed that KIF5B modulates p38MAPK activity and in turn promotes myogenic differentiation. Of importance, the KIF5B-dependent anterograde transport of BNIP-2 is critical for its promyogenic effects. Our data reveal a novel role of KIF5B in the spatial regulation of Cdo–BNIP-2–p38MAPK signaling and disclose a previously unappreciated linkage between the intracellular transporting system and myogenesis regulation.  相似文献   

11.
Kinesin family in murine central nervous system   总被引:27,自引:15,他引:12       下载免费PDF全文
《The Journal of cell biology》1992,119(5):1287-1296
In neuronal axons, various kinds of membranous components are transported along microtubules bidirectionally. However, only two kinds of mechanochemical motor proteins, kinesin and brain dynein, had been identified as transporters of membranous organelles in mammalian neurons. Recently, a series of genes that encode proteins closely related to kinesin heavy chain were identified in several organisms including Schizosaccharomyces pombe, Aspergillus niddulans, Saccharomyces cerevisiae, Caenorhabditus elegans, and Drosophila. Most of these members of the kinesin family are implicated in mechanisms of mitosis or meiosis. To address the mechanism of intracellular organelle transport at a molecular level, we have cloned and characterized five different members (KIF1-5), that encode the microtubule-associated motor domain homologous to kinesin heavy chain, in murine brain tissue. Homology analysis of amino acid sequence indicated that KIF1 and KIF5 are murine counterparts of unc104 and kinesin heavy chain, respectively, while KIF2, KIF3, and KIF4 are as yet unidentified new species. Complete amino acid sequence of KIF3 revealed that KIF3 consists of NH2-terminal motor domain, central alpha-helical rod domain, and COOH-terminal globular domain. Complete amino acid sequence of KIF2 revealed that KIF2 consists of NH2-terminal globular domain, central motor domain, and COOH-terminal alpha-helical rod domain. This is the first identification of the kinesin-related protein which has its motor domain at the central part in its primary structure. Northern blot analysis revealed that KIF1, KIF3, and KIF5 are expressed almost exclusively in murine brain, whereas KIF2 and KIF4 are expressed in brain as well as in other tissues. All these members of the kinesin family are expressed in the same type of neurons, and thus each one of them may transport its specific organelle in the murine central nervous system.  相似文献   

12.
13.
In mammals, 15 to 20 kinesins are thought to mediate vesicle transport. Little is known about the identity of vesicles moved by each kinesin or the functional significance of such diversity. To characterize the transport mediated by different kinesins, we developed a novel strategy to visualize vesicle‐bound kinesins in living cells. We applied this method to cultured neurons and systematically determined the localization and transport parameters of vesicles labeled by different members of the Kinesin‐1, ‐2, and ‐3 families. We observed vesicle labeling with nearly all kinesins. Only six kinesins bound vesicles that undergo long‐range transport in neurons. Of these, three had an axonal bias (KIF5B, KIF5C and KIF13B), two were unbiased (KIF1A and KIF1Bβ), and one transported only in dendrites (KIF13A). Overall, the trafficking of vesicle‐bound kinesins to axons or dendrites did not correspond to their motor domain preference, suggesting that on‐vesicle regulation is crucial for kinesin targeting. Surprisingly, several kinesins were associated with populations of somatodendritic vesicles that underwent little long‐range transport. This assay should be broadly applicable for investigating kinesin function in many cell types.  相似文献   

14.
The UNC-104/KIF1A motor is crucial for axonal transport of synaptic vesicles, but how the UNC-104/KIF1A motor is activated in vivo is not fully understood. Here, we identified point mutations located in the motor domain or the inhibitory CC1 domain, which resulted in gain-of-function alleles of unc-104 that exhibit hyperactive axonal transport and abnormal accumulation of synaptic vesicles. In contrast to the cell body localization of wild type motor, the mutant motors accumulate on neuronal processes. Once on the neuronal process, the mutant motors display dynamic movement similarly to wild type motors. The gain-of-function mutation on the motor domain leads to an active dimeric conformation, releasing the inhibitory CC1 region from the motor domain. Genetically engineered mutations in the motor domain or CC1 of UNC-104, which disrupt the autoinhibitory interface, also led to the gain of function and hyperactivation of axonal transport. Thus, the CC1/motor domain-mediated autoinhibition is crucial for UNC-104/KIF1A-mediated axonal transport in vivo.  相似文献   

15.
Gong TW  Winnicki RS  Kohrman DC  Lomax MI 《Gene》1999,239(1):117-127
Kinesin and kinesin-related proteins are microtubule-dependent motor proteins that transport organelles. We have cloned and sequenced a full-length 9924 bp mouse cDNA for a new kinesin of the UNC-104/KIF1 subfamily. Northern blot analysis of mouse RNAs detected high levels of a 10 kb mRNA in brain and eye, but lower levels in other tissues. Human RNA dot-blot analysis detected this mRNA in all tissues examined, although at different levels. The overall structure of the new kinesin (predicted size 204 kDa) was most similar to mouse KIF1A; however, 2.1 kb of the 5' portion of the cDNA were identical to the published sequence for KIF1B (Nangaku, M., Sato-Yoshitake, R., Okada, Y., Noda, Y., Takemura, R., Yamazaki, H., Hirokawa, N., 1994. KIF1B, a novel microtubule plus end-directed monomeric motor protein for transport of mitochondria. Cell 79, 1209-1220). We localized the Kif1b gene to the distal end of mouse Chromosome 4 by haplotype analysis of an interspecific backcross from The Jackson Laboratory. We had previously mapped the gene for the novel kinesin to the same location (Gong, T.-W.L., Burmeister, M., Lomax, M.I., 1996b. The novel gene D4Mille maps to mouse Chromosome 4 and human Chromosome 1p36. Mamm. Genome 7, 790-791). We conclude, therefore, that the Kif1b gene generates two major kinesin isoforms by alternative splicing. The shorter 7.8 kb mRNA encodes a 130 kDa kinesin, KIF1Bp130, whereas the 10 kb mRNA encodes a 204 kDa kinesin, KIF1Bp204. In addition, alternative splicing of two exons in the conserved region adjacent to the motor domain generates four different isoforms of each kinesin, leading to eight kinesin isoforms derived from the Kif1b gene.  相似文献   

16.
The cellular molecular motor kinesin-1 mediates the microtubule-dependent transport of a range of cargo. We have previously identified an interaction between the cargo-binding domain of kinesin-1 heavy chain KIF5B and the membrane-associated SNARE proteins SNAP-25 and SNAP-23. In this study we further defined the minimal SNAP-25 binding domain in KIF5B to residues 874-894. Overexpression of a fragment of KIF5B (residues 594-910) resulted in significant colocalization with SNAP-25 with resulting blockage of the trafficking of SNAP-25 to the periphery of cells. This indicates that kinesin-1 facilitates the transport of SNAP-25 containing vesicles as a prerequisite to SNAP-25 driven membrane fusion events.  相似文献   

17.
Lysosomes concentrate juxtanuclearly in the region around the microtubule-organizing center by interaction with microtubules. Different experimental and physiological conditions can induce these organelles to move to the cell periphery by a mechanism implying a plus-end-directed microtubule-motor protein (a kinesin-like motor). The responsible kinesin-superfamily protein, however, is unknown. We have identified a new mouse isoform of the kinesin superfamily, KIF2beta, an alternatively spliced isoform of the known, neuronal kinesin, KIF2. Developmental expression pattern and cell-type analysis in vivo and in vitro reveal that KIF2beta is abundant at early developmental stages of the hippocampus but is then downregulated in differentiated neuronal cells, and it is mainly or uniquely expressed in non-neuronal cells while KIF2 remains exclusively neuronal. Electron microscopy of mouse fibroblasts and immunofluorescence of KIF2beta-transiently-transfected fibroblasts show KIF2 and KIF2beta primarily associated with lysosomes, and this association can be disrupted by detergent treatment. In KIF2beta-overexpressing cells, lysosomes (labeled with anti-lysosome-associated membrane protein-1) become abnormally large and peripherally located at some distance from their usual perinuclear positions. Overexpression of KIF2 or KIF2beta does not change the size or distribution of early, late and recycling endosomes nor does overexpression of different kinesin superfamily proteins result in changes in lysosome size or positioning. These results implicate KIF2beta as a motor responsible for the peripheral translocation of lysosomes.  相似文献   

18.
Several mammalian kinesin motor proteins exist as multiple isoforms that arise from alternative splicing of a single gene. However, the roles of many motor protein splice variants remain unclear. The kinesin-3 motor protein KIF1B has alternatively spliced isoforms distinguished by the presence or absence of insertion sequences in the conserved amino-terminal region of the protein. The insertions are located in the loop region containing the lysine-rich cluster, also known as the K-loop, and in the hinge region adjacent to the motor domain. To clarify the functions of these alternative splice variants of KIF1B, we examined the biochemical properties of recombinant KIF1B with and without insertion sequences. In a microtubule-dependent ATPase assay, KIF1B variants that contained both insertions had higher activity and affinity for microtubules than KIF1B variants that contained no insertions. Mutational analysis of the K-loop insertion revealed that variants with a longer insertion sequence at this site had higher activity. However, the velocity of movement in motility assays was similar between KIF1B with and without insertion sequences. Our results indicate that splicing isoforms of KIF1B that vary in their insertion sequences have different motor activities.  相似文献   

19.
The Ran-binding protein 2 (RanBP2) is a large mosaic protein with a pleiotropic role in cell function. Although the contribution of each partner and domain of RanBP2 to its biological functions are not understood, physiological deficits of RanBP2 downregulate glucose catabolism and energy homeostasis and lead to delocalization of mitochondria components in photosensory neurons. The kinesin-binding domain (KBD) of RanBP2 associates selectively in the central nervous system (CNS), and directly, with the ubiquitous and CNS-specific kinesins, KIF5B and KIF5C, respectively, but not with the highly homologous KIF5A. Here, we determine the molecular and biological bases of the selective interaction between RanBP2 and KIF5B/KIF5C. This interaction is conferred by a approximately 100-residue segment, comprising a portion of the coiled-coil and globular tail cargo-binding domains of KIF5B/KIF5C. A single residue conserved in KIF5B and KIF5C, but not KIF5A, confers KIF5-isotype-specific association with RanBP2. This interaction is also mediated by a conserved leucine-like heptad motif present in KIF5s and KBD of RanBP2. Selective inhibition of the interaction between KBD of RanBP2 and KIF5B/KIF5C in cell lines causes perinuclear clustering of mitochondria, but not of lysosomes, deficits in mitochondrial membrane potential and ultimately, cell shrinkage. Collectively, the data provide a rationale of the KIF5 subtype-specific interaction with RanBP2 and support a novel kinesin-dependent role of RanBP2 in mitochondria transport and function. The data also strengthen a model whereby the selection of a large array of cargoes for transport by a restricted number of motor proteins is mediated by adaptor proteins such as RanBP2.  相似文献   

20.
Most UNC-104/KIF1 kinesins are monomeric motors that transport membrane-bounded organelles toward the plus ends of microtubules. Recent evidence implies that KIF1A, a synaptic vesicle motor, moves processively. This surprising behavior for a monomeric motor depends upon a lysine-rich loop in KIF1A that binds to the negatively charged carboxyl terminus of tubulin and, in the context of motor processivity, compensates for the lack of a second motor domain on the KIF1A holoenzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号